Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
EBioMedicine ; 103: 105124, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701619

RESUMO

BACKGROUND: PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS: A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS: The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION: Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING: A full list of funding sources can be found in the acknowledgments section.


Assuntos
Clofazimina , Glutamina , Proteína Huntingtina , Doença de Huntington , PPAR gama , Peptídeos , Peixe-Zebra , Animais , Humanos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Clofazimina/farmacologia , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Hansenostáticos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Peptídeos/toxicidade , PPAR gama/metabolismo , PPAR gama/genética , Glutamina/metabolismo , Glutamina/toxicidade
2.
Viruses ; 16(4)2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675980

RESUMO

Clofazimine and Arbidol have both been reported to be effective in vitro SARS-CoV-2 fusion inhibitors. Both are promising drugs that have been repurposed for the treatment of COVID-19 and have been used in several previous and ongoing clinical trials. Small-molecule bindings to expressed constructs of the trimeric S2 segment of Spike and the full-length SARS-CoV-2 Spike protein were measured using a Surface Plasmon Resonance (SPR) binding assay. We demonstrate that Clofazimine, Toremifene, Arbidol and its derivatives bind to the S2 segment of the Spike protein. Clofazimine provided the most reliable and highest-quality SPR data for binding with S2 over the conditions explored. A molecular docking approach was used to identify the most favorable binding sites on the S2 segment in the prefusion conformation, highlighting two possible small-molecule binding sites for fusion inhibitors. Results related to molecular docking and modeling of the structure-activity relationship (SAR) of a newly reported series of Clofazimine derivatives support the proposed Clofazimine binding site on the S2 segment. When the proposed Clofazimine binding site is superimposed with other experimentally determined coronavirus structures in structure-sequence alignments, the changes in sequence and structure may rationalize the broad-spectrum antiviral activity of Clofazimine in closely related coronaviruses such as SARS-CoV, MERS, hCoV-229E, and hCoV-OC43.


Assuntos
Clofazimina , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Antivirais/farmacologia , Antivirais/química , Sítios de Ligação , Clofazimina/farmacologia , Clofazimina/química , Clofazimina/metabolismo , Tratamento Farmacológico da COVID-19 , Indóis , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Relação Estrutura-Atividade , Sulfetos , Ressonância de Plasmônio de Superfície , Inibidores de Proteínas Virais de Fusão/farmacologia , Inibidores de Proteínas Virais de Fusão/química
3.
Cancer Cell ; 42(5): 780-796.e6, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38518774

RESUMO

Emerging as the most potent and durable combinational immunotherapy, dual anti-PD-1 and CTLA-4 immune checkpoint blockade (ICB) therapy notoriously increases grade 3-5 immune-related adverse events (irAEs) in patients. Accordingly, attempts to improve the antitumor potency of anti-PD-1+CTLA-4 ICB by including additional therapeutics have been largely discouraged due to concerns of further increasing fatal toxicity. Here, we screened ∼3,000 Food and Drug Administration (FDA)-approved drugs and identified clofazimine as a potential third agent to optimize anti-PD-1+CTLA-4 ICB. Remarkably, clofazimine outperforms ICB dose reduction or steroid treatment in reversing lethality of irAEs, but unlike the detrimental effect of steroids on antitumor efficacy, clofazimine potentiates curative responses in anti-PD-1+CTLA-4 ICB. Mechanistically, clofazimine promotes E2F1 activation in CD8+ T cells to overcome resistance and counteracts pathogenic Th17 cells to abolish irAEs. Collectively, clofazimine potentiates the antitumor efficacy of anti-PD-1+CTLA-4 ICB, curbs intractable irAEs, and may fill a desperate clinical need to improve patient survival.


