Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(5): 3403-3413, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38700026

RESUMO

The delivery of drugs to the brain in the therapy of diseases of the central nervous system (CNS) remains a continuing challenge because of the lack of delivery systems that can cross the blood-brain barrier (BBB). Therefore, there is a need to develop an innovative delivery method for the treatment of CNS diseases. Thus, we have investigated the interaction of γ-aminobutyric acid (GABA) and S-(-)-γ-amino-α-hydroxybutyric acid (GAHBA) with the GABA receptor by performing a docking study. Both GABA and GAHBA show comparable binding affinities toward the receptor. In this study, we developed surface-modified solid lipid nanoparticles (SLNs) using GAHBA-derived lipids that can cross the BBB. CLB-loaded SLNs were characterized by a number of methods including differential scanning calorimetry, dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy. The blank and CLB-loaded SLN suspensions were found to exhibit good storage stability. Also, the SLNs showed a higher encapsulation efficiency for CLB drugs. In vitro release kinetics of CLB at physiological temperature was also investigated. The results of the in vitro cell cytotoxicity assay and flow cytometry studies in the human glioma U87MG cell line and human prostate cancer PC3 cell line suggested a higher efficacy of the GAHBA-modified CLB-loaded SLNs in U87MG cells. The transcription level of GABA receptor expression in the target organ and cell line was analyzed by a reverse transcription polymerase chain reaction study. The in vivo biodistribution and brain uptake in C57BL6 mice and SPECT/CT imaging in Wistar rats investigated using 99mTc-labeled SLN and autoradiography suggest that the SLNs have an increasing brain uptake. We have demonstrated the delivery of the anticancer drug chlorambucil (CLB) to glioma.


Assuntos
Encéfalo , Clorambucila , Lipídeos , Nanopartículas , Tamanho da Partícula , Clorambucila/química , Clorambucila/farmacologia , Clorambucila/administração & dosagem , Nanopartículas/química , Animais , Encéfalo/metabolismo , Lipídeos/química , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Propriedades de Superfície , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sistemas de Liberação de Medicamentos , Ratos , Portadores de Fármacos/química , Linhagem Celular Tumoral
2.
Biomater Sci ; 12(10): 2614-2625, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591255

RESUMO

Chlorambucil (Cbl) is a DNA alkylating drug in the nitrogen mustard family, but the clinical applications of nitrogen mustard antitumor drugs are frequently limited by their poor aqueous solubility, poor cellular uptake, lack of targeting, and severe side effects. Additionally, mitochondria are the energy factories for cells, and tumor cells are more susceptible to mitochondrial dysfunction than some healthy cells, thus making mitochondria an important target for tumor therapy. As a proof-of-concept, direct delivery of Cbl to tumor cells' mitochondria will probably bring about new opportunities for the nitrogen mustard family. Furthermore, IR775 chloride is a small-molecule lipophilic cationic heptamethine cyanine dye with potential advantages of mitochondria targeting, near-infrared (NIR) fluorescence imaging, and preferential internalization towards tumor cells. Here, an amphiphilic drug conjugate was facilely prepared by covalently coupling chlorambucil with IR775 chloride and further self-assembly to form a carrier-free self-delivery theranostic system, in which the two components are both functional units aimed at theranostic improvement. The theranostic IR775-Cbl potentiated typical "1 + 1 > 2" tumor inhibition through specific accumulation in mitochondria, which triggered a remarkable decrease in mitochondrial membrane potential and ATP generation. In vivo biodistribution and kinetic monitoring were achieved by real-time NIR fluorescence imaging to observe its transport inside a living body. Current facile mitochondria-targeting modification with clinically applied drugs was promising for endowing traditional drugs with targeting, imaging, and improved potency in disease theranostics.


