Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Mycotoxin Res ; 39(3): 247-259, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269452

RESUMO

Monascus produces a kind of mycotoxin, citrinin, whose synthetic pathway is still not entirely clear. The function of CtnD, a putative oxidoreductase located upstream of pksCT in the citrinin gene cluster, has not been reported. In this study, the CtnD overexpressed strain and the Cas9 constitutively expressed chassis strain were obtained by genetic transformation mediated by Agrobacterium tumefaciens. The pyrG and CtnD double gene-edited strains were then obtained by transforming the protoplasts of the Cas9 chassis strain with in vitro sgRNAs. The results showed that overexpression of CtnD resulted in significant increases in citrinin content of more than 31.7% and 67.7% in the mycelium and fermented broth, respectively. The edited CtnD caused citrinin levels to be reduced by more than 91% in the mycelium and 98% in the fermented broth, respectively. It was shown that CtnD is a key enzyme involved in citrinin biosynthesis. RNA-Seq and RT-qPCR showed that the overexpression of CtnD had no significant effect on the expression of CtnA, CtnB, CtnE, and CtnF but led to distinct changes in the expression of acyl-CoA thioesterase and two MFS transporters, which may play an unknown role in citrinin metabolism. This study is the first to report the important function of CtnD in M. purpureus through a combination of CRISPR/Cas9 editing and overexpression.


Assuntos
Citrinina , Monascus , Citrinina/metabolismo , Monascus/genética , Monascus/metabolismo , Edição de Genes , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Oxirredutases/genética , Oxirredutases/metabolismo , Pigmentos Biológicos/metabolismo
2.
J Appl Toxicol ; 43(9): 1284-1292, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36908085

RESUMO

Citrinin, a mycotoxin produced by Penicillium citrinum and Penicillium verrucosum, mainly contaminates cereals. The aim of study was to investigate the novel immunoreactive effect of citrinin using a mouse model of psoriasis. A mouse model of psoriasis was generated by topical application of 5% imiquimod in female BALB/c mice. Standard rodent diet and rice samples with 3 ppm of citrinin were mixed to obtain a final citrinin concentration of 0.3 ppm, and a citrinin-contaminated diet was fed to mice daily. Skin thickness, scratching behavior, and trans epidermal water loss (TEWL) were monitored continuously during the imiquimod application. Immediately after the final imiquimod application, ear skin and auricular lymph node (LN) were sampled for further analysis. Only a slight increase was observed in skin thickness in the citrinin exposure group; however, citrinin exposure significantly exacerbated hyperkeratinization and inflammatory cell infiltration in histological evaluation. TEWL, which is representative of cutaneous barrier function, was significantly increased by citrinin exposure. In terms of immune function, the number of immune cells in LN (T cells and dendritic cells) and gene expression of interleukin (IL)-17 in skin tissue were significantly increased by citrinin exposure. Direct interaction of dendritic cells (DCs) in citrinin-induced psoriasis development was further examined by proinflammatory cytokine determination in THP-1 cells and murine bone marrow derived DCs. IL-6 and/or tumor necrosis factor α were significantly increased by citrinin exposure. Taken together, our results imply that oral exposure to citrinin exacerbates the symptoms of a mouse model of psoriasis via direct activation of DCs.


Assuntos
Citrinina , Psoríase , Feminino , Animais , Camundongos , Imiquimode/toxicidade , Citrinina/toxicidade , Citrinina/metabolismo , Aminoquinolinas/toxicidade , Aminoquinolinas/metabolismo , Células Dendríticas , Psoríase/induzido quimicamente , Pele , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
3.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36849138