Assuntos
Antígeno CTLA-4 , Clofazimina , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia
4.
Antimicrob Agents Chemother ; 68(4): e0127523, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470194

RESUMO

Multidrug-resistant tuberculosis (MDR-TB) patients not cured at the time of stopping treatment are exposed to Minimum Inhibitory Concentration (MIC) and sub-MIC levels for many months after discontinuing bedaquiline (BDQ) or clofazimine (CFZ) treatment. In vitro cultures treated with BDQ and CFZ sub-MIC concentrations clearly showed enrichment in the Rv0678 mutant population, demonstrating that pre-existing Rv0678 mutants can be selected by sub-MIC concentrations of BDQ and CFZ if not protected by an alternative MDR-TB treatment.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Clofazimina/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Testes de Sensibilidade Microbiana
5.
Antimicrob Agents Chemother ; 68(3): e0115723, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38259101

RESUMO

Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Etambutol/farmacologia , Etambutol/uso terapêutico , Azitromicina/farmacologia , Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Quimioterapia Combinada , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Complexo Mycobacterium avium , Pneumopatias/microbiologia
6.
Parasitol Res ; 123(1): 69, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38135783

RESUMO

Toxoplasmosis is a worldwide zoonosis caused by the protozoan parasite Toxoplasma gondii. Although this infection is generally asymptomatic in immunocompetent individuals, it can cause serious clinical manifestations in newborns with congenital infection or in immunocompromised patients. As current treatments are not always well tolerated, there is an urgent need to find new drugs against human toxoplasmosis. Drug repurposing has gained considerable momentum in the last decade and is a particularly attractive approach for the search of therapeutic alternatives to treat rare and neglected diseases. Thus, in this study, we investigated the antiproliferative effect of several repurposed drugs. Of these, clofazimine and triclabendazole displayed a higher selectivity against T. gondii, affecting its replication. Furthermore, both compounds inhibited spermine incorporation into the parasite, which is necessary for the formation of other polyamines. The data reported here indicate that clofazimine and triclabendazole could be used for the treatment of human toxoplasmosis and confirms that drug repurposing is an excellent strategy to find new therapeutic targets of intervention.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Recém-Nascido , Triclabendazol/farmacologia , Espermina , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia
7.
Microbiol Spectr ; 11(6): e0228223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37982630

RESUMO

IMPORTANCE: New drugs are needed to combat multidrug-resistant tuberculosis. The electron transport chain (ETC) maintains the electrochemical potential across the cytoplasmic membrane and allows the production of ATP, the energy currency of any living cell. The mycobacterial engine F-ATP synthase catalyzes the formation of ATP and has come into focus as an attractive and rich drug target. Recent deep insights into these mycobacterial F1FO-ATP synthase elements opened the door for a renaissance of structure-based target identification and inhibitor design. In this study, we present the GaMF1.39 antimycobacterial compound, targeting the rotary subunit γ of the biological engine. The compound is bactericidal, inhibits infection ex vivo, and displays enhanced anti-tuberculosis activity in combination with ETC inhibitors, which promises new strategies to shorten tuberculosis chemotherapy.


Assuntos
Clofazimina , Mycobacterium tuberculosis , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Trifosfato de Adenosina
8.
Mikrobiyol Bul ; 57(4): 639-649, 2023 Oct.
Artigo em Turco | MEDLINE | ID: mdl-37885391