Assuntos
Carbocianinas , Clorambucila , Mitocôndrias , Nanopartículas , Clorambucila/química , Clorambucila/farmacologia , Clorambucila/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Humanos , Nanopartículas/química , Carbocianinas/química , Camundongos , Polímeros/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Nanomedicina Teranóstica , Indóis/química , Indóis/farmacologia , Indóis/administração & dosagem , Feminino
3.
Bioorg Med Chem Lett ; 105: 129730, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583784

RESUMO

Chlorambucil is an alkylating drug that finds application towards chemotherapy of different types of cancers. In order to explore the possibility of utilization of this drug as an imaging agent for early diagnosis of solid tumors, attempt was made to synthesize a 99mTc complex of chlorambucil and evaluate its potential in tumor bearing small animal model. HYNIC-chlorambucil was synthesized by conjugation of HYNIC with chlorambucil via an ethylenediamine linker. All the intermediates and final product were purified and characterized by standard spectroscopic techniques viz. FT-IR, 1H/13C-NMR as well as by mass spectrometry. HYNIC-chlorambucil conjugate was radiolabeled with [99mTc]Tc and found to be formed with > 95 % radiochemical purity via RP-HPLC studies. The partition coefficient (Log10Po/w) of the synthesized complex was found to be -0.78 ± 0.25 which indicated the moderate hydrophilic nature for the complex. Biological behaviour of [99mTc]Tc-HYNIC-chlorambucil, studied in fibrosarcoma bearing Swiss mice, revealed a tumor uptake of about 4.16 ± 1.52 %IA/g at 30 min post-administration, which declined to 1.91 ± 0.13 % IA/g and 1.42 ± 0.14 %IA/g at 1 h and 2 h post-administration, respectively. A comparison of different [99mTc]Tc-chlorambucil derivatives (reported in the contemporary literature) formulated using different methodologies revealed that tumor uptake and pharmacokinetics exhibited by these agents strongly depend on the lipophilicity/hydrophilicity of such agents, which in turn is dependent on the bifunctional chelators used for formulating the radiolabeled chlorambucils.


Assuntos
Clorambucila , Compostos de Organotecnécio , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/síntese química , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Clorambucila/química , Clorambucila/síntese química , Clorambucila/farmacologia , Estrutura Molecular , Ácidos Nicotínicos/química , Ácidos Nicotínicos/síntese química , Compostos de Organotecnécio/química , Compostos de Organotecnécio/síntese química , Compostos de Organotecnécio/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Tecnécio/química , Distribuição Tecidual
4.
ACS Appl Mater Interfaces ; 16(17): 21486-21497, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640485

RESUMO

The combined effects of twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) phenomena have demonstrated a significant influence on excited-state chemistry. These combined TICT and AIE features have been extensively utilized to enhance photodynamic and photothermal therapy. Herein, we demonstrated the synergistic capabilities of TICT and AIE phenomena in the design of the photoremovable protecting group (PRPG), namely, NMe2-Napy-BF2. This innovative PRPG incorporates TICT and AIE characteristics, resulting in four remarkable properties: (i) red-shifted absorption wavelength, (ii) strong near-infrared (NIR) emission, (iii) viscosity-sensitive emission property, and (iv) accelerated photorelease rate. Inspired by these intriguing attributes, we developed a nanodrug delivery system (nano-DDS) using our PRPG for cancer treatment. In vitro studies showed that our nano-DDS manifested effective cellular internalization, specific staining of cancer cells, high-resolution confocal imaging of cancerous cells in the NIR region, and controlled release of the anticancer drug chlorambucil upon exposure to light, leading to cancer cell eradication. Most notably, our nano-DDS exhibited a substantially increased two-photon (TP) absorption cross section (435 GM), exhibiting its potential for in vivo applications. This development holds promise for significant advancements in cancer treatment strategies.