RESUMO

AIMS: In this study, Mrhst4, encoding a member of NAD+-dependent histone deacetylase (HDAC), was deleted to evaluate its regulation on the production of Monascus azaphilone pigments (MonAzPs) and mycotoxin, as well as the developmental process in Monascusruber. METHODS AND RESULTS: Agrobacterium tumefaciens-mediated transformation was applied in this study to generate the Mrhst4 null strain. Mrhst4-deleted strain did not display obvious differences in the sexual and asexual reproduction, colonial morphology, and micro-morphology. UV-Vis scan and UPLC detection showed that disruption of Mrhst4 significantly increased the MonAzPs yields, and citrinin content was dramatically enhanced during the tested period. RT-qPCR results showed that the absence of Mrhst4 significantly increased the relative expression of citrinin biosynthetic pathway genes including pksCT, mrl1, mrl2, mrl4, mrl6, and mrl7. The Western blot assay suggested that deletion of Mrhst4 could significantly elevate the acetylation levels of H3K4, H3K9, H3K18, H3K56, and H4K12, but attenuated the lysine acetylation modification of H4Pan, H4K8, and H4K16. CONCLUSION: MrHst4 is an important regulator involved in secondary metabolism in Monascus ruber. In particular, MrHst4 plays a pivotal role in regulation of citrinin production.


Assuntos
Citrinina , Monascus , Citrinina/metabolismo , Monascus/genética , NAD/metabolismo , Pigmentos Biológicos/metabolismo
4.
Ecotoxicol Environ Saf ; 252: 114568, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696728

RESUMO

Citrinin, a mycotoxin existing in fruits, has nephrotoxicity, hepatotoxicity and embryotoxicity. The effects of citrinin on Leydig cell development in prepuberty remains unclear. Male Sprague-Dawley rats were gavaged with 0, 1, 2.5, and 5 mg/kg citrinin from postnatal days 21-28. Citrinin at 5 mg/kg significantly decreased serum testosterone levels, while increasing serum LH and FSH levels. Citrinin at 1-5 mg/kg markedly downregulated Hsd17b3 and HSD17B3 expression, while upregulating Srd5a1 (SRD5A1) and Akr1c14 (AKR1C14) expression at 2.5 and/or 5 mg/kg. Citrinin at 5 mg/kg also significantly increased PCNA-labeling index in Leydig cells. Citrinin at 5 mg/kg significantly raised testicular MDA amount, whiling at 2.5 and 5 mg/kg downregulating SOD1 and SOD2 expression. Citrinin at 5 mg/kg markedly decreased the ratio of Bcl2 to Bax, in consistent with the increased apoptosis in Leydig cells judged by TUNEL assay. Enzymatic assay revealed that citrinin inhibited rat testicular HSD3B1 activity at 100 µM and HSD17B3 activity at 10-100 µM. Citrinin at 50 µM and higher also induced reactive oxygen species (ROS) and apoptosis of R2C cell line. In conclusion, citrinin inhibits Leydig cell development at multiple levels via different mechanisms and oxidative stress partially plays a role.


Assuntos
Citrinina , Células Intersticiais do Testículo , Ratos , Masculino , Animais , Células Intersticiais do Testículo/metabolismo , Ratos Sprague-Dawley , Citrinina/toxicidade , Citrinina/metabolismo , Testículo , Diferenciação Celular , Testosterona
5.
Drug Chem Toxicol ; 46(5): 944-954, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36065904

RESUMO

Citrinin (CIT) is a mycotoxin produced as a secondary product by the genera Aspergillus, Penicillium, Monascus, and other strains. CIT has the potential for contaminating animal feed and human food such as maize, wheat, rye, barley, oats, rice, cheese, and sake. Although CIT is primarily known as a nephrotoxic mycotoxin, it also affects other organs, including the liver and bone marrow, and its mechanisms of toxicity have not been clearly elucidated. There is a further lack of studies investigating the potential for CIT-induced neurotoxicity and its mechanisms. In the current study, SH-SY5Y human neuroblastoma cell line was treated with CIT for 24 h to evaluate various toxicological endpoints, such as reactive oxygen species (ROS) production and apoptosis induction. Results indicate that CIT has an IC50 value of 250.90 µM and cell proliferation decreased significantly at 50 and 100 µM CIT concentrations. These same concentrations also caused elevated ROS production (≥34.76%), apoptosis (≥9.43-fold) and calcium ion mobilization (≥36.52%) in the cells. Results show a significant decrease in the mitochondrial membrane potential (≥86.8%). We also found that CIT significantly upregulated the expression of some genes related to oxidative stress and apoptosis, while downregulating others. These results suggest that apoptosis and oxidative stress may be involved in the mechanisms underlying CIT-induced neurotoxicity.


