Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Biochem Biophys Res Commun ; 718: 149981, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735134

RESUMO

In animal cells, vacuoles are absent, but can be induced by diseases and drugs. While phosphoinositides are critical for membrane trafficking, their role in the formation of these vacuoles remains unclear. The immunosuppressive KRP203/Mocravimod, which antagonizes sphingosine-1-phosphate receptors, has been identified as having novel multimodal activity against phosphoinositide kinases. However, the impact of this novel KRP203 activity is unknown. Here, we show that KRP203 disrupts the spatial organization of phosphoinositides and induces extensive vacuolization in tumor cells and immortalized fibroblasts. The KRP203-induced vacuoles are primarily from endosomes, and augmented by inhibition of PIKFYVE and VPS34. Conversely, overexpression of PTEN decreased KRP203-induced vacuole formation. Furthermore, V-ATPase inhibition completely blunted KRP203-induced vacuolization, pointing to a critical requirement of the endosomal maturation process. Importantly, nearly a half of KRP203-induced vacuoles are significantly decorated with PI4P, a phosphoinositide typically enriched at the plasma membrane and Golgi. These results suggest a model that noncanonical spatial reorganization of phosphoinositides by KRP203 alters the endosomal maturation process, leading to vacuolization. Taken together, this study reveals a previously unrecognized bioactivity of KRP203 as a vacuole-inducing agent and its unique mechanism of phosphoinositide modulation, providing a new insight of phosphoinositide regulation into vacuolization-associated diseases and their molecular pathologies.


Assuntos
Endossomos , PTEN Fosfo-Hidrolase , Fosfatidilinositóis , Vacúolos , Vacúolos/metabolismo , Vacúolos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Humanos , Fosfatidilinositóis/metabolismo , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Camundongos , Morfolinas/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/genética , Citoplasma/metabolismo , Células HeLa , Aminopiridinas , Compostos Heterocíclicos com 3 Anéis
2.
Sci Adv ; 9(22): eadg4993, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267363

RESUMO

Autophagy and glycolysis are highly conserved biological processes involved in both physiological and pathological cellular programs, but the interplay between these processes is poorly understood. Here, we show that the glycolytic enzyme lactate dehydrogenase A (LDHA) is activated upon UNC-51-like kinase 1 (ULK1) activation under nutrient deprivation. Specifically, ULK1 directly interacts with LDHA, phosphorylates serine-196 when nutrients are scarce and promotes lactate production. Lactate connects autophagy and glycolysis through Vps34 lactylation (at lysine-356 and lysine-781), which is mediated by the acyltransferase KAT5/TIP60. Vps34 lactylation enhances the association of Vps34 with Beclin1, Atg14L, and UVRAG, and then increases Vps34 lipid kinase activity. Vps34 lactylation promotes autophagic flux and endolysosomal trafficking. Vps34 lactylation in skeletal muscle during intense exercise maintains muscle cell homeostasis and correlates with cancer progress by inducing cell autophagy. Together, our findings describe autophagy regulation mechanism and then integrate cell autophagy and glycolysis.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases , Lisina , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Lipídeos
3.
Proc Natl Acad Sci U S A ; 120(1): e2214874120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574710

RESUMO

Adequate mass and function of adipose tissues (ATs) play essential roles in preventing metabolic perturbations. The pathological reduction of ATs in lipodystrophy leads to an array of metabolic diseases. Understanding the underlying mechanisms may benefit the development of effective therapies. Several cellular processes, including autophagy and vesicle trafficking, function collectively to maintain AT homeostasis. Here, we investigated the impact of adipocyte-specific deletion of the lipid kinase phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) on AT homeostasis and systemic metabolism in mice. We report that PIK3C3 functions in all ATs and that its absence disturbs adipocyte autophagy and hinders adipocyte differentiation, survival, and function with differential effects on brown and white ATs. These abnormalities cause loss of white ATs, whitening followed by loss of brown ATs, and impaired "browning" of white ATs. Consequently, mice exhibit compromised thermogenic capacity and develop dyslipidemia, hepatic steatosis, insulin resistance, and type 2 diabetes. While these effects of PIK3C3 largely contrast previous findings with the autophagy-related (ATG) protein ATG7 in adipocytes, mice with a combined deficiency in both factors reveal a dominant role of the PIK3C3-deficient phenotype. We have also found that dietary lipid excess exacerbates AT pathologies caused by PIK3C3 deficiency. Surprisingly, glucose tolerance is spared in adipocyte-specific PIK3C3-deficient mice, a phenotype that is more evident during dietary lipid excess. These findings reveal a crucial yet complex role for PIK3C3 in ATs, with potential therapeutic implications.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Adipócitos/metabolismo , Lipídeos , Tecido Adiposo Marrom/metabolismo , Adipócitos Marrons/metabolismo
4.
J Biomed Sci ; 29(1): 30, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538574