Assuntos
Naftiridinas , Fótons , Humanos , Naftiridinas/química , Naftiridinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Clorambucila/química , Clorambucila/farmacologia , Fotoquimioterapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/química
5.
Cell Chem Biol ; 29(4): 690-695.e5, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-34450110

RESUMO

Mutations in mitochondrial DNA (mtDNA) cause mitochondrial diseases, characterized by abnormal mitochondrial function. Although eliminating mutated mtDNA has potential to cure mitochondrial diseases, no chemical-based drugs in clinical trials are capable of selective modulation of mtDNA mutations. Here, we construct a class of compounds encompassing pyrrole-imidazole polyamides (PIPs), mitochondria-penetrating peptide, and chlorambucil, an adenine-specific DNA-alkylating reagent. The sequence-selective DNA binding of PIPs allows chlorambucil to alkylate mutant adenine more efficiently than other sites in mtDNA. In vitro DNA alkylation assay shows that our compound 8950A-Chb(Cl/OH) targeting a nonpathogenic point mutation in HeLa S3 cells (m.8950G>A) can specifically alkylate the mutant adenine. Furthermore, the compound reduces the mtDNA possessing the target mutation in cultured HeLa S3 cells. The programmability of PIPs to target different sequences could allow this class of compounds to be developed as designer drugs targeting pathogenic mutations associated with mitochondrial diseases in future studies.


Assuntos
Adenina , DNA Mitocondrial , Alquilação , Clorambucila/química , DNA Mitocondrial/genética , Humanos , Mitocôndrias , Mutação , Nylons/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-34233575

RESUMO

The study aims to clarify the current controversy related to conflicting reports on whether presence of Cr(VI) in rice is possible or not. For this purpose, a method was employed for the single run speciation analysis of Cr(III) and Cr(VI) in rice samples using species-specific isotope dilution (SS-ID) and high performance liquid chromatography coupled to inductively coupled mass-spectrometry (HPLC-ICP-MS) and selective single run species complexation/derivatisation. The quantification limits (LOQs) were 0.014 µg kg-1 for Cr(III) and 0.047 µg kg-1 for Cr(VI), while the detection limits (LODs) were 0.004 and 0.014 µg kg-1 for Cr(III) and Cr(VI), respectively. A total of 10 rice samples of different origin and colour (depending on the type of industrial processing) were analysed in this study. The content of Cr(VI) was below the limit of quantification in all of the rice samples analysed, while the Cr(III) levels ranged between 0.59 (whole grain rice) up to 104 µg kg-1 (brown rice). All samples were also analysed for their total Cr (Crtotal) content by ICP-MS solely and the results were in all cases comparable with the Cr(III) levels determined in the same samples. To assess the stability of Cr(III) and Cr(VI) in rice, one sample was spiked with Cr(III) and Cr(VI) (individually) at different levels (5.0, 10, 15 and 20 µg kg-1), held for 2 h, and then analysed by SS-ID HPLC-ICP-MS. The results showed a complete reduction of Cr(VI) to Cr(III), while Cr(III) remained stable at all spiking levels. These findings support the general statement from the European Food Safety Authority related to the complete absence of Cr(VI) in foods and confirms that Cr in rice is found solely as Cr(III) species.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/química , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos , Oryza/química , Clorambucila/química , Limite de Detecção , Espectrometria de Massas , Prednisolona/química , Procarbazina/química , Vimblastina/química
7.
Chem Asian J ; 16(17): 2552-2558, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34296823