Assuntos
Citrinina , Neuroblastoma , Animais , Humanos , Citrinina/toxicidade , Citrinina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Estresse Oxidativo , Linhagem Celular Tumoral
6.
Enzyme Microb Technol ; 162: 110121, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36137417

RESUMO

The industrial production of monascus yellow pigments (MYPs) has not yet been done due to the lack of high-quality industrial Monascus strains. In this work, we employed carbon ion beam (12C6+) irradiation to screen Monascus strains that produce high-quality extracellular MYPs (extr-MYPs). One genetically stable M. purpureus mutant of BWY-5 with extr-MYPs accumulation was obtained under 12C6+ irradiation (80 MeV/u, 200 Gy). M. purpureus BWY-5 could use various nitrogen sources to produce single pH stable extr-MYPs (around 80 AU at 370 nm). Moreover, citrinin was not detected by HPLC method. Transcriptomics of the MYP production strain suggested that Carbon ion beam irradiation led to deletion (MpigF, MpigG and MpigH), downregulation (CtnE, CtnH and CtnI) and upregulation (MpigM) of genes related with biosynthesis of MOPs and MRPs, citrinin, and extr-MYPs, respectively. The results showed that M. purpureus BWY-5 has the potential to be used as an industrial Monascus strain and platform for extr-MYPs production and monascus polyketide synthetic pathway studies, respectively.


Assuntos
Citrinina , Monascus , Monascus/genética , Monascus/metabolismo , Nitrogênio/metabolismo , Citrinina/metabolismo , Carbono/metabolismo , Pigmentos Biológicos/metabolismo
7.
Toxins (Basel) ; 14(11)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36422974

RESUMO

Citrinin (CIT) is a mycotoxin found in foods and feeds and most commonly discovered in red yeast rice, a food additive made from ordinary rice by fermentation with Monascus. Currently, no enzyme is known to be able to degrade CIT effectively. In this study, it was discovered that manganese peroxidase (MrMnP) from Moniliophthora roreri could degrade CIT. The degradation appeared to be fulfilled by a combination of direct and indirect actions of the MrMnP with the CIT. Pure CIT, at a final concentration of 10 mg/L, was completely degraded by MrMnP within 72 h. One degradation product was identified to be dihydrocitrinone. The toxicity of the CIT-degradation product decreased, as monitored by the increased survival rate of the Caco-2 cells incubated with MrMnP-treated CIT. In addition, MrMnP could degrade CIT (with a starting concentration of up to 4.6 mg/L) completely contaminated in red yeast rice. MrMnP serves as an excellent candidate enzyme for CIT detoxification.


Assuntos
Citrinina , Humanos , Citrinina/metabolismo , Células CACO-2 , Peroxidases
8.
Fungal Genet Biol ; 163: 103742, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108886