RESUMO

Mycobacterium abscessus complex (MABSC) is one of the most resistant bacteria against antimicrobial agents. The number of agents that can be used by oral route, such as macrolides, is limited in antimicrobial therapy. In recent years, rifabutin and clofazimine have gained importance as they can be administered by oral route and have shown synergistic effects with macrolides and aminoglycosides. The aim of this study was to determine the in vitro activity of rifabutin and clofazimine against clinical isolates of MABSC resistant to macrolides. A total of 48 MABSC isolates obtained from respiratory tract and other clinical samples in the Tuberculosis Laboratories of the Faculty of Medicine of Manisa Celal Bayar and Ege Universities were included in the study. Subspecies differentiation and aminoglycoside and macrolide resistance of the isolates were determined by GenoType NTM-DR test. Rifabutin and clofazimine susceptibilities were determined by standard broth microdilution method. Of the MABSC isolates 42 were identified as M.abscessus subsp. abscessus, three as M.abscessus subsp. bolletii and three as M.abscessus subsp. massiliense. None of the isolates exhibited rrs and rrl mutations indicating acquired macrolide resistance and aminoglycoside resistance. However, the erm(41) T28 genotype which is associated with inducible macrolide resistance was detected in 41 (85%) of the strains. All M.abscessus subsp. massiliense isolates were found to be genotypically susceptible to macrolides. The minimum inhibitory concentration (MIC) range values for rifabutin were 0.0625 to 32 µg/mL, while for clofazimine, the range was 0.0625 to 1 µg/mL. Rifabutin MIC values were significantly higher (mean 5.98 µg/mL vs 0.5 µg/mL, p= 0.026) in the isolates with macrolide resistance. There was no correlation between macrolide resistance and clofazimine MIC values (mean 0.25 µg/mL vs. 0.214 µg/mL, p= 0.758). The MIC50 and MIC90 values for rifabutin were 1 and 8 µg/mL, respectively, while for clofazimine they were 0.25 and 0.5 µg/mL. Macrolide resistance was found to be higher in isolates with rifabutin MIC values above the MIC50 value (p= 0.045). In conclusion, the determination of higher rifabutin MIC values in isolates resistant to macrolides suggested that susceptibility testing should be performed before adding rifabutin to the treatment regimen. The low MIC values of clofazimine in all strains indicated that it may be used as a first choice in the combination therapy. However, further studies using a larger number of clinical isolates and applying genotypic and phenotypic susceptibility tests are needed to determine threshold MIC values to assist clinicians in making treatment decisions.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Rifabutina/farmacologia , Rifabutina/uso terapêutico , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Farmacorresistência Bacteriana/genética , Aminoglicosídeos/farmacologia , Aminoglicosídeos/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/microbiologia
9.
Biomed Pharmacother ; 167: 115539, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37742606

RESUMO

Among different strategies to develop novel therapies, drug repositioning (aka repurposing) aims at identifying new uses of an already approved or investigational drug. This approach has the advantages of availability of the extensive pre-existing knowledge of the drug's safety, pharmacology and toxicology, manufacturing and formulation. It provides advantages to the risk-versus-rewards trade-off as compared to the costly and time-consuming de novo drug discovery process. Clofazimine, a red-colored synthetic derivative of riminophenazines initially isolated from lichens, was first synthesized in the 1950 s, and passed through several phases of repositioning in its history as a drug. Being initially developed as an anti-tuberculosis treatment, it was repurposed for the treatment of leprosy, prior to re-repositioning for the treatment of multidrug-resistant tuberculosis and other infections. Since 1990 s, reports on the anticancer properties of clofazimine, both in vitro and in vivo, started to appear. Among the diverse mechanisms of action proposed, the activity of clofazimine as a specific inhibitor of the oncogenic Wnt signaling pathway has recently emerged as the promising targeting mechanism of the drug against breast, colon, liver, and other forms of cancer. Seventy years after the initial discovery, clofazimine's journey as a drug finding new applications continues, serving as a colorful illustration of drug repurposing in modern pharmacology.


Assuntos
Clofazimina , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Descoberta de Drogas , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico
10.
Biomater Adv ; 154: 213594, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657277