RESUMO

A pH-responsive smart nanocarrier with significant components was synthesized by conjugating the non-emissive anticancer drug methyl orange and polyethylene glycol derived folate moiety to the backbone of polynorbornene. Complete synthesis procedure and characterization methods of three monomers included in the work: norbornene-derived Chlorambucil (Monomer 1), norbornene grafted with polyethylene glycol, and folic acid (Monomer 2) and norbornene attached methyl orange (Monomer 3) connected to the norbornene backbone through ester linkage were clearly discussed. Finally, the random copolymer CHO PEG FOL METH was synthesized by ring-opening metathesis polymerization (ROMP) using Grubbs' second-generation catalyst. Advanced polymer chromatography (APC) was used to find the final polymer's molecular weight and polydispersity index (PDI). Dynamic light scattering, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were utilized to explore the prodrug's size and morphology. Release experiments of the anticancer drug, Chlorambucil and the coloring agent, methyl orange, were performed at different pH and time. Cell viability assay was carried out for determining the rate of survived cells, followed by the treatment of our final polymer named CHO PEG FOL METH.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Ácido Fólico/análogos & derivados , Plásticos/química , Polietilenoglicóis/química , Pró-Fármacos/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Compostos Azo/síntese química , Compostos Azo/química , Compostos Azo/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Clorambucila/síntese química , Clorambucila/química , Clorambucila/toxicidade , Corantes/síntese química , Corantes/química , Corantes/toxicidade , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/toxicidade , Doxorrubicina/síntese química , Doxorrubicina/química , Doxorrubicina/toxicidade , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Ácido Fólico/síntese química , Ácido Fólico/química , Ácido Fólico/toxicidade , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Plásticos/síntese química , Plásticos/toxicidade , Polietilenoglicóis/síntese química , Polietilenoglicóis/toxicidade , Polimerização , Pró-Fármacos/síntese química , Pró-Fármacos/toxicidade
8.
Molecules ; 26(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068372

RESUMO

High performance liquid chromatography with ultra-violet detection (HPLC-UV) and gas chromatography-mass spectrometry (GC-MS) methods were developed and validated for the determination of chlorambucil (CLB) and valproic acid (VPA) in plasma, as a part of experiments on their anticancer activity in chronic lymphocytic leukemia (CLL). CLB was extracted from 250 µL of plasma with methanol, using simple protein precipitation and filtration. Chromatography was carried out on a LiChrospher 100 RP-18 end-capped column using a mobile phase consisting of acetonitrile, water and formic acid, and detection at 258 nm. The lowest limit of detection LLOQ was found to be 0.075 µg/mL, showing sufficient sensitivity in relation to therapeutic concentrations of CLB in plasma. The accuracy was from 94.13% to 101.12%, while the intra- and inter-batch precision was ≤9.46%. For quantitation of VPA, a sensitive GC-MS method was developed involving simple pre-column esterification with methanol and extraction with hexane. Chromatography was achieved on an HP-5MSUI column and monitored by MS with an electron impact ionization and selective ion monitoring mode. Using 250 µL of plasma, the LLOQ was found to be 0.075 µg/mL. The accuracy was from 94.96% to 109.12%, while the intra- and inter-batch precision was ≤6.69%. Thus, both methods fulfilled the requirements of FDA guidelines for the determination of drugs in biological materials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Clorambucila/sangue , Clorambucila/uso terapêutico , Cromatografia Gasosa-Espectrometria de Massas , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Ácido Valproico/sangue , Ácido Valproico/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Calibragem , Clorambucila/química , Clorambucila/farmacologia , Cromatografia Líquida de Alta Pressão , Humanos , Ácido Valproico/química , Ácido Valproico/farmacologia
9.
Biochem Biophys Res Commun ; 562: 127-132, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34051576

RESUMO

A novel nitrogen mustard CBISC has been synthesized and evaluated as an anticancer agent. CBISC has been shown to exhibit enhanced cell proliferation inhibition properties against mutant p53 cell lines colorectal cancer WiDr, pancreatic cancer (MIAPaCa-2 and PANC-1), and triple negative breast cancer (MDA-MB-231 and MDA-MB-468). In vitro mechanism of action studies revealed perturbations in the p53 pathway and increased cell death as evidenced by western blotting, immunofluorescent microscopy and MTT assay. Further, in vivo studies revealed that CBISC is well tolerated in healthy mice and exhibited significant in vivo tumor growth inhibition properties in WiDr and MIAPaCa-2 xenograft models. These studies illustrate the potential utility of CBISC as an anticancer agent.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Dano ao DNA , Proteínas Mutantes/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/efeitos dos fármacos , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clorambucila/química , Clorambucila/farmacologia , Cloranfenicol/química , Cloranfenicol/farmacologia , Feminino , Camundongos Nus , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Chemistry ; 27(8): 2782-2788, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33145851