RESUMO

Similar to Pu-erh tea, Liupao tea is a post-fermented tea that is produced through natural fermentation by microorganisms. Penicillium citrinum is involved in multiple production processes of Liupao tea that can produce citrinin, a secondary metabolite with renal toxicity; however, the effect of P. citrinum on the quality of Liupao tea has not been investigated yet. Citrinin production is regulated by approximately 16 biosynthesis genes. However, little is known about the genetic background of citrinin in the complex Liupao tea system. In the present study, we cultured P. citrinum on potato dextrose agar and Liupao tea powder media and analyzed the changes of its nutritional components in Liupao tea. We selected six citrinin biosynthesis genes identified in Monascus exhibiting homology and high sequence similarity to those in P. citrinum and further analyzed the expression of citrinin biosynthesis genes in Liupao tea and the changes in citrinin yield. The results showed that the changes in nutritional components of Liupao tea were closely related to the growth and metabolism of P. citrinum and the quality of the tea. Decreases in the contents of soluble sugars (from 10.29% to 9.58%), soluble pectins (from 3.71% to 3.13%), free amino acids (from 3.84% to 3.14%), and tea polyphenols (from 22.84% to 18.78%) were noted. The Spearman's correlation analysis indicated that P. citrinum growth can improve the tea quality to some extent. Quantitative real-time PCR demonstrated that ctnA gene was a positive regulator of citrinin production regardless of the culture medium used. ctnA and orf5 expressions greatly influenced the metabolism of citrinin by P. citrinum in Liupao tea. In conclusion, the citrinin biosynthesis genes, ctnA and orf5, may be the promising targets for developing strategies to control P. citrinum infection and citrinin biosynthesis in Liupao tea.


Assuntos
Citrinina , Monascus , Penicillium , Citrinina/metabolismo , Penicillium/metabolismo , Monascus/genética , Chá/genética , Chá/metabolismo
9.
Int J Food Microbiol ; 379: 109829, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35863149

RESUMO

Red fermented rice (RFR) is rice fermented using Monascus spp. This product contains monacolin K, providing health benefits including mitigation of diarrhoea and improving blood circulation. RFR can produce pigments that can act as natural colour and flavouring agents. However, Monascus spp. (a fungal starter to ferment RFR) can also produce the mycotoxin, citrinin (CIT) which is believed to have adverse effects on human health. CIT in RFR has been reported worldwide by using different methods of detection. This review focuses on the production of RFR by solid-state fermentation (SSF) and submerged fermentation (SmF), the occurrence of CIT in RFR, CIT quantification, the factors affecting the growth of Monascus spp., pigments and CIT production in RFR, and possible methods to reduce CIT in RFR. This review will help the food industries, researchers, and consumers understand the risk of consuming RFR, and the possibility of controlling CIT in RFR.


Assuntos
Citrinina , Monascus , Oryza , Citrinina/metabolismo , Fermentação , Humanos , Lovastatina , Monascus/metabolismo , Oryza/microbiologia
10.
PLoS One ; 17(6): e0263905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35648754

RESUMO

Monascus is a filamentous fungus that is widely used for producing Monascus pigments in the food industry in Southeast Asia. While the development of bioinformatics has helped elucidate the molecular mechanism underlying metabolic engineering of secondary metabolite biosynthesis, the biological information on the metabolic engineering of the morphology of Monascus remains unclear. In this study, the whole genome of M. purpureus CSU-M183 strain was sequenced using combined single-molecule real-time DNA sequencing and next-generation sequencing platforms. The length of the genome assembly was 23.75 Mb in size with a GC content of 49.13%, 69 genomic contigs and encoded 7305 putative predicted genes. In addition, we identified the secondary metabolite biosynthetic gene clusters and the chitin synthesis pathway in the genome of the high pigment-producing M. purpureus CSU-M183 strain. Furthermore, it is shown that the expression levels of most Monascus pigment and citrinin clusters located genes were significantly enhanced via atmospheric room temperature plasma mutagenesis. The results provide a basis for understanding the secondary metabolite biosynthesis, and constructing the metabolic engineering of the morphology of Monascus.


Assuntos
Citrinina , Monascus , Quitina/metabolismo , Citrinina/metabolismo , Monascus/genética , Monascus/metabolismo , Família Multigênica , Sequenciamento Completo do Genoma
11.
Anal Biochem ; 653: 114771, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660508