RESUMO

The rise of tuberculosis (TB) superbugs has impeded efforts to control this infectious ailment, and new treatment options are few. Paradoxical Inflammation (PI) is another major problem associated with current anti-TB therapy, which can complicate the treatment and leads to clinical worsening of disease despite a decrease in bacterial burden in the lungs. TB infection is generally accompanied by an intense local inflammatory response which may be critical to TB pathogenesis. Clofazimine (CLF), a second-line anti-TB drug, delineated potential anti-mycobacterial effects in-vitro and in-vivo and also demonstrated anti-inflammatory potential in in-vitro experiments. However, clinical implications may be restricted owing to poor solubility and low bioavailability rendering a suboptimal drug concentration in the target organ. To unravel these issues, nanocrystals of CLF (CLF-NC) were prepared using a microfluidizer® technology, which was further processed into micro-sized CLF nano-clusters (CLF-NCLs) by spray drying technique. This particle engineering offers combined advantages of micron- and nano-scale particles where micron-size (∼5 µm) promise optimum aerodynamic parameters for the finest lung deposition, and nano-scale dimensions (∼600 nm) improve the dissolution profile of apparently insoluble clofazimine. An inhalable formulation was evaluated against virulent mycobacterium tuberculosis in in-vitro studies and in mice infected with aerosol TB infection. CLF-NCLs resulted in the significant killing of virulent TB bacteria with a MIC value of ∼0.62 µg/mL, as demonstrated by Resazurin microtiter assay (REMA). In TB-infected mice, inhaled doses of CLF-NCLs equivalent to ∼300 µg and âˆ¼ 600 µg of CLF administered on every alternate day over 30 days significantly reduced the number of bacteria in the lung. With an inhaled dose of ∼600 µg/mice, reduction of mycobacterial colony forming units (CFU) was achieved by ∼1.95 Log10CFU times compared to CLF administered via oral gavage (∼1.18 Log10CFU). Lung histology scoring showed improved pathogenesis and inflammation in infected animals after 30 days of inhalation dosing of CLF-NCLs. The levels of pro-inflammatory mediators, including cytokines, TNF-α & IL-6, and MMP-2 in bronchoalveolar lavage fluid (BAL-F) and lung tissue homogenates, were attenuated after inhalation treatment. These pre-clinical data suggest inhalable CLF-NCLs are well tolerated, show significant anti-TB activity and apparently able to tackle the challenge of paradoxical chronic lung inflammation in murine TB model.


Assuntos
Pneumonia , Tuberculose , Camundongos , Animais , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Aerossóis e Gotículas Respiratórios , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Pneumonia/tratamento farmacológico , Inflamação/tratamento farmacológico
11.
Microb Pathog ; 181: 106206, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331670

RESUMO

Toxoplasmosis is a zoonotic protozoal disease affecting approximately one-third of the world's population. The lack of current treatment options necessitates the development of drugs with good tolerance and effectiveness on the active and cystic stages of the parasite. The present study was established to investigate, for the first time, the potential potency of clofazimine (CFZ) against acute and chronic experimental toxoplasmosis. For this purpose, the type II T. gondii (Me49 strain) was used for induction acute (20 cysts in each mouse) and chronic (10 cysts in each mouse) experimental toxoplasmosis. The mice were treated with 20 mg/kg of CFZ intraperitoneally and orally. The histopathological changes, brain cyst count, total Antioxidant Capacity (TAC), malondialdehyde (MDA) assay, and the level of INF-γ were also evaluated. In the acute toxoplasmosis, both IP and oral administration of CFZ induced a significant reduction in brain parasite burden by 90.2 and 89%, respectively, and increased the survival rate to 100% compared with 60% in untreated controls. In the chronic infection, cyst burden decreased at 85.71 and 76.18% in CFZ-treated subgroups in comparison to infected untreated controls. In addition, 87.5% and 100% of CFZ-treated subgroups survived versus untreated control 62.5%. Moreover, CFZ significantly increased INF-γ levels in acute and chronic toxoplasmosis. Tissue inflammatory lesions were considerably reduced in the CFZ-treated chronic subgroups. CFZ treatment significantly reduced MDA levels and elevated TAC in both acute and chronic infections. In conclusion, CFZ showed a promising finding regarding the ability to reduce cyst burden in acute and chronic infection. Further studies are needed to investigate the therapeutic role of CFZ on toxoplasmosis using the long-term treatment and more advanced approaches. In addition, clofazimine may need to be accompanied by another drug to augment its effect and prevent the regrowth of parasites.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Camundongos , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Infecção Persistente , Toxoplasmose/tratamento farmacológico , Toxoplasmose/patologia , Encéfalo/patologia , Zoonoses
12.
Sci Rep ; 13(1): 10444, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369740