RESUMO

BACKGROUND: Autophagy plays important roles in cell homeostasis and protein quality control. Long non-coding RNAs (lncRNAs) have been revealed as an emerging class of autophagy regulators, but the majority of them function in regulating the expression of autophagy-related genes. LncRNAs that directly act on the core autophagic proteins remain to be explored. METHODS: Immunofluorescence staining and Western blotting were used to evaluate the function of BCRP3 in autophagy and aggrephagy. RNA immunoprecipitation and in vitro RNA-protein binding assay were used to evaluate the interaction of BCRP3 with its target proteins. Phosphatidylinositol 3-phosphate ELISA assay was used to quantify the enzymatic activity of VPS34 complex. qRT-PCR analysis was used to determine BCRP3 expression under stresses, whereas mass spectrometry and Gene Ontology analyses were employed to evaluate the effect of BCRP3 deficiency on proteome changes. RESULTS: We identified lncRNA BCRP3 as a positive regulator of autophagy. BCRP3 was mainly localized in the cytoplasm and bound VPS34 complex to increase its enzymatic activity. In response to proteotoxicity induced by proteasome inhibition or oxidative stress, BCRP3 was upregulated to promote aggrephagy, thereby facilitating the clearance of ubiquitinated protein aggregates. Proteomics analysis revealed that BCRP3 deficiency under proteotoxicity resulted in a preferential accumulation of proteins acting in growth inhibition, cell death, apoptosis, and Smad signaling. Accordingly, BCRP3 deficiency in proteotoxic cells compromised cell proliferation and survival, which was mediated in part through the upregulation of TGF-ß/Smad2 pathway. CONCLUSIONS: Our study identifies BCRP3 as an RNA activator of the VPS34 complex and a key role of BCRP3-mediated aggrephagy in protein quality control and selective degradation of growth and survival inhibitors to maintain cell fitness.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases , RNA Longo não Codificante , Autofagia , Sobrevivência Celular/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteostase , RNA Longo não Codificante/metabolismo
5.
FEBS Lett ; 596(4): 491-509, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35007347

RESUMO

In autophagy, LC3-positive autophagophores fuse and encapsulate the autophagic cargo in a double-membrane structure. In contrast, lipidated LC3 (LC3-II) is directly formed at the phagosomal membrane in LC3-associated phagocytosis (LAP). In this study, we dissected the effects of autophagy inhibitors on LAP. SAR405, an inhibitor of VPS34, reduced levels of LC3-II and inhibited LAP. In contrast, the inhibitors of endosomal acidification bafilomycin A1 and chloroquine increased levels of LC3-II, due to reduced degradation in acidic lysosomes. However, while bafilomycin A1 inhibited LAP, chloroquine did not. Finally, EACC, which inhibits the fusion of autophagosomes with lysosomes, promoted LC3 degradation possibly by the proteasome. Targeting LAP with small molecule inhibitors is important given its emerging role in infectious and autoimmune diseases.