RESUMO

Penicillium is universal in dark tea, and Penicillium citrinum can produce a kidney toxin called citrinin (CIT). Determining CIT is difficult because of the complexity of the dark tea substrate and the diversity of CIT-producing fungi. Therefore, this study established a real-time PCR (qPCR) detection method for CIT-related synthetic genes (ctnD, orf1, ctnA, pksCT, orf5, orf7, and ctnG) in Liupao tea and determined the content of CIT in samples at different production stages and the toxin-producing abilities of fungi (Aspergillus oryzae, etc.) in Liupao tea. CIT was found in all samples during the pile-fermentation process of Liupao tea, and CIT was detected in two samples during the aging process. The established method demonstrated good sensitivity and specificity in detecting CIT-related synthetic genes. The reaction efficiency was within the preferred range of 100 ± 10%. CIT was not detected or was below the detection limit when the Ct value of one or more related synthetic genes was greater than 33.5. Therefore, the established qPCR method can effectively predict the production of CIT in Liupao tea, and it is applicable to the judgment of whether fungi produce CIT.


Assuntos
Citrinina , Citrinina/metabolismo , Fermentação , Fungos , Reação em Cadeia da Polimerase em Tempo Real , Chá/microbiologia
12.
Toxins (Basel) ; 14(4)2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35448868

RESUMO

Citrinin (CTN) is a mycotoxin found in crops and agricultural products and poses a serious threat to human and animal health. The aim of this study is to investigate the hepatotoxicity of CTN in mice and analyze its mechanisms from Ca2+-dependent endoplasmic reticulum (ER) stress perspective. We showed that CTN induced histopathological damage, caused ultrastructural changes in liver cells, and induced abnormal values of biochemical laboratory tests of some liver functions in mice. Treatment with CTN could induce nitric oxide (NO), malondialdehyde (MDA), and reactive oxygen species (ROS) accumulation in mice, accompanied with losses of activities of superoxide dismutase (SOD) and catalase (CAT), levels of glutathione (GSH), and capacities of total antioxidant (T-AOC), resulting in oxidative stress in mice. Furthermore, CTN treatment significantly increased Ca2+ accumulation, upregulated protein expressions of ER stress-mediated apoptosis signal protein (glucose regulated protein 78 (GRP78/BIP), C/EBP-homologous protein (CHOP), Caspase-12, and Caspase-3), and induced hepatocyte apoptosis. These adverse effects were counteracted by 4-phenylbutyric acid (4-PBA), an ER stress inhibitor. In summary, our results showed a possible underlying molecular mechanism for CTN that induced hepatocyte apoptosis in mice by the regulation of the Ca2+/ER stress signaling pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citrinina , Animais , Apoptose , Citrinina/metabolismo , Citrinina/toxicidade , Estresse do Retículo Endoplasmático , Glutationa/metabolismo , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
13.
J Appl Microbiol ; 133(2): 591-606, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35451171

RESUMO

AIMS: Monascus spp. are valuable industrial fungi for producing beneficial compounds. Because sporulation is often coupled with the production of secondary metabolites, the current study was performed to investigate how Mrada3 regulated asexual and sexual development and the production of edible pigments and mycotoxin. METHODS AND RESULTS: The functional characteristics of Mrada3 were identified by gene deletion and overexpression in Monascus ruber M7 (the wild-type, WT). The results revealed that the ΔMrada3 strain aborted sexual development, but it produced many more conidia than WT. RNA-seq data showed that the deletion of Mrada3 altered the expression levels of partial genes involved in sexual and asexual development. In addition, the deletion of Mrada3 also resulted in slower growth, lower pigment production and increased citrinin yield during the late period. For the Mrada3-overexpressed strain, the number of ascospores and pigment content were significantly higher than those of WT, but citrinin was slightly lower than that of WT. CONCLUSIONS: The Mrada3 gene plays a vital role in the sporulation development and secondary metabolism of Monascus species. SIGNIFICANCE AND IMPACT OF THE STUDY: Mrada3 is first identified as an essential regulator for sexual development in Monascus species, enriching the regulatory knowledge of sexual development in filamentous fungi.