RESUMO

Drug-resistant tuberculosis is a serious global health threat. Bedaquiline (BDQ) is a relatively new core drug, targeting the respiratory chain in Mycobacterium tuberculosis (Mtb). While mutations in the BDQ target gene, atpE, are rare in clinical isolates, mutations in the Rv0678 gene, a transcriptional repressor regulating the efflux pump MmpS5-MmpL5, are increasingly observed, and have been linked to worse treatment outcomes. Nevertheless, underlying mechanisms of (cross)-resistance remain incompletely resolved. Our study aims to distinguish resistance associated variants from other polymorphisms, by assessing the in vitro onset of mutations under drug pressure, combined with their impact on minimum inhibitory concentrations (MICs) and on protein stability. For this purpose, isolates were exposed in vitro to sub-lethal concentrations of BDQ or clofazimine (CFZ). Selected colonies had BDQ- and CFZ-MICs determined on 7H10 and 7H11 agar. Sanger sequencing and additional Deeplex Myc-TB and whole genome sequencing (WGS) for a subset of isolates were used to search for mutations in Rv0678, atpE and pepQ. In silico characterization of relevant mutations was performed using computational tools. We found that colonies that grew on BDQ medium had mutations in Rv0678, atpE or pepQ, while CFZ-exposed isolates presented mutations in Rv0678 and pepQ, but none in atpE. Twenty-eight Rv0678 mutations had previously been described among in vitro selected mutants or in patients' isolates, while 85 were new. Mutations were scattered across the Rv0678 gene without apparent hotspot. While most Rv0678 mutations led to an increased BDQ- and/or CFZ-MIC, only a part of them surpassed the critical concentration (69.1% for BDQ and 87.9% for CFZ). Among the mutations leading to elevated MICs for BDQ and CFZ, we report a synonymous Val1Val mutation in the Rv0678 start codon. Finally, in silico characterization of Rv0678 mutations suggests that especially the C46R mutant may render Rv0678 less stable.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Testes de Sensibilidade Microbiana
13.
Antimicrob Agents Chemother ; 67(7): e0153222, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37255473

RESUMO

Bedaquiline (BDQ) is an effective drug for the treatment of drug-resistant tuberculosis. Mutations in atpE, which encodes the target of BDQ, are associated with large increases in MICs. Mutations in Rv0678 that derepress the transcription of the MmpL5-MmpS5 efflux transporter are associated with smaller increases in MICs. However, Rv0678 mutations are the most common mutations that are associated with BDQ resistance in clinical isolates, and they also confer cross-resistance to clofazimine (CFZ). To investigate the mechanism of BDQ resistance and the correlation between Rv0678 mutations and target-based atpE mutations, M. tuberculosis strains were exposed to different concentrations of BDQ or CFZ to select Rv0678 mutations and atpE mutations. Gene overexpression strains were constructed to illustrate the roles of MmpL5 and MmpS5. A quantitative proteome analysis was performed to compare the BDQ-resistant mutants to the isogenic strain H37Rv. Here, we report that the Rv0678 mutations were more readily selected than were the atpE mutations at low concentrations of BDQ or CFZ. The atpE mutations were selected by high concentrations of BDQ exposure. The overexpression of both mmpL5 and mmpS5 reduced the susceptibility of Mycobacterium tuberculosis to BDQ and CFZ. Secreted immunogenic proteins and proteins involved in the biosynthesis and transport of phthiocerol dimycocerosates were associated with Rv0678 mutations conferring BDQ resistance in the proteome analysis. In conclusion, exposure to different bedaquiline concentrations resulted in the selection of different mutations. The coexpression of MmpL5 and MmpS5 contributed to drug resistance and upregulated pathogenic proteins in M. tuberculosis, suggesting MmpL5-MmpS5 as a new potential target for antituberculosis drug development. These results warrant further surveillance for the evolution of BDQ resistance during clinical usage.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Proteoma/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Mutação/genética , Testes de Sensibilidade Microbiana
14.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240153