Assuntos
Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/genética , Diferenciação Celular , Cloroquina/farmacologia , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrolídeos/farmacologia , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Fagocitose/genética , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Cultura Primária de Células , Complexo de Endopeptidases do Proteassoma/metabolismo , Piridinas/farmacologia , Pirimidinonas/farmacologia , Tiofenos/farmacologia , Zimosan/metabolismo
6.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943939

RESUMO

Nanoparticles (NPs) are used in our everyday life, including as drug delivery vehicles. However, the effects of NPs at the cellular level and their impacts on autophagy are poorly understood. Here, we demonstrate that the NP drug delivery vehicle poly(butyl cyanoacrylate) (PBCA) perturbs redox homeostasis in human epithelial cells, and that the degree of redox perturbation dictates divergent effects of PBCA on autophagy. Specifically, PBCA promoted functional autophagy at low concentrations, whereas it inhibited autophagy at high concentrations. Both effects were completely abolished by the antioxidant N-acetyl cysteine (NAC). High concentrations of PBCA inhibited MAP1LC3B/GABARAP lipidation and LC3 flux, and blocked bulk autophagic cargo flux induced by mTOR inhibition. These effects were mimicked by the redox regulator H2O2. In contrast, low concentrations of PBCA enhanced bulk autophagic cargo flux in a Vps34-, ULK1/2- and ATG13-dependent manner, yet interestingly, without an accompanying increase in LC3 lipidation or flux. PBCA activated MAP kinase signaling cascades in a redox-dependent manner, and interference with individual signaling components revealed that the autophagy-stimulating effect of PBCA required the action of the JNK and p38-MK2 pathways, whose activities converged on the pro-autophagic protein Beclin-1. Collectively, our results reveal that PBCA exerts a dual effect on autophagy depending on the severity of the NP insult and the resulting perturbation of redox homeostasis. Such a dual autophagy-modifying effect may be of general relevance for redox-perturbing NPs and have important implications in nanomedicine.


Assuntos
Autofagia/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Embucrilato/farmacologia , Nanopartículas/química , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteína Beclina-1/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Embucrilato/química , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , MAP Quinase Quinase 4/genética , Oxirredução/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/genética
7.
Cells ; 10(12)2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34944020

RESUMO

Sodium metabisulfite (Na2S2O5) is widely used as a preservative in the food and wine industry. However, it causes varying degrees of cellular damage to organisms. In order to improve our knowledge regarding its cyto-toxicity, a genome-wide screen using the yeast single deletion collection was performed. Additionally, a total of 162 Na2S2O5-sensitive strains and 16 Na2S2O5-tolerant strains were identified. Among the 162 Na2S2O5 tolerance-related genes, the retromer complex was the top enriched cellular component. Further analysis demonstrated that retromer complex deletion leads to increased sensitivity to Na2S2O5, and that Na2S2O5 can induce mislocalization of retromer complex proteins. Notably, phosphatidylinositol 3-monophosphate kinase (PI3K) complex II, which is important for retromer recruitment to the endosome, might be a potential regulator mediating retromer localization and the yeast Na2S2O5 tolerance response. Na2S2O5 can decrease the protein expressions of Vps34, which is the component of PI3K complex. Therefore, Na2S2O5-mediated retromer redistribution might be caused by the effects of decreased Vps34 expression levels. Moreover, both pharmaceutical inhibition of Vps34 functions and deletions of PI3K complex II-related genes affect cell tolerance to Na2S2O5. The results of our study provide a global picture of cellular components required for Na2S2O5 tolerance and advance our understanding concerning Na2S2O5-induced cytotoxicity effects.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/genética , Conservantes de Alimentos/efeitos adversos , Complexos Multiproteicos/genética , Fosfatidilinositol 3-Quinases/genética , Sulfitos/efeitos adversos , Resistência a Medicamentos/genética , Endossomos/efeitos dos fármacos , Endossomos/genética , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma Fúngico/efeitos dos fármacos , Genoma Fúngico/genética , Complexos Multiproteicos/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Sulfitos/farmacologia
8.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681622

RESUMO

Phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3), the mammalian ortholog of yeast vesicular protein sorting 34 (Vps34), belongs to the phosphoinositide 3-kinase (PI3K) family. PIK3C3 can phosphorylate phosphatidylinositol (PtdIns) to generate phosphatidylinositol 3-phosphate (PI3P), a phospholipid central to autophagy. Inhibition of PIK3C3 successfully inhibits autophagy. Autophagy maintains cell survival when modifications occur in the cellular environment and helps tumor cells resist metabolic stress and cancer treatment. In addition, PIK3C3 could induce oncogenic transformation and enhance tumor cell proliferation, growth, and invasion through mechanisms independent of autophagy. This review addresses the structural and functional features, tissue distribution, and expression pattern of PIK3C3 in a variety of human tumors and highlights the underlying mechanisms involved in carcinogenesis. The implications in cancer biology, patient prognosis prediction, and cancer therapy are discussed. Altogether, the discovery of pharmacological inhibitors of PIK3C3 could reveal novel strategies for improving treatment outcomes for PIK3C3-mediated human diseases.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias/patologia , Autofagia , Proliferação de Células , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe III de Fosfatidilinositol 3-Quinases/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Domínios Proteicos
9.
Cell Commun Signal ; 19(1): 77, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281589

RESUMO

BACKGROUND: CMTM7 is a tumor suppressor that positively regulates EGFR degradation by promoting Rab5 activation, and plays a vital role in tumor progression. Rab5 forms complexes with Beclin1 and VPS34, and acts in the early stage of autophagy. However, the affects of CMTM7 on autophagy and its mechanism are still unclear. METHODS: The effect of CMTM7 on autophagy induction was confirmed by western blotting, confocal microscopy and transmission electron microscopy. Co-immunoprecipitation was used to analyse the interaction of CMTM7 with autophagy initiation complex and Rab5. The xenograft model in nude mice was used to elucidate the function of CMTM7 in tumorigenicity and autophagy in vivo. RESULTS: In this study, we first demonstrated that CMTM7 facilitated the initiation of autophagosome formation, which consequently promoted the subsequent multistage process of autophagic flux, i.e. from autophagosome assembly till autolysosome formation and degradation. Confocal and co-immunoprecipitation showed that CMTM7 interacted with Rab5, VPS34, Beclin1, and ATG14L, but not with ULK1, UVRAG and LC3B. CMTM7 also increased the activity of ATG14L-linked VPS34 complex and its association with Rab5. Both in vitro and in vivo experiments demonstrated that knockdown of CMTM7 enhanced tumor growth by impairing autophagy. CONCLUSION: These findings highlighted the role of CMTM7 in the regulation of autophagy and tumorigenicity, revealing it as a novel molecule that is associated with the interaction of Rab5 and ATG14L-Beclin1-VPS34 complex. Video Abstract.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Relacionadas à Autofagia/genética , Proteína Beclina-1/genética , Quimiocinas/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Proteínas com Domínio MARVEL/genética , Neoplasias/genética , Proteínas rab5 de Ligação ao GTP/genética , Animais , Autofagia/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Neoplasias/patologia , Proteínas rab5 de Ligação ao GTP/ultraestrutura
10.
Nat Cell Biol ; 23(7): 782-795, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183801

RESUMO

Endosome fission is essential for cargo sorting and targeting in the endosomal system. However, whether organelles other than the endoplasmic reticulum (ER) participate in endosome fission through membrane contacts is unknown. Here, we characterize a Golgi-derived vesicle, the SEC14L2 compartment, that plays a unique role in facilitating endosome fission through ternary contacts with endosomes and the ER. Localized to the ER-mediated endosome fission site, the phosphatidylinositol transfer protein SEC14L2 promotes phosphatidylinositol 4-phosphate (PtdIns4P) to phosphatidylinositol 3-phosphate (PtdIns3P) conversion before endosome fission. In the absence of SEC14L2, endosome fission is attenuated and more enlarged endosomes arise due to endosomal accumulation of PtdIns4P and reduction in PtdIns3P. Collectively, our data suggest roles of the Golgi network in ER-associated endosome fission and a mechanism involving ER-endosome contacts in the regulation of endosomal phosphoinositide conversion.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Retículo Endoplasmático/genética , Endossomos/genética , Complexo de Golgi/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Proteínas de Peixe-Zebra/genética
11.
Signal Transduct Target Ther ; 6(1): 108, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33664238