Assuntos
Citrinina , Monascus , Citrinina/metabolismo , Monascus/genética , Monascus/metabolismo , Pigmentos Biológicos/metabolismo , Reprodução , Esporos Fúngicos
14.
Ecotoxicol Environ Saf ; 237: 113531, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483142

RESUMO

Citrinin, a secondary metabolite, can pose serious risks to the environment and organisms, but its hepatotoxic mechanisms are still unclear. Histopathological and ultrastructural results showed that citrinin-induced liver injury in Kunming mice, and the mechanism of citrinin-induced hepatotoxicity was studied in L02 cells. Firstly, citrinin mades L02 cell cycle arrest in G2/M phase by inhibition of cyclin B1, cyclin D1, cyclin-dependent kinases 2 (CDK2), and CDK4 expression. Secondly, citrinin inhibits proliferation and promotes apoptosis of L02 cells via disruption of mitochondria membrane potential, increase Bax/Bcl-2 ration, activation of caspase-3, 9, and enhance lactate dehydrogenase (LDH) release. Then, citrinin inhibits superoxide dismutase (SOD) activity and increases the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS), resulting oxidative damage in L02 cells; upregulates the protein expression of binding immunoglobulin protein (Bip), C/EBP homologous protein (CHOP), PKR-like ER kinase (PERK) and activating transcription factor6 (ATF6), inducing ER stress in L02 cells; increases the phosphorylation of AMP-activated protein kinase (AMPK) and decreases the content of adenosine-triphosphate (ATP), activating AMPK pathway in L02 cells. Eventually, pretreatment with NAC, an ROS inhibitor, alleviates citrinin-induced cell cycle G2/M arrest and apoptosis by inhibiting ROS-mediated ER stress; pretreatment with 4-PBA, an ER stress inhibitor, reversed ER stress and p-AMPK; pretreatment with dorsomorphin, an AMPK inhibitor, decreases citrinin-induced cell cycle G2/M arrest and apoptosis. In summary, citrinin induces cell cycle arrest and apoptosis to aggravate liver injury by activating ROS-ER stress-AMPK signaling pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citrinina , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Citrinina/metabolismo , Citrinina/toxicidade , Estresse do Retículo Endoplasmático , Pontos de Checagem da Fase G2 do Ciclo Celular , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
15.
Fungal Genet Biol ; 160: 103687, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315337

RESUMO

The filamentous fungi Monascus spp. have been widely used in the production of food colorants. However, the presence of mycotoxin citrinin and the antihypercholestrolemia agent monacolin K in Monascus-fermented products (MFPs) has raised food safety concerns. Here we de novo-sequenced the genomes of 26 Monascus species and proposed an unprecedented classification system, consist of sections A, B and C, according to the biosynthetic gene clusters (BGCs) distribution and phylogeny results. Based on the absence of citrinin gene cluster, section B species were genetically incapable of synthesizing citrinin. A distinguished section A strain named Monascus sanguineus was believed to be a promising food-pigment-producer particularly owing to the simultaneous inactivation of citrinin and monacolin K clusters. Interestingly, gene losses within Monascus secondary metabolism gene clusters were broadly discovered, which may convey a selective advantage in nutrients and energy competition to support the strong pigment-producing ability. Overall, our sectional delimitation system will reshape the industrial strategies for this economically important fungus.


Assuntos
Citrinina , Monascus , Citrinina/metabolismo , Lovastatina , Monascus/genética , Família Multigênica , Pigmentos Biológicos , Metabolismo Secundário
16.
Toxins (Basel) ; 14(2)2022 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-35202113

RESUMO

Citrinin (CIT) is a mycotoxin produced by different species of Aspergillus, Penicillium, and Monascus. CIT can contaminate a wide range of foods and feeds at any time during the pre-harvest, harvest, and post-harvest stages. CIT can be usually found in beans, fruits, fruit and vegetable juices, herbs and spices, and dairy products, as well as red mold rice. CIT exerts nephrotoxic and genotoxic effects in both humans and animals, thereby raising concerns regarding the consumption of CIT-contaminated food and feed. Hence, to minimize the risk of CIT contamination in food and feed, understanding the incidence of CIT occurrence, its sources, and biosynthetic pathways could assist in the effective implementation of detection and mitigation measures. Therefore, this review aims to shed light on sources of CIT, its prevalence in food and feed, biosynthetic pathways, and genes involved, with a major focus on detection and management strategies to ensure the safety and security of food and feed.