RESUMO

This study aimed to evaluate and compare the efficacy of cyclodextrans (CIs) and cyclodextrins (CDs) in improving the water solubility of a poorly water-soluble drug, clofazimine (CFZ). Among the evaluated CIs and CDs, CI-9 exhibited the highest percentage of drug inclusion and the highest solubility. Additionally, CI-9 showed the highest encapsulation efficiency, with a CFZ:CI-9 molar ratio of 0.2:1. SEM analysis indicated successful formation of inclusion complexes CFZ/CI and CFZ/CD, accounting for the rapid dissolution rate of the inclusion complex. Moreover, CFZ in CFZ/CI-9 demonstrated the highest drug release ratio, reaching up to 97%. CFZ/CI complexes were found to be an effective means of protecting the activity of CFZ against various environmental stresses, particularly UV irradiation, compared to free CFZ and CFZ/CD complexes. Overall, the findings provide valuable insights into designing novel drug delivery systems based on the inclusion complexes of CIs and CDs. However, further studies are needed to investigate the effects of these factors on the release properties and pharmacokinetics of encapsulated drugs in vivo, in order to ensure the safety and efficacy of these inclusion complexes. In conclusion, CI-9 is a promising candidate for drug delivery systems, and CFZ/CI complexes could be a potential formulation strategy for the development of stable and effective drug products.


Assuntos
Clofazimina , Ciclodextrinas , Clofazimina/farmacologia , Solubilidade , Liberação Controlada de Fármacos , Água
15.
J Glob Antimicrob Resist ; 33: 294-300, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142094

RESUMO

OBJECTIVES: Bedaquiline (BDQ) is a potent drug for treating drug-resistant tuberculosis (TB). Here, we analysed the resistance profiles of BDQ in CFZ-resistant clinical isolates and investigated the clinical risk factors of BDQ and CFZ cross/co-resistance. METHODS: The AlarmarBlue microplate assay was performed to determine the minimum inhibitory concentration (MIC) of the CFZ-resistant Mycobacterium tuberculosis (MTB) clinical isolates to CFZ and BDQ. The clinical characteristics of the respective patients were analysed to explore the possible risk factors of BDQ resistance. The drug-resistance-associated genes including Rv0678, Rv1979c, atpE, pepQ and Rv1453 were sequenced and analysed. RESULTS: A total of 72 clinical CFZ-resistant MTB isolates were collected; among these, half were identified as BDQ-resistant. The MIC value of BDQ closely correlated with CFZ (Spearman's q = 0.766, P < 0.005). Among the isolates with a MIC of CFZ ≥4 mg/L, 92.31% (12/13) were resistant to BDQ. Pre-XDR and exposure to BDQ or CFZ are the major risk factors for concurrent BDQ resistance. Among the 36 cross/co-resistant isolates, 50% (18/36) had mutations in Rv0678, 8.3% (3/36) had mutations in Rv0678+Rv1453, 5.6% (2/36) had mutations in Rv0678+Rv1979c, 2.8% (1/36) had mutations in Rv0678+Rv1979c+Rv1453, 2.8% (1/36) had mutations in atpE+Rv0678+Rv1453, 2.8% (1/36) had mutations in Rv1979c, and 27.7% (10/36) had no variations in the target genes. CONCLUSION: Nearly half of the CFZ-resistant isolates were still sensitive to BDQ, whereas this rate dramatically decreased among patients with pre-XDR TB or those who had been exposed to BDQ or CFZ.


Assuntos
Clofazimina , Tuberculose , Humanos , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Tuberculose/tratamento farmacológico
16.
Int J Infect Dis ; 132: 50-63, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37072053

RESUMO

OBJECTIVES: To estimate the pooled proportion of extensively drug-resistant tuberculosis (XDR-TB) and pre-extensively drug-resistant tuberculosis (pre-XDR-TB) in patients with multidrug-resistant TB (MDR-TB). METHODS: We systematically searched articles from electronic databases: MEDLINE (PubMed), ScienceDirect, and Google Scholar. We also searched gray literature from the different literature sources main outcome of the review was either XDR-TB or pre-XDR-TB in patients with MDR-TB. We used the random-effects model, considering the substantial heterogeneity among studies. Heterogeneity was assessed by subgroup analyses. STATA version 14 was used for analysis. RESULTS: A total of 64 studies that reported on 12,711 patients with MDR-TB from 22 countries were retrieved. The pooled proportion of pre-XDR-TB was 26% (95% confidence interval [CI]: 22-31%), whereas XDR-TB in MDR-TB cases was 9% (95% CI: 7-11%) in patients treated for MDR-TB. The pooled proportion of resistance to fluoroquinolones was 27% (95% CI: 22-33%) and second-line injectable drugs was 11% (95% CI: 9-13%). Whereas the pooled resistance proportions to bedaquiline, clofazimine, delamanid, and linezolid were 5% (95% CI: 1-8%), 4% (95% CI: 0-10%), 5% (95% CI; 2-8%), and 4% (95% CI: 2-10%), respectively. CONCLUSION: The burden of pre-XDR-TB and XDR-TB in MDR-TB were considerable. The high burdens of pre-XDR-TB and XDR-TB in patients treated for MDR-TB suggests the need to strengthen TB programs and drug resistance surveillance.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Fluoroquinolonas/farmacologia , Clofazimina/uso terapêutico , Clofazimina/farmacologia , Testes de Sensibilidade Microbiana
17.
Lancet Microbe ; 4(5): e358-e368, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003285