RESUMO

Alternative splicing is a critical process to generate protein diversity. However, whether and how alternative splicing regulates autophagy remains largely elusive. Here we systematically identify the splicing factor SRSF1 as an autophagy suppressor. Specifically, SRSF1 inhibits autophagosome formation by reducing the accumulation of LC3-II and numbers of autophagosomes in different cell lines. Mechanistically, SRSF1 promotes the splicing of the long isoform of Bcl-x that interacts with Beclin1, thereby dissociating the Beclin1-PIK3C3 complex. In addition, SRSF1 also directly interacts with PIK3C3 to disrupt the interaction between Beclin1 and PIK3C3. Consequently, the decrease of SRSF1 stabilizes the Beclin1 and PIK3C3 complex and activates autophagy. Interestingly, SRSF1 can be degraded by starvation- and oxidative stresses-induced autophagy through interacting with LC3-II, whereas reduced SRSF1 further promotes autophagy. This positive feedback is critical to inhibiting Gefitinib-resistant cancer cell progression both in vitro and in vivo. Consistently, the expression level of SRSF1 is inversely correlated to LC3 level in clinical cancer samples. Our study not only provides mechanistic insights of alternative splicing in autophagy regulation but also discovers a new regulatory role of SRSF1 in tumorigenesis, thereby offering a novel avenue for potential cancer therapeutics.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/genética , Neoplasias Pulmonares/genética , Proteínas Associadas aos Microtúbulos/genética , Fatores de Processamento de Serina-Arginina/genética , Proteína bcl-X/genética , Células A549 , Processamento Alternativo/genética , Animais , Autofagossomos/genética , Autofagia/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Camundongos
12.
Nat Commun ; 12(1): 1564, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692360

RESUMO

The lipid phosphatidylinositol-3-phosphate (PI3P) is a regulator of two fundamental but distinct cellular processes, endocytosis and autophagy, so its generation needs to be under precise temporal and spatial control. PI3P is generated by two complexes that both contain the lipid kinase VPS34: complex II on endosomes (VPS34/VPS15/Beclin 1/UVRAG), and complex I on autophagosomes (VPS34/VPS15/Beclin 1/ATG14L). The endosomal GTPase Rab5 binds complex II, but the mechanism of VPS34 activation by Rab5 has remained elusive, and no GTPase is known to bind complex I. Here we show that Rab5a-GTP recruits endocytic complex II to membranes and activates it by binding between the VPS34 C2 and VPS15 WD40 domains. Electron cryotomography of complex II on Rab5a-decorated vesicles shows that the VPS34 kinase domain is released from inhibition by VPS15 and hovers over the lipid bilayer, poised for catalysis. We also show that the GTPase Rab1a, which is known to be involved in autophagy, recruits and activates the autophagy-specific complex I, but not complex II. Both Rabs bind to the same VPS34 interface but in a manner unique for each. These findings reveal how VPS34 complexes are activated on membranes by specific Rab GTPases and how they are recruited to unique cellular locations.


Assuntos
Membrana Celular/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/química , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas rab1 de Ligação ao GTP/química , Proteínas rab1 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/química , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteína Beclina-1/química , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Endossomos/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Estrutura Secundária de Proteína , Tomografia , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína VPS15 de Distribuição Vacuolar/química , Proteína VPS15 de Distribuição Vacuolar/genética , Proteína VPS15 de Distribuição Vacuolar/metabolismo , Proteínas rab1 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/genética
13.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33661763

RESUMO

Autophagy modulates lipid turnover, cell survival, inflammation, and atherogenesis. Scavenger receptor class B type I (SR-BI) plays a crucial role in lysosome function. Here, we demonstrate that SR-BI regulates autophagy in atherosclerosis. SR-BI deletion attenuated lipid-induced expression of autophagy mediators in macrophages and atherosclerotic aortas. Consequently, SR-BI deletion resulted in 1.8- and 2.5-fold increases in foam cell formation and apoptosis, respectively, and increased oxidized LDL-induced inflammatory cytokine expression. Pharmacological activation of autophagy failed to reduce lipid content or apoptosis in Sr-b1-/- macrophages. SR-BI deletion reduced both basal and inducible levels of transcription factor EB (TFEB), a master regulator of autophagy, causing decreased expression of autophagy genes encoding VPS34 and Beclin-1. Notably, SR-BI regulated Tfeb expression by enhancing PPARα activation. Moreover, intracellular macrophage SR-BI localized to autophagosomes, where it formed cholesterol domains resulting in enhanced association of Barkor and recruitment of the VPS34-Beclin-1 complex. Thus, SR-BI deficiency led to lower VPS34 activity in macrophages and in atherosclerotic aortic tissues. Overexpression of Tfeb or Vps34 rescued the defective autophagy in Sr-b1-/- macrophages. Taken together, our results show that macrophage SR-BI regulates autophagy via Tfeb expression and recruitment of the VPS34-Beclin-1 complex, thus identifying previously unrecognized roles for SR-BI and potentially novel targets for the treatment of atherosclerosis.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Células Espumosas/metabolismo , PPAR alfa/metabolismo , Receptores Depuradores Classe B/metabolismo , Transcrição Gênica , Animais , Doenças da Aorta/genética , Aterosclerose/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteína Beclina-1/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , PPAR alfa/genética , Receptores Depuradores Classe B/deficiência
14.
Nat Commun ; 12(1): 1322, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637724

RESUMO

The ubiquitin-proteasome system (UPS) and autophagy are two major quality control processes whose impairment is linked to a wide variety of diseases. The coordination between UPS and autophagy remains incompletely understood. Here, we show that ubiquitin ligase UBE3C and deubiquitinating enzyme TRABID reciprocally regulate K29/K48-branched ubiquitination of VPS34. We find that this ubiquitination enhances the binding of VPS34 to proteasomes for degradation, thereby suppressing autophagosome formation and maturation. Under ER and proteotoxic stresses, UBE3C recruitment to phagophores is compromised with a concomitant increase of its association with proteasomes. This switch attenuates the action of UBE3C on VPS34, thereby elevating autophagy activity to facilitate proteostasis, ER quality control and cell survival. Specifically in the liver, we show that TRABID-mediated VPS34 stabilization is critical for lipid metabolism and is downregulated during the pathogenesis of steatosis. This study identifies a ubiquitination type on VPS34 and elucidates its cellular fate and physiological functions in proteostasis and liver metabolism.


Assuntos
Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Fígado/metabolismo , Proteostase/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Autofagossomos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Dieta Hiperlipídica/efeitos adversos , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
16.
Protein J ; 40(1): 41-53, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33400087

RESUMO

The impact of autophagy on cancer treatment and its corresponding responsiveness has galvanized the scientific community to develop novel inhibitors for cancer treatment. Importantly, the discovery of inhibitors that targets the early phase of autophagy was identified as a beneficial choice. Despite the number of research in recent years, screening of the DrugBank repository (9591 molecules) for the Vacuolar protein sorting 34 (VPS34) has not been reported earlier. Therefore, the present study was designed to identify potential VPS34 antagonists using integrated pharmacophore strategies. Primarily, an energy-based pharmacophore and receptor cavity-based analysis yielded five (DHRRR) and seven featured (AADDHRR) pharmacophore hypotheses respectively, which were utilized for the database screening process. The glide score, the binding free energy, pharmacokinetics and pharmacodynamics properties were examined to narrow down the screened compounds. This analysis yielded a hit molecule, DB03916 that exhibited a better docking score, higher binding affinity and better drug-like properties in contrast to the reference compound that suffers from a toxicity property. Importantly, the result was validated using a 50 ns molecular dynamics simulation study. Overall, we conclude that the identified hit molecule DB03916 is believed to serve as a prospective antagonist against VPS34 for cancer treatment.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Autofagia/efeitos dos fármacos , Sítios de Ligação , Classe III de Fosfatidilinositol 3-Quinases/química , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Bases de Dados de Produtos Farmacêuticos , Reposicionamento de Medicamentos , Expressão Gênica , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Piperazinas/química , Piperazinas/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo
17.
FEBS J ; 288(1): 190-211, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32248620

RESUMO

Warburg micro syndrome (WMS) is a hereditary autosomal neuromuscular disorder in humans caused by mutations in Rab18, Rab3GAP1, or Rab3GAP2 genes. Rab3GAP1/2 forms a heterodimeric complex, which acts as a guanosine nucleotide exchange factor and activates Rab18. Although the genetic causes of WMS are known, it is still unclear whether loss of the Rab3GAP-Rab18 module affects neuronal or muscle cell physiology or both, and how. In this work, we characterize a Rab3GAP2 mutant Drosophila line to establish a novel animal model for WMS. Similarly to symptoms of WMS, loss of Rab3GAP2 leads to highly decreased motility in Drosophila that becomes more serious with age. We demonstrate that these mutant flies are defective for autophagic degradation in multiple tissues including fat cells and muscles. Loss of Rab3GAP-Rab18 module members leads to perturbed autolysosome morphology due to destabilization of Rab7-positive autophagosomal and late endosomal compartments and perturbation of lysosomal biosynthetic transport. Importantly, overexpression of UVRAG or loss of Atg14, two alternative subunits of the Vps34/PI3K (vacuole protein sorting 34/phosphatidylinositol 3-kinase) complexes in fat cells, mimics the autophagic phenotype of Rab3GAP-Rab18 module loss. We find that GTP-bound Rab18 binds to Atg6/Beclin1, a permanent subunit of Vps34 complexes. Finally, we show that Rab3GAP2 and Rab18 are present on autophagosomal and autolysosomal membranes and colocalize with Vps34 Complex I subunits. Our data suggest that the Rab3GAP-Rab18 module regulates autolysosomal maturation through its interaction with the Vps34 Complex I, and perturbed autophagy due to loss of the Rab3GAP-Rab18 module may contribute to the development of WMS.


Assuntos
Anormalidades Múltiplas/genética , Catarata/congênito , Classe III de Fosfatidilinositol 3-Quinases/genética , Córnea/anormalidades , Proteínas de Drosophila/genética , Hipogonadismo/genética , Deficiência Intelectual/genética , Lisossomos/metabolismo , Microcefalia/genética , Atrofia Óptica/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Catarata/genética , Catarata/metabolismo , Catarata/patologia , Classe III de Fosfatidilinositol 3-Quinases/deficiência , Córnea/metabolismo , Córnea/patologia , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Regulação da Expressão Gênica , Humanos , Hipogonadismo/metabolismo , Hipogonadismo/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Lisossomos/patologia , Microcefalia/metabolismo , Microcefalia/patologia , Músculos/metabolismo , Músculos/patologia , Neurônios/metabolismo , Neurônios/patologia , Atrofia Óptica/metabolismo , Atrofia Óptica/patologia , Ligação Proteica , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas rab de Ligação ao GTP/deficiência , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/deficiência , proteínas de unión al GTP Rab7
18.
Toxicol Lett ; 338: 97-104, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309995