Assuntos
Agricultura , Citrinina/química , Citrinina/toxicidade , Contaminação de Alimentos/análise , Fungos/metabolismo , Ração Animal , Animais , Citrinina/metabolismo , Humanos
17.
Toxins (Basel) ; 13(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946578

RESUMO

Recent studies have implied that environmental toxins, such as mycotoxins, are risk factors for neurodegenerative diseases. To act directly as neurotoxins, mycotoxins need to penetrate or affect the integrity of the blood-brain barrier, which protects the mammalian brain from potentially harmful substances. As common food and feed contaminants of fungal origin, the interest in the potential neurotoxicity of ochratoxin A, citrinin and their metabolites has recently increased. Primary porcine brain capillary endothelial cells were used to investigate cytotoxic or barrier-weakening effects of ochratoxin A, ochratoxin α, citrinin and dihydrocitrinone. The transfer and transport properties of the mycotoxins across the barrier formed by porcine brain capillary endothelial cell monolayers were analysed using HPLC-MS/MS. High levels of Ochratoxin A caused cytotoxic and barrier-weakening effects, whereas ochratoxin α, citrinin and dihydrocitrinone showed no adverse effects up to 10 µM. Likely due to efflux transporter proteins, the transfer to the brain compartment was much slower than expected from their high lipophilicity. Due to their slow transfer across the blood-brain barrier, cerebral exposure of ochratoxin A, ochratoxin α, citrinin and dihydrocitrinone is low and neurotoxicity is likely to play a subordinate role in their toxicity at common physiological concentrations.


Assuntos
Barreira Hematoencefálica/metabolismo , Citrinina/análogos & derivados , Citrinina/metabolismo , Ocratoxinas/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Citrinina/toxicidade , Ocratoxinas/toxicidade , Suínos
18.
Biotechnol Lett ; 43(3): 701-710, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33386497

RESUMO

PURPOSE: This study aimed to investigate the effects of different fermentation conditions (culture medium, temperature, incubation time, pH value and additive) on citrinin production by four fungi. RESULTS: Among the culture media, potato dextrose medium had lowest citrinin production, followed by yeast sucrose medium and monosodium glutamate medium. The lowest citrinin contents were produced by Monascus anka (M. anka) in potato dextrose medium and yeast sucrose medium, Aspergillus oryzae AS3.042 (A. oryzae) produced the lowest citrinin production in monosodium glutamate medium. The optimum fermentation temperatures for citrinin production by Aspergillus niger (A. niger) and Penicillium citrinum (P. citrinum) were at 30 °C, whereas those by M. anka and A. oryzae were at 35 °C. Citrinin synthesis by four fungi were completely inhibited with a pH value of less than 5.4. By adding ethylene diamine tetraacetic acid (EDTA) or triammonium citrate into monosodium glutamate medium, citrinin production by A. oryzae and A. niger were totally inhibited. Ammonium sulfate completely inhibited citrinin production by A. oryzae, M. anka and P. citrinum, and ammonium nitrate completely inhibited citrinin production by A. oryzae. CONCLUSIONS: These results indicated that the suitable fermentation conditions could make considerable contributions to the reduction of citrinin production. This study provided an effective way for decreasing the citrinin production.


Assuntos
Técnicas de Cultura de Células/métodos , Citrinina/metabolismo , Meios de Cultura , Fungos , Citrinina/análise , Meios de Cultura/química , Meios de Cultura/farmacologia , Fermentação , Fungos/efeitos dos fármacos , Fungos/metabolismo , Fungos/fisiologia , Concentração de Íons de Hidrogênio , Temperatura
19.
Toxins (Basel) ; 12(10)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066313

RESUMO

Immunoassays are developed based on antigen-antibody interactions. A mimotope is an effective recognition receptor used to study the mechanism of action of antigens and antibodies, and is used for improving the sensitivity of the antibody. In this study, we built a 3D structure of the citrinin (CIT) mimotope X27 and anti-CIT single-chain antibody fragment (ScFv) through a "homologous modeling" strategy. Then, CIT and X27 were respectively docked to anti-CIT ScFv by using the "molecular docking" program. Finally, T28, F29, N30, R31, and Y32 were confirmed as the key binding sites in X27. Furthermore, the result of the phage-ELISA showed that the mutational phage lost the binding activity to the anti-CIT ScFv when the five amino acids were mutated to "alanine", thereby proving the correctness of the molecular docking model. Lastly, a site-directed saturation strategy was adopted for the sites (T28, F29, N30, R31, and Y32). Eighteen different amino acids were introduced to each site on average. The activities of all mutants were identified by indirect competitive ELISA. The sensitivities of mutants T28F, T28I, F29I, F29V, N30T, and N30V were 1.83-, 1.37-, 1.70-, 2.96-, 1.31-, and 2.01-fold higher than that of the wild-type, respectively. In conclusion, the binding model between the CIT and antibody was elaborated for the first time based on the mimotope method, thereby presenting another strategy for improving the sensitivity of citrinin detection in immunoassays.


Assuntos
Citrinina/metabolismo , Simulação de Acoplamento Molecular , Anticorpos de Cadeia Única/metabolismo , Reações Antígeno-Anticorpo , Sítios de Ligação de Anticorpos , Citrinina/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos , Conformação Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Anticorpos de Cadeia Única/imunologia , Relação Estrutura-Atividade
20.
Mycotoxin Res ; 36(4): 409-417, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32820428

RESUMO

Ochratoxin A (OTA) and citrinin (CIT) are nephrotoxic mycotoxins, found in various foodstuffs and in animal feed, and may cause adverse effects on animal and human health. Previous biomonitoring data indicate a frequent co-exposure of Bangladeshi adults to these mycotoxins. However, since such data are not yet available for young children, a vulnerable part of the population, we conducted this study to assess their exposure to OTA and CIT and compare it with that of adults in Bangladesh. In total, 154 urine samples were collected from infants and children in Rajshahi (n = 88) and Dhaka (n = 66) district of Bangladesh. OTA, CIT, and their metabolites were analyzed by a sensitive HPLC-FLD or LC-MS/MS method, respectively. Overall, OTA and CIT biomarkers were detectable in 72.7% and 54.9% of urines, respectively. The mean OTA and OTα levels in urines were higher in children (0.13 ng/mL and 0.28 ng/mL, respectively) than in infants (0.08 ng/mL and 0.05 ng/mL, respectively). Regarding region, the mean level of OTA was higher in samples from Rajshahi district (0.13 ng/mL) than from Dhaka district (0.09 ng/mL), while the mean OTα level was 2-fold higher in the Dhaka. The total CIT biomarker concentration was significantly higher in children (2.16 ng/mL) than in infant (0.70 ng/mL) urines (p < 0.05), and the mean concentration of HO-CIT was about 6-fold higher than that of parent compound CIT. A provisional daily intake for CIT was calculated and exceeded a preliminary value set by EFSA (0.2 µg/kg bw) in 23.3% and 11.9% of children and infants, respectively. OTA and CIT biomarker concentrations in the young children cohorts are higher than those found in Bangladeshi adults in summer, but lower than in winter season. The new results indicate frequent co-exposure to nephrotoxic mycotoxins that varies between the cohorts and regions in Bangladesh.


Assuntos
Monitoramento Biológico , Citrinina/urina , Ocratoxinas/urina , Bangladesh , Biomarcadores/urina , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Citrinina/metabolismo , Estudos de Coortes , Feminino , Geografia , Humanos , Lactente , Recém-Nascido , Masculino , Ocratoxinas/metabolismo , Estações do Ano , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...