RESUMO

BACKGROUND: Bedaquiline is a core drug for the treatment of multidrug-resistant tuberculosis; however, the understanding of resistance mechanisms is poor, which is hampering rapid molecular diagnostics. Some bedaquiline-resistant mutants are also cross-resistant to clofazimine. To decipher bedaquiline and clofazimine resistance determinants, we combined experimental evolution, protein modelling, genome sequencing, and phenotypic data. METHODS: For this in-vitro and in-silico data analysis, we used a novel in-vitro evolutionary model using subinhibitory drug concentrations to select bedaquiline-resistant and clofazimine-resistant mutants. We determined bedaquiline and clofazimine minimum inhibitory concentrations and did Illumina and PacBio sequencing to characterise selected mutants and establish a mutation catalogue. This catalogue also includes phenotypic and genotypic data of a global collection of more than 14 000 clinical Mycobacterium tuberculosis complex isolates, and publicly available data. We investigated variants implicated in bedaquiline resistance by protein modelling and dynamic simulations. FINDINGS: We discerned 265 genomic variants implicated in bedaquiline resistance, with 250 (94%) variants affecting the transcriptional repressor (Rv0678) of the MmpS5-MmpL5 efflux system. We identified 40 new variants in vitro, and a new bedaquiline resistance mechanism caused by a large-scale genomic rearrangement. Additionally, we identified in vitro 15 (7%) of 208 mutations found in clinical bedaquiline-resistant isolates. From our in-vitro work, we detected 14 (16%) of 88 mutations so far identified as being associated with clofazimine resistance and also seen in clinically resistant strains, and catalogued 35 new mutations. Structural modelling of Rv0678 showed four major mechanisms of bedaquiline resistance: impaired DNA binding, reduction in protein stability, disruption of protein dimerisation, and alteration in affinity for its fatty acid ligand. INTERPRETATION: Our findings advance the understanding of drug resistance mechanisms in M tuberculosis complex strains. We have established an extended mutation catalogue, comprising variants implicated in resistance and susceptibility to bedaquiline and clofazimine. Our data emphasise that genotypic testing can delineate clinical isolates with borderline phenotypes, which is essential for the design of effective treatments. FUNDING: Leibniz ScienceCampus Evolutionary Medicine of the Lung, Deutsche Forschungsgemeinschaft, Research Training Group 2501 TransEvo, Rhodes Trust, Stanford University Medical Scientist Training Program, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Bill & Melinda Gates Foundation, Wellcome Trust, and Marie Sklodowska-Curie Actions.


Assuntos
Clofazimina , Mycobacterium tuberculosis , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico
18.
Antimicrob Agents Chemother ; 67(4): e0136822, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36892309