RESUMO

Cigarette smoking is a risk factor for developing chronic obstructive pulmonary disease and protein aggresome formation is considered to be a hallmark event for the disease. Since dysfunction of lysosome-mediated protein degradation leads to enhanced accumulation of misfolded proteins and subsequent aggresome formation, we examined the effect of cigarette smoke extract (CSE) on ESCRT-mediated sorting in S. cerevisiae as this process is necessary for the functioning of the vacuole, the lysosomal equivalent in yeast. An operational ESCRT pathway is essential for ion homeostasis and our observation that exposure to CSE caused increased sensitivity to LiCl indicated CSE-induced impairment of ESCRT function. To confirm the inhibition of ESCRT function, the targeting of carboxypeptidase S (CPS), which reaches the vacuole lumen via the ESCRT pathway, was examined. Treatment with CSE resulted in the mislocalization of GFP-tagged CPS to the vacuolar membrane, instead of the vacuolar lumen, confirming defective functioning of the ESCRT machinery in CSE-treated cells. Further analysis revealed that CSE-treatment inhibited the recruitment of the ESCRT-0 component, Vps27, to the endosome surface, which is a key event is for the functioning of the ESCRT pathway. This lack of endosomal recruitment of Vps27 most likely results from a depletion of the endosomally-enriched lipid, phosphatidylinositol 3-phosphate (PI3-P), which is the target of Vps27. This is supported by our observation that the presence of excess leucine, a known activator of the lipid kinase responsible for the generation of PI3-P, Vps34, in the medium can rescue the CSE-induced ESCRT misfunctioning. Thus, the current study provides an insight into CSE-induced aggresome formation as it documents that CSE treatment compromises vacuolar degradation due to an impairment of the ESCRT pathway, which likely stems from the inhibition of Vps34. It also indicates that leucine has the potential to attenuate the CSE-induced accumulation of misfolded proteins.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Vacúolos/efeitos dos fármacos , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Leucina/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/genética , Vacúolos/metabolismo
19.
Mol Biol Cell ; 32(2): 143-156, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33237833

RESUMO

Phosphoinositide signaling lipids are essential for several cellular processes. The requirement for a phosphoinositide is conventionally studied by depleting the corresponding lipid kinase. However, there are very few reports on the impact of elevating phosphoinositides. That phosphoinositides are dynamically elevated in response to stimuli suggests that, in addition to being required, phosphoinositides drive downstream pathways. To test this hypothesis, we elevated the levels of phosphatidylinositol-3-phosphate (PI3P) by generating hyperactive alleles of the yeast phosphatidylinositol 3-kinase, Vps34. We find that hyperactive Vps34 drives certain pathways, including phosphatidylinositol-3,5-bisphosphate synthesis and retrograde transport from the vacuole. This demonstrates that PI3P is rate limiting in some pathways. Interestingly, hyperactive Vps34 does not affect endosomal sorting complexes required for transport (ESCRT) function. Thus, elevating PI3P does not always increase the rate of PI3P-dependent pathways. Elevating PI3P can also delay a pathway. Elevating PI3P slowed late steps in autophagy, in part by delaying the disassembly of autophagy proteins from mature autophagosomes as well as delaying fusion of autophagosomes with the vacuole. This latter defect is likely due to a more general defect in vacuole fusion, as assessed by changes in vacuole morphology. These studies suggest that stimulus-induced elevation of phosphoinositides provides a way for these stimuli to selectively regulate downstream processes.


Assuntos
Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Aminoácidos/metabolismo , Autofagia , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fusão de Membrana , Mutação/genética , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
20.
PLoS One ; 15(8): e0235551, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833964

RESUMO

VPS34 is a key regulator of endomembrane dynamics and cargo trafficking, and is essential in cultured cell lines and in mice. To better characterize the role of VPS34 in cell growth, we performed unbiased cell line profiling studies with the selective VPS34 inhibitor PIK-III and identified RKO as a VPS34-dependent cellular model. Pooled CRISPR screen in the presence of PIK-III revealed endolysosomal genes as genetic suppressors. Dissecting VPS34-dependent alterations with transcriptional profiling, we found the induction of hypoxia response and cholesterol biosynthesis as key signatures. Mechanistically, acute VPS34 inhibition enhanced lysosomal degradation of transferrin and low-density lipoprotein receptors leading to impaired iron and cholesterol uptake. Excess soluble iron, but not cholesterol, was sufficient to partially rescue the effects of VPS34 inhibition on mitochondrial respiration and cell growth, indicating that iron limitation is the primary driver of VPS34-dependency in RKO cells. Loss of RAB7A, an endolysosomal marker and top suppressor in our genetic screen, blocked transferrin receptor degradation, restored iron homeostasis and reversed the growth defect as well as metabolic alterations due to VPS34 inhibition. Altogether, our findings suggest that impaired iron mobilization via the VPS34-RAB7A axis drive VPS34-dependence in certain cancer cells.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Ferro/metabolismo , Neoplasias/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Colesterol/biossíntese , Colesterol/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Endossomos/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Receptores de LDL/metabolismo , Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...