RESUMO

Hairpin pyrrole-imidazole polyamides (hPIPs) and their chlorambucil (Chb) conjugates (hPIP-Chbs) can alkylate DNA in a sequence-specific manner, and have been studied as anticancer drugs. Here, we conjugated Chb to a cyclic PIP (cPIP), which is known to have a higher binding affinity than the corresponding hPIP, and investigated the DNA alkylation properties of the resulting cPIP-Chb using the optimized capillary electrophoresis method and conventional HPLC product analysis. cPIP-Chb conjugate 3 showed higher alkylation activity at its binding sites than did hPIP-Chb conjugates 1 and 2. Subsequent HPLC analysis revealed that the alkylation site of conjugate 3, which was identified by capillary electrophoresis, was reliable and that conjugate 3 alkylates the N3 position of adenine as do hPIP-Chbs. Moreover, conjugate 3 showed higher cytotoxicity against LNCaP prostate cancer cells than did conjugate 1 and cytotoxicity comparable to that of conjugate 2. These results suggest that cPIP-Chbs could be novel DNA alkylating anticancer drugs.


Assuntos
Clorambucila/química , DNA/química , Imidazóis/química , Nylons/química , Pirróis/química , Alquilação
11.
Chem Commun (Camb) ; 56(69): 9986-9989, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32720950

RESUMO

We report a two-photon responsive drug delivery system (DDS), namely, p-hydroxyphenacyl-naphthalene-chlorambucil (pHP-Naph-Cbl), having a two-photon absorption (TPA) cross-section of ≥20 GM in the phototherapeutic window (700 nm). Our DDS exhibited both AIE and ESIPT phenomena, which were utilized for the real-time monitoring of anti-cancer drug release.


Assuntos
Antineoplásicos Alquilantes/química , Clorambucila/química , Portadores de Fármacos/química , Naftalenos/química , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Clorambucila/metabolismo , Clorambucila/farmacologia , Liberação Controlada de Fármacos , Humanos , Luz , Células MCF-7 , Microscopia Confocal , Fótons
13.
Biomed Pharmacother ; 129: 110443, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32593130

RESUMO

The present study aims at designing a biodegradable and biocompatible nanocarrier using gelatin and reduced graphene oxide nanosheets functionalized with folic acid, for release of chlorambucil drug in controlled manner and achieving high loading efficiency. From scanning electron microscopic studies small pore like structure with rough and thick morphology on the plane of graphene oxide is clearly visible indicating high loading of drug. Further, Drug loading and encapsulation efficiency, in vitro release studies of the drug from the nanocarrier at different concentrations of reduced graphene oxide, different pH were studied. The mean particle size, entrapment efficiency (%) of optimized folic acid functionalized gelatin-graphene oxide formulation was observed to be 300 nm and 56% respectively. From the release studies it is clear that, after 24 h the release rate of the drug was found to be higher at acidic conditions compared to neutral conditions. It was found that 62.1% and 82% of the total bound drug was released from the nanocarrier at pH 5.4 and pH 1.2 respectively. Besides, under neutral conditions (pH 7.4), 43.7% of the total bound drug was released from the nanocarrier in the first 24 h. The % cell viability of free drug, drug loaded nanocomposites against human cervical adenocarcinoma cell line was found to be 11.7% and 28% respectively at the dose of 500 µg mL-1 after 24 h. IC50 values also manifest the significantly lower cytotoxicity of drug loaded nanocarrier (IC50 = 125.9 µg/mL) as compared to free-drug (IC50 = 86 µg/mL). For FAGGO, CLB and CLB-FAGGO the values of mean ± std. deviation were found to be 71.80 ± 6.66; 48.71 ± 23.15; 55.48 ± 19.65 respectively. The unique properties exhibited by biodegradable polymer like gelatin and carbon based materials such as graphene offers an excellent applications in biomedical field.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos Alquilantes/farmacologia , Clorambucila/farmacologia , Portadores de Fármacos , Grafite/química , Nanopartículas , Neoplasias do Colo do Útero/tratamento farmacológico , Adenocarcinoma/patologia , Antineoplásicos Alquilantes/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorambucila/química , Preparações de Ação Retardada , Relação Dose-Resposta a Droga , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Ácido Fólico/química , Gelatina/química , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Neoplasias do Colo do Útero/patologia
14.
J Enzyme Inhib Med Chem ; 35(1): 1069-1079, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32314611

RESUMO

Chlorambucil is a nitrogen mustard-based DNA alkylating drug, which is widely used as a front-line treatment of chronic lymphocytic leukaemia (CLL). Despite its widespread application and success for the initial treatment of leukaemia, a majority of patients eventually develop acquired resistance to chlorambucil. In this regard, we have designed and synthesised a novel hybrid molecule, chloram-HDi that simultaneously impairs DNA and HDAC enzymes. Chloram-HDi efficiently inhibits the proliferation of HL-60 and U937 leukaemia cells with GI50 values of 1.24 µM and 1.75 µM, whereas chlorambucil exhibits GI50 values of 21.1 µM and 37.7 µM against HL-60 and U937 leukaemia cells, respectively. The mechanism behind its remarkably enhanced cytotoxicity is that chloram-HDi not only causes a significant DNA damage of leukaemia cells but also downregulates DNA repair protein, Rad52, resulting in the escalation of its DNA-damaging effect. Furthermore, chloram-HDi inhibits HDAC enzymes to induce the acetylation of α-tubulin and histone H3.


Assuntos
Antineoplásicos/farmacologia , Clorambucila/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clorambucila/síntese química , Clorambucila/química , Dano ao DNA , DNA de Neoplasias/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244913

RESUMO

l-type amino acid transporter 1 (LAT1) is an amino acid transporter that is overexpressed in several types of cancer and, thus, it can be a potential target for chemotherapy. The objectives of this study were to (a) synthesize LAT1-targeted chlorambucil derivatives and (b) evaluate their LAT1-mediated cellular uptake as well as antiproliferative activity in vitro in the human breast cancer MCF-7 cell line. Chlorambucil was conjugated to l-tyrosine-an endogenous LAT1 substrate-via either ester or amide linkage (compounds 1 and 2, respectively). While chlorambucil itself did not bind to LAT1, its derivatives 1 and 2 bound to LAT1 with a similar affinity as with l-tyrosine and their respective cellular uptake was significantly higher than that of chlorambucil in MCF-7. The results of our cellular uptake study are indicative of antiproliferative activity, as a higher intracellular uptake of chlorambucil derivatives resulted in greater cytotoxicity than chlorambucil by itself. LAT1 thus contributes to intracellular uptake of chlorambucil derivatives and, therefore, increases antiproliferative activity. The understanding gained from our research can be used in the development of LAT1-targeted anticancer drugs and prodrugs for site-selective and enhanced chemotherapeutic activity.


Assuntos
Neoplasias da Mama/metabolismo , Clorambucila/farmacologia , Endocitose , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Tirosina/farmacologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Clorambucila/síntese química , Clorambucila/química , Endocitose/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Ligação Proteica/efeitos dos fármacos , Fatores de Tempo , Tirosina/química
16.
Metallomics ; 12(5): 721-731, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32196031

RESUMO

A novel cyclometalated gold(iii) complex supported by chlorambucil coupled with phenylpyridine (CHL-N^C) and a hybrid of vitamin B1 with dithiocarbamate (B1-DTC) with the formula [(CHL-N^C)AuIII(B1-DTC)](Cl2), 1, was synthesized and fully characterized using different techniques, including multinuclear NMR, mass spectrometry, and elemental analysis. This complex is water-soluble and stable in a biological environment. This new complex offers a new scaffold to explore the biological properties of gold(iii) complexes as an anticancer drug. The antiproliferative activities of complex 1 and free ligands against breast and colon cancer cells showed auspicious results with IC50 values in the micromolar range for complex 1 and more active than cisplatin and free ligands with selectivity over non-tumorigenic cells human lung fibroblasts, MRC-5. The DNA binding and inhibition of thioredoxin reductase of complex 1 were studied and compared with molecular docking results. Moreover, the Au cellular uptake and apoptosis of this new complex were investigated.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Clorambucila/farmacologia , Complexos de Coordenação/farmacologia , Ouro/química , Neoplasias/tratamento farmacológico , Tiamina/farmacologia , Antineoplásicos/química , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacologia , Clorambucila/química , Cisplatino/farmacologia , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Ligantes , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias/patologia , Tiamina/química , Complexo Vitamínico B/química , Complexo Vitamínico B/farmacologia
17.
Med Chem ; 16(7): 984-990, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31448714

RESUMO

BACKGROUND: One of the possible ways of improving the activity and selectivity profile of anticancer agents is to design drug carrier systems employing nanomolecules. Calix[4]arene derivatives and chlorambucil and ibuprofen are important compounds that exhibit interesting anticancer properties. OBJECTIVE: The objective of this article is the synthesis of new calix[4]arene-derivative conjugates of chlorambucil or ibuprofen with potential anticancer activity. METHODS: Cytotoxicity assays were determined using the protein-binding dye sulforhodamine B (SRB) in microculture to measure cell growth as described [19, 20]. Conjugates of chlorambucil and resorcinarene-dendrimers were prepared in 2% DMSO and added into the culture medium immediately before use. Control cells were treated with 2% DMSO. RESULTS: Thus, calix[4]arene-derivative conjugates of chlorambucil or ibuprofen showed good stability of the chemical link between drug and spacer. Evaluation of the cytotoxicity of the calix[4]arene chlorambucil or ibuprofen conjugates employing a sulforhodamine B (SRB) assay in K-562 (human chronic myelogenous leukemia cells) and U-251 (human glioblastoma cells) demonstrated that the conjugate was more potent as an antiproliferative agent than free chlorambucil and ibuprofen. The conjugates did not show any activity against the COS-7 African green monkey kidney fibroblast cell line. CONCLUSION: In the paper, we report the synthesis and spectroscopic analyses of new calix[4]arene derivative conjugates of chlorambucil or ibuprofen. Cytotoxicity assays revealed that at 10 µM, the conjugates were very active against K-562 (human chronic myelogenous leukemia cells) and U- 251 (human glioblastoma cells) cancer cells' proliferation. In order to explain the molecular mechanisms involved in the anticancer activity of calix[4]arene chlorambucil or ibuprofen conjugates, our research will be continued.


Assuntos
Antineoplásicos/farmacologia , Calixarenos/farmacologia , Clorambucila/farmacologia , Ibuprofeno/farmacologia , Fenóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Calixarenos/química , Proliferação de Células/efeitos dos fármacos , Clorambucila/síntese química , Clorambucila/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ibuprofeno/síntese química , Ibuprofeno/química , Estrutura Molecular , Fenóis/química , Células Tumorais Cultivadas
18.
Anal Chem ; 91(23): 15193-15203, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31670503

RESUMO

DNA-DNA crosslinks, especially interstrand crosslinks (ICLs), cause cytotoxicity via blocking replication and transcription. Most measurements of ICLs lack sensitivity and structural information. Here, a high resolution, accurate mass spectrometry (HRMS) method was developed to comprehensively determine the untargeted, totality of DNA crosslinks, a.k.a. DNA crosslinkomics. Two novel features were introduced into this method: the accurate mass neutral losses of both two 2-deoxyribose (dR) and one dR groups will screen for ICLs as modified dinucleosides; the accurate mass neutral losses of both of the two nucleobases and one nucleobase will detect unstable DNA crosslinks, that could undergo depurination. Our crosslinkomics approach was tested by screening for crosslinks in formaldehyde- and chlorambucil-treated calf thymus DNA. The results showed that all expected drug-bridged crosslinks were detected successfully, along with various unexpected crosslinks. Using HRMS, the molecular formula and chemical structures of these unexpected crosslinks were determined. The formation of apurinic/apyrimidinic (AP) site-derived crosslinks, at levels comparable to those for drug-bridged crosslinks, highlighted their novel, potential role in cytotoxicity. Our new crosslinkomics approach can detect expected and unexpected environmental and drug-induced crosslinks in biological samples. This broadens the existing cellular DNA adductome and offers the potential to become a powerful tool in precision medicine.


Assuntos
Reagentes de Ligações Cruzadas/química , DNA/química , Animais , Bovinos , Clorambucila/química , Cromatografia Líquida , Formaldeído/química , Espectrometria de Massas
19.
Chem Commun (Camb) ; 55(87): 13140-13143, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31617528

RESUMO

In this work, we depleted glutathione (GSH) by releasing SO2 with internal stimulus GSH itself, and also selectively marked the cancer cells followed by release of anticancer drug using another orthogonal stimulus i.e., two-photon (TP) NIR light by a single naphthalene based chromophore (TP absorbance 77 GM and uncaging cross-section 21 GM). We demonstrated the improved therapeutic efficacy of chlorambucil by the stepwise dual stimuli approach and dual surveillance of both the drug uncaging process in real-time using in vitro studies.


Assuntos
Alquilantes/farmacologia , Antineoplásicos Alquilantes/farmacologia , Clorambucila/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Naftalenos/farmacologia , Fótons , Alquilantes/química , Antineoplásicos Alquilantes/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorambucila/química , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glutationa/metabolismo , Humanos , Raios Infravermelhos , Estrutura Molecular , Naftalenos/química , Imagem Óptica , Dióxido de Enxofre/metabolismo
20.
ChemMedChem ; 14(19): 1727-1734, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31403246

RESUMO

Targeted drug delivery (TDD) is an efficient strategy for cancer treatment. However, the real-time monitoring of drug delivery is still challenging because of a pronounced lack of TDD systems capable of providing a near-infrared (NIR) fluorescence signal for the detection of drug-release events. Herein, a new TDD system, comprising a turn-on NIR fluorescent reporter attached to an anticancer drug and targeting peptide, is reported. This system provides both TDD and NIR fluorescence monitoring of drug-release events in target tissue. In this TDD system, a new carboxy-derivatized xanthene-cyanine (XCy) dye is attached to an anticancer drug, chlorambucil (CLB), through a hydrolytically cleavable ester linker and coupled to a targeting peptide, octreotide amide (OCTA), which is specific to somatostatin receptors SSTR-2 and STTR-5 overexpressed on many tumor cells. This OCTA-G-XCy-CLB (G: γ-aminobutyric acid) conjugate exhibits no detectable fluorescence, whereas, upon the hydrolytic cleavage of the ester linker, a bright NIR fluorescence appears at λ≈710 nm; this signals release of the drug. Real-time TDD monitoring is demonstrated for the example of the human pancreatic cancer cell line overexpressing SSTR-2 and STTR-5, in comparison with the noncancerous Chinese hamster ovary cell line, which contains a reduced number of these receptors.


Assuntos
Carbocianinas/química , Clorambucila/química , Portadores de Fármacos/química , Fluorenos/química , Octreotida/metabolismo , Resinas Sintéticas/química , Xantenos/química , Aminobutiratos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CHO , Carbocianinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorambucila/farmacologia , Cricetulus , Portadores de Fármacos/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular/métodos , Receptores de Somatostatina/química , Receptores de Somatostatina/genética , Xantenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...