RESUMO

In Mycobacterium tuberculosis, bedaquiline and clofazimine resistance occurs primarily through Rv0678 variants, a gene encoding a repressor protein that regulates mmpS5/mmpL5 efflux pump gene expression. Despite the shared effect of both drugs on efflux, little else is known about other pathways affected. We hypothesized that in vitro generation of bedaquiline- or clofazimine-resistant mutants could provide insight into additional mechanisms of action. We performed whole-genome sequencing and determined phenotypic MICs for both drugs on progenitor and mutant progenies. Mutants were induced through serial passage on increasing concentrations of bedaquiline or clofazimine. Rv0678 variants were identified in both clofazimine- and bedaquiline-resistant mutants, with concurrent atpE SNPs occurring in the latter. Of concern was the acquisition of variants in the F420 biosynthesis pathway in clofazimine-resistant mutants obtained from either a fully susceptible (fbiD: del555GCT) or rifampicin mono-resistant (fbiA: 283delTG and T862C) progenitor. The acquisition of these variants possibly implicates a shared pathway between clofazimine and nitroimidazoles. Pathways associated with drug tolerance and persistence, F420 biosynthesis, glycerol uptake and metabolism, efflux, and NADH homeostasis appear to be affected following exposure to these drugs. Shared genes affected by both drugs include Rv0678, glpK, nuoG, and uvrD1. Genes with variants in the bedaquiline resistant mutants included atpE, fadE28, truA, mmpL5, glnH, and pks8, while clofazimine-resistant mutants displayed ppsD, fbiA, fbiD, mutT3, fadE18, Rv0988, and Rv2082 variants. These results show the importance of epistatic mechanisms as a means of responding to drug pressure and highlight the complexity of resistance acquisition in M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Clofazimina/farmacologia , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Testes de Sensibilidade Microbiana , Genômica , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
19.
Antimicrob Agents Chemother ; 67(2): e0114422, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36648233

RESUMO

Pulmonary nontuberculous mycobacteria (NTM) infection is recognized as a major global health concern due to its rising prevalence worldwide. As an opportunistic pathogen with increasing antibiotics resistance, prolonged systemic dosing with multiple antibiotics remains the primary treatment paradigm. These prolonged treatments, administered predominantly by oral or parenteral routes, often lead to systemic toxicity. A novel inhaled formulation of clofazimine may finally resolve issues of toxicity, thereby providing for improved NTM therapy. Clofazimine inhalation suspension was evaluated in canines to determine toxicity over 28 days of once-a-day dosing. The good laboratory practice (GLP) repeat dosing study evaluated low, mid, and high dosing (2.72 mg/kg and 2.95 mg/kg; 5.45 mg/kg and 5.91 mg/kg; and 10.87 mg/kg and 10.07 mg/kg, average male versus female dosing) of nebulized clofazimine over 30, 60, and 120 min using a jet nebulizer. Toxicokinetic analyses were performed on study days 29, 56, and 84. All three dose levels showed significant residual drug in lung tissue, demonstrating impressive lung loading and long lung residence. Drug concentrations in the lung remained well above the average NTM MIC at all time points, with measurable clofazimine levels at 28 and 56 days postdosing. In contrast, plasma levels of clofazimine were consistently measurable only through 14 days postdosing, with measurements below the limit of quantitation at 56 days postdosing. Clofazimine inhalation suspension may provide an effective therapy for the treatment of NTM infections through direct delivery of antibiotic to the lungs, overcoming the systemic toxicity seen in oral clofazimine treatment for NTM.


Assuntos
Clofazimina , Infecções por Mycobacterium não Tuberculosas , Masculino , Animais , Cães , Feminino , Clofazimina/farmacologia , Micobactérias não Tuberculosas , Toxicocinética , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Pulmão
20.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674923

RESUMO

This work reports the synthesis, structural and thermal analysis, and in vitro evaluation of the antimicrobial activity of two new organic salts (OSs) derived from the antimycobacterial drug clofazimine and the fluoroquinolones ofloxacin or norfloxacin. Organic salts derived from active pharmaceutical ingredients (API-OSs), as those herein disclosed, hold promise as cost-effective formulations with improved features over their parent drugs, thus enabling the mitigation of some of their shortcomings. For instance, in the specific case of clofazimine, its poor solubility severely limits its bioavailability. As compared to clofazimine, the clofazimine-derived OSs now reported have improved solubility and thermostability, without any major deleterious effects on the drug's bioactivity profile.


Assuntos
Clofazimina , Fluoroquinolonas , Fluoroquinolonas/farmacologia , Clofazimina/farmacologia , Clofazimina/química , Sais , Antibacterianos/farmacologia , Antibacterianos/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA