Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.590
Filtrar
1.
Environ Monit Assess ; 196(6): 553, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758240

RESUMO

Incidents involving chemical storage tanks in the petrochemical industry are significant events with severe consequences. Within the petrochemical industry, EDC is a sector that produces ethylene dichloride through the reaction of chlorine and ethylene. The present research was conducted to evaluate the consequences of chlorine gas released from the EDC reactor in a petrochemical industry in southern Iran. Data regarding reactor specifications were obtained from the factory's technical office, while climatic data was acquired from the Meteorological Organization. The consequences of chlorine gas release from the reactor were assessed in four predefined scenarios using numerical calculation methods and modeling with the ALOHA software. The numerical calculation method involved thermodynamic fluid path analysis, discharge coefficient calculations, and wind speed impact analysis. The hazard radius was determined based on the ERPG1-2-3 index. Results showed that in the scenario of chlorine gas release from EDC reactors, according to the ALOHA model, an increase in wind speed from 3 to 7 m/h led to an expanded dispersion radius. At a radius of 700 m from the reactor, the maximum outdoor concentration reached 3.12 ppm, decreasing to 2.27 ppm at 800 m and further to 1.53 ppm at 1000 m. The comparison of numerical calculations and modeling using the ALOHA software indicates the desirable conformity of the results with each other. The R2 coefficient for evaluating the conformity of the results was 0.9964, indicating the desired efficiency of the model in evaluating the consequences of the release of toxic gasses from the EDC tank. The results of this research can be useful in designing the site and emergency response plan.


Assuntos
Cloro , Monitoramento Ambiental , Cloro/análise , Cloro/química , Irã (Geográfico) , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Indústria de Petróleo e Gás , Modelos Químicos
2.
Chemosphere ; 357: 142057, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636920

RESUMO

Recent leaks of underground fuel storage tanks in the Pearl Harbor region have led to direct release of un-weathered petroleum hydrocarbons (PHCs) into drinking water sources, which then directly underwent chlorination disinfection treatment. Since the control of disinfection byproducts (DBPs) traditionally focuses natural organic matters (NOM) from source water and little is known about the interactions between free chlorine and un-weathered PHCs, laboratory chlorination experiments in batch reactors were conducted to determine the formation potential of DBPs during chlorination of PHC-contaminated drinking water. Quantitative analysis of regulated DBPs showed that significant quantities of THM4 (average 3,498 µg/L) and HAA5 (average 355.4 µg/L) compounds were formed as the result of chlorination of un-weathered PHCs. Amongst the regulated DBPs, THM4, which were comprised primarily of chloroform and bromodichloromethane, were more abundant than HAA5. Numerous unregulated DBPs and a large diversity of unidentified potentially halogenated organic compounds were also produced, with the most abundant being 1,1-dichloroacetone, 1,2-dibromo-3-chloropropane, chloropicrin, dichloroacetonitrile, and trichloracetonitrile. Together, the results demonstrated the DBP formation potential when PHC-contaminated water undergoes chlorination treatment. Further studies are needed to confirm the regulated DBP production and health risks under field relevant conditions.


Assuntos
Desinfecção , Água Potável , Halogenação , Hidrocarbonetos , Petróleo , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Água Potável/química , Purificação da Água/métodos , Petróleo/análise , Hidrocarbonetos/análise , Desinfetantes/análise , Desinfetantes/química , Cloro/química , Trialometanos/análise , Trialometanos/química
3.
Chemosphere ; 358: 142170, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679177

RESUMO

1,2-dichloropropane (1,2-DCP) and 1,2,3-trichloropropane (1,2,3-TCP) are hazardous chemicals frequently detected in groundwater near agricultural zones due to their historical use in chlorinated fumigant formulations. In this study, we show that the organohalide-respiring bacterium Dehalogenimonas alkenigignens strain BRE15 M can grow during the dihaloelimination of 1,2-DCP and 1,2,3-TCP to propene and allyl chloride, respectively. Our work also provides the first application of dual isotope approach to investigate the anaerobic reductive dechlorination of 1,2-DCP and 1,2,3-TCP. Stable carbon and chlorine isotope fractionation values for 1,2-DCP (ƐC = -13.6 ± 1.4 ‰ and ƐCl = -27.4 ± 5.2 ‰) and 1,2,3-TCP (ƐC = -3.8 ± 0.6 ‰ and ƐCl = -0.8 ± 0.5 ‰) were obtained resulting in distinct dual isotope slopes (Λ12DCP = 0.5 ± 0.1, Λ123TCP = 4 ± 2). However direct comparison of ΛC-Cl among different substrates is not possible and investigation of the C and Cl apparent kinetic isotope effects lead to the hypothesis that concerted dichloroelimination mechanism is more likely for both compounds. In fact, whole cell activity assays using cells suspensions of the Dehalogenimonas-containing culture grown with 1,2-DCP and methyl viologen as electron donor suggest that the same set of reductive dehalogenases was involved in the transformation of 1,2-DCP and 1,2,3-TCP. This study opens the door to the application of isotope techniques for evaluating biodegradation of 1,2-DCP and 1,2,3-TCP, which often co-occur in groundwaters near agricultural fields.


Assuntos
Biodegradação Ambiental , Propano , Propano/metabolismo , Propano/análogos & derivados , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Água Subterrânea/microbiologia , Água Subterrânea/química , Cloro/metabolismo , Cloro/química , Isótopos de Carbono , Halogenação , Chloroflexi/metabolismo , Fracionamento Químico , Ácido 2,4-Diclorofenoxiacético/análogos & derivados
4.
Chemosphere ; 357: 142039, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621488

RESUMO

The coexistence of free chlorine and bromide under sunlight irradiation (sunlight/FC with Br-) is unavoidable in outdoor seawater swimming pools, and the formation of brominated disinfection byproducts could act more harmful than chlorinated disinfection byproducts. In this study, benzotriazole was selected as a model compound to investigate the degradation rate and the subsequent formation of disinfection byproducts via sunlight/FC with Br- process. The rate constants for the degradation of benzotriazole under pseudo first order conditions in sunlight/FC with Br- and sunlight/FC are 2.3 ± 0.07 × 10-1 min-1 and 6.0 ± 0.7 × 10-2 min-1, respectively. The enhanced degradation of benzotriazole can be ascribed to the generation of HO•, bromine species, and reactive halogen species (RHS) during sunlight/FC with Br-. Despite the fact that sunlight/FC with Br- process enhanced benzotriazole degradation, the reaction results in increasing tribromomethane (TBM) formation. A high concentration (37.8 µg/L) of TBM was detected in the sunlight/FC with Br-, which was due to the reaction of RHS. The degradation of benzotriazole was notably influenced by the pH value (pH 4 - 11), the concentration of bromide (0 - 2 mM), and free chlorine (1 - 6 mg/L). Furthermore, the concentration of TBM increased when the free chlorine concentrations increased, implying the formation potential of harmful TBM in chlorinated seawater swimming pools.


Assuntos
Brometos , Cloro , Luz Solar , Triazóis , Poluentes Químicos da Água , Triazóis/química , Brometos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Cloro/química , Desinfecção , Trialometanos/química , Água do Mar/química , Desinfetantes/química , Desinfetantes/análise
5.
Langmuir ; 40(17): 8939-8949, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38635896

RESUMO

Amorphous silica particles (ASPs) have low biotoxicity and are used in foodstuffs; however, the adsorption states of proteins on their surfaces have not yet been clarified. If the adsorption states can be clarified and controlled, then a wide range of biological and medical applications can be expected. The conventional amorphous silica particles have the problem of protein adsorption due to the strong interaction with their dense silanol groups and denaturation. In this study, the surfaces of amorphous silica particles with a lower silanol group density were modified with a small amount of chlorine during the synthesis process to form a specific surface layer by adsorbing water molecules and ions in the biological fluid, thereby controlling the protein adsorption state. Specifically, the hydration state on the surface of the amorphous silica particles containing trace amounts of chlorine was evaluated, and the surface layer (especially the hydration state) for the adsorption of antibody proteins while maintaining their steric structures was evaluated and discussed. The results showed that the inclusion of trace amounts of chlorine increased the silanol groups and Si-Cl bonds in the topmost surface layer of the particles, thereby inducing the adsorption of ions and water molecules in the biological fluid. Then, it was found that a novel surface layer was formed by the effective adsorption of Na and phosphate ions, which would change the proportion of the components in the hydration layer. In particular, the proportion of the free water component increased by 21% with the doping of chlorine. Antibody proteins were effectively adsorbed on the particles doped with trace amounts of chlorine, and their steric adsorption states were evaluated. It was found that the proteins were clearly adsorbed and maintained the steric state of their secondary structure. In the immunoreactivity tests using streptavidin and biotin, biotin bound to the chlorine-doped particles showed efficient reactivity. In conclusion, this study is the first to discover the surface layer of the amorphous silica particles to maintain the steric structures of adsorbed proteins, which is expected to be used as a carrier particle for antibody test kits and immunochromatography.


Assuntos
Cloro , Dióxido de Silício , Propriedades de Superfície , Dióxido de Silício/química , Cloro/química , Adsorção , Tamanho da Partícula , Anticorpos/química
6.
Environ Sci Technol ; 58(17): 7672-7682, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38639327

RESUMO

The development of efficient technologies for the synergistic catalytic elimination of NOx and chlorinated volatile organic compounds (CVOCs) remains challenging. Chlorine species from CVOCs are prone to catalyst poisoning, which increases the degradation temperature of CVOCs and fails to balance the selective catalytic reduction of NOx with the NH3 (NH3-SCR) performance. Herein, synergistic catalytic elimination of NOx and chlorobenzene has been originally demonstrated by using phosphotungstic acid (HPW) as a dechlorination agent to collaborate with CeO2. The conversion of chlorobenzene was over 80% at 270 °C, and the NOx conversion and N2 selectivity reached over 95% at 270-420 °C. HPW not only allowed chlorine species to leave as inorganic chlorine but also enhanced the BroÌ·nsted acidity of CeO2. The NH4+ produced in the NH3-SCR process can effectively promote the dechlorination of chlorobenzene at low temperatures. HPW remained structurally stable in the synergistic reaction, resulting in good water resistance and long-term stability. This work provides a cheaper and more environmentally friendly strategy to address chlorine poisoning in the synergistic reaction and offers new guidance for multipollutant control.


Assuntos
Clorobenzenos , Catálise , Clorobenzenos/química , Compostos Orgânicos Voláteis/química , Cloro/química , Cério/química , Halogenação
7.
Org Biomol Chem ; 22(14): 2851-2862, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516867

RESUMO

Hypochlorous acid (HOCl) released from activated leukocytes plays a significant role in the human immune system, but is also implicated in numerous diseases due to its inappropriate production. Chlorinated nucleobases induce genetic changes that potentially enable and stimulate carcinogenesis, and thus have attracted considerable attention. However, their multiple halogenation sites pose challenges to identify them. As a good complement to experiments, quantum chemical computation was used to uncover chlorination sites and chlorinated products in this study. The results indicate that anion salt forms of all purine compounds play significant roles in chlorination except for adenosine. The kinetic reactivity order of all reaction sites in terms of the estimated apparent rate constant kobs-est (in M-1 s-1) is heterocyclic NH/N (102-107) > exocyclic NH2 (10-2-10) > heterocyclic C8 (10-5-10-1), but the order is reversed for thermodynamics. Combining kinetics and thermodynamics, the numerical simulation results show that N9 is the most reactive site for purine bases to form the main initial chlorinated product, while for purine nucleosides N1 and exocyclic N2/N6 are the most reactive sites to produce the main products controlled by kinetics and thermodynamics, respectively, and C8 is a possible site to generate the minor product. The formation mechanisms of biomarker 8-Cl- and 8-oxo-purine derivatives were also investigated. Additionally, the structure-kinetic reactivity relationship study reveals a good correlation between lg kobs-est and APT charge in all purine compounds compared to FED2 (HOMO), which proves again that the electrostatic interaction plays a key role. The results are helpful to further understand the reactivity of various reaction sites in aromatic compounds during chlorination.


Assuntos
Nucleosídeos , Poluentes Químicos da Água , Humanos , Nucleosídeos/química , Halogenação , Domínio Catalítico , Nucleosídeos de Purina , Ácido Hipocloroso/química , Cinética , Cloro/química , Poluentes Químicos da Água/química
8.
J Hazard Mater ; 470: 134118, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547752

RESUMO

Urine is the major source of nitrogen pollutants in domestic sewage and is a neglected source of H2. Although ClO• is used to overcome the poor selectivity and slow kinetics of urea decomposition, the generation of ClO• suffers from the inefficient formation reaction of HO• and reactive chlorine species (RCS). In this study, a synergistic catalytic method based on TiO2/WO3 photoanode and Sb-SnO2 electrode efficiently producing ClO• is proposed for urine treatment. The critical design is that TiO2/WO3 photoanode and Sb-SnO2 electrode that generate HO• and RCS, respectively, are assembled in a confined space through face-to-face (TiO2/WO3//Sb-SnO2), which effectively strengthens the direct reaction of HO• and RCS. Furthermore, a Si solar panel as rear photovoltaic cell (Si PVC) is placed behind TiO2/WO3//Sb-SnO2 to fully use sunlight and provide the driving force of charge separation. The composite photoanode (TiO2/WO3//Sb-SnO2 @Si PVC) has a ClO• generation rate of 260% compared with the back-to-bake assembly way. In addition, the electrons transfer to the NiFe LDH@Cu NWs/CF cathode for rapid H2 production by the constructed photoelectric catalytic (PEC) cell without applied external biasing potential, in which the H2 production yield reaches 84.55 µmol h-1 with 25% improvement of the urine denitrification rate. The superior performance and long-term stability of PEC cell provide an effective and promising method for denitrification and H2 generation.


Assuntos
Antimônio , Eletrodos , Óxidos , Compostos de Estanho , Titânio , Tungstênio , Titânio/química , Tungstênio/química , Compostos de Estanho/química , Catálise , Antimônio/química , Óxidos/química , Urina/química , Cloro/química , Radical Hidroxila/química
9.
J Hazard Mater ; 469: 134075, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508114

RESUMO

Chlorine-resistant bacteria (CRB) in drinking water treatment plants (DWTPs) jeopardize water quality and pose a potential risk to human health. However, the specific response of CRB to chlorination and chloramination remains uncharacterized. Therefore, we analyzed 16 S rRNA sequencing data from water samples before and after chlorination and chloramination taken between January and December 2020. Proteobacteria and Firmicutes dominated all finished water samples. After chloramination, Acinetobacter, Pseudomonas, Methylobacterium, Ralstonia, and Sphingomonas were the dominant CRB, whereas Ralstonia, Bacillus, Acinetobacter, Pseudomonas, and Enterococcus were prevalent after chlorination. Over 75% of the CRB e.g. Acinetobacter, Pseudomonas, Bacillus, and Enterococcus were shared between the chlorination and chloramination, involving potentially pathogens, such as Acinetobacter baumannii and Pseudomonas aeruginosa. Notably, certain genera such as Faecalibacterium, Geobacter, and Megasphaera were enriched as strong CRB after chloramination, whereas Vogesella, Flavobacterium, Thalassolituus, Pseudoalteromonas, and others were enriched after chlorination according to LEfSe analysis. The shared CRB correlated with temperature, pH, and turbidity, displaying a seasonal pattern with varying sensitivity to chlorination and chloramination in cold and warm seasons. These findings enhance our knowledge of the drinking water microbiome and microbial health risks, thus enabling better infectious disease control through enhanced disinfection strategies in DWTPs.


Assuntos
Bacillus , Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Cloro/química , Halogenação , Halogênios , Desinfecção , Flavobacterium , Cloraminas/química
10.
J Environ Manage ; 355: 120493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452624

RESUMO

The present study aimed to narrow such gaps by applying nonlinear differential equations to biostability in drinking water. Biostability results from the integrated dynamics of nutrients and disinfectants. The linear dynamics of biostability have been well studied, while there remain knowledge gaps concerning nonlinear effects. The nonlinear effects are explained by phase plots for specific scenarios in a drinking water system, including continuous nutrient release, flush exchange with the adjacent environment, periodic pulse disinfection, and periodic biofilm development. The main conclusions are, (1) The correlations between the microbial community and nutrients go through phases of linear, nonlinear, and chaotic dynamics. Disinfection breaks the chaotic phase and returns the system to the linear phase, increasing the microbial growth potential. (2) Post-disinfection after multiple microbial peaks produced via metabolism can increase disinfection efficiency and decrease the risks associated with disinfectant byproduct risks. This can provide guidelines for optimizing the disinfection strategy, according to the long-term water safety target or a short management. Limited disinfection and ultimate disinfection may be more effective and have low chemical risk, facing longer stagnant conditions. (3) Periodic biofilm formation and biofilm detachment increase the possibility of uncertainty in the chaotic phase. For future study, nonlinear differential equation models can accordingly be applied at the molecular and ecological levels to further explore more nonlinear regulation mechanisms.


Assuntos
Desinfetantes , Água Potável , Purificação da Água , Cloro/química , Cloro/farmacologia , Desinfecção/métodos , Biofilmes , Purificação da Água/métodos
11.
Environ Sci Pollut Res Int ; 31(11): 16437-16452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319423

RESUMO

Halonitromethanes (HNMs), a representative nitrogen-containing disinfection byproduct, have gained significant concerns due to their higher cytotoxicity and genotoxicity. UV/chlorination is considered a promising alternative disinfection technology for chlorination. This study aimed to investigate the HNMs formation from benzylamine (BZA) during UV/chlorination. The experimental results revealed that the yields of HNMs initially raised to a peak then dropped over time. Higher chlorine dosage and BZA concentration promoted the formation of HNMs, whereas alkaline pH inhibited their formation. The presence of bromine ion (Br-) not only converted chlorinated-HNMs (Cl-HNMs) to brominated (chlorinated)-HNMs Br (Cl)-HNMs) and brominated-HNMs (Br-HNMs) but also enhanced the total concentration of HNMs. Besides, the calculated cytotoxicity index (CTI) and genotoxicity index (GTI) of HNMs were elevated by 68.97% and 60.66% as Br- concentration raised from 2 to 6 µM. The possible formation pathways of HNMs from BZA were proposed based on the intermediates identified by a gas chromatography/mass spectrometry (GC/MS). In addition, the formation rules of HNMs in actual water verified the results in deionized water during UV/chlorination. The results of this study provide basic data and a theoretical basis for the formation and control of HNMs, which is conducive to applying UV/chlorination.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Halogenação , Desinfetantes/química , Desinfecção/métodos , Cloro/química , Água , Benzilaminas/análise , Poluentes Químicos da Água/análise
12.
Artigo em Inglês | MEDLINE | ID: mdl-38354459

RESUMO

Inhalation of chlorine gas, with subsequent hydrolysis in the airway and lungs to form hydrochloric acid (HCl) and hypochlorous acid (HOCl), can cause pulmonary edema (i.e., fluid build-up in the lungs), pulmonary inflammation (with or without infection), respiratory failure, and death. The HOCl produced from chlorine is known to react with tyrosine to form adducts via electrophilic aromatic substitution, resulting in 3-chlorotyrosine and 3,5-dichlorotyrosine adducts. While several analysis methods are available for determining these adducts, each method has significant disadvantages. Hence, a simple and sensitive ultra-high performance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS) method was developed for the determination of chlorotyrosine adducts. The sample preparation involves base hydrolysis of isolated plasma proteins to form 2-chlorophenol (CP) from monochlorotyrosine adducts and 2,6-dichlorophenol (2,6-DCP), from dichlorotyrosine adducts, as markers of chlorine exposure. The chlorophenols are extracted with cyclohexane prior to UHPLC-MS/MS analysis. The method produced excellent sensitivity for 2,6-DCP with a limit of detection of 2.2 µg/kg, calibration curve linearity extending from 0.054-54 mg/kg (R2 ≥ 0.9997 and %RA > 94), and accuracy and precision of 100 ± 14 %, and <15 % relative standard deviation, respectively. The sensitivity of the method for 2-CP was relatively poor, so it was used only as a secondary marker for severe chlorine exposure. The method successfully detected elevated levels of 2,6-DCP from hypochlorite-spiked plasma protein and plasma protein isolated from chlorine-exposed rats.


Assuntos
Cloro , Clorofenóis , Tirosina/análogos & derivados , Ratos , Animais , Cloro/análise , Cloro/química , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida , Proteínas Sanguíneas
13.
Water Res ; 253: 121331, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377929

RESUMO

In practical drinking water treatment, chlorine and chloramine disinfection exhibit different mechanisms that affect biofilm growth. This study focused on the influence of biofilm composition changes, especially extracellular polymeric substance (EPS) fractions, on the potential formation and toxicity of nitrogenous disinfection by-products (N-DBP). Significant differences in microbial diversity and community structure were observed between the chlorine and chloramine treatments. Notably, the biofilms from the chloramine-treated group had higher microbial dominance and greater accumulation of organic precursors, as evidenced by the semi-quantitative confocal laser-scanning microscopy assay of more concentrated microbial aggregates and polysaccharide proteins in the samples. Additionally, the chloramine-treated group compared with chlorine had a higher EPS matrix content, with a 13.5 % increase in protein. Furthermore, the protein distribution within the biofilm differed; in the chlorine group, proteins were concentrated in the central region, whereas in the chloramine group, proteins were primarily located at the water-biofilm interface. Notably, functional prediction analyses of protein fractions in biofilms revealed specific functional regulation patterns and increased metabolism-related abundance of proteins in the chlorine-treated group. This increase was particularly pronounced for proteins such as dehydrogenases, reductases, transcription factors, and acyl-CoA dehydrogenases. By combining the Fukui function and density functional calculations to further analyse the effect of biofilm component changes on N-DBP production under chlorine/chloramine and by assessing the toxicity risk potential of N-DBP, it was determined that chloramine disinfection is detrimental to biofilm control and the accumulation of protein precursors has a higher formation potential of N-DBPs and toxicity risk, increasing the health risk of drinking water.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Cloraminas , Cloro/química , Água Potável/análise , Matriz Extracelular de Substâncias Poliméricas/química , Nitrogênio/análise , Biofilmes , Desinfetantes/análise , Poluentes Químicos da Água/análise , Halogenação
14.
Chemosphere ; 352: 141404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342148

RESUMO

Antibiotic residues and their chlorinated disinfection by-products (Cl-DBPs) have adverse effects on organisms in aquaculture water. Taking enrofloxacin (ENR) as target antibiotic, this study investigated the degradation and transformation of ENR Cl-DBPs in constructed wetlands (CWs). Results showed that, ENR and its Cl-DBPs affected the biodegradation of CWs at the preliminary stage, but did not affect the adsorption by plant roots, substrates, and biofilms. The piperazine group of ENR had great electronegativity, and was prone to electrophilic reactions. The carboxyl on quinolone group of ENR had strong nucleophilicity, and was prone to nucleophilic reactions. C atoms with significant negative charges on the aromatic structure of quinolone group were prone to halogenation. During the chlorination of ENR, one pathway was the reaction of quinolone group, in which nucleophilic substitution reaction by chlorine occurred at C26 atom on carboxyl group, then halogenation occurred under the action of Cl+ at C17 site on the aromatic ring; the other pathway was the reaction of piperazine group, in which N7 atom was firstly attacked by HOCl, resulting in piperazine ring cleavage, then followed by deacylation, dealkylation, and halogenation. During the biodegradation of ENR Cl-DBPs, the reactivity of piperazine structure was strong, especially at N6, N7, C13, and C14 sites, while the ring structure of quinolone group was quite stable, and only occurred decyclopropyl at N5 site. Overall, the biodegradation of ENR Cl-DBPs in CWs went through processes including piperazine ring cleavage, tertiary amine splitting, dealkylation, and aldehyde oxidation under the action of coenzymes, in which metabolites such as ketones, aldehydes, carboxylic acids, amides, primary amines, secondary amines, tertiary amines and acetaldehyde esters were produced. Most ENR Cl-DBPs had greater bioaccumulation potential and stronger toxicity than their parent compound, fortunately, CWs effectively reduced the environmental risk of ENR Cl-DBPs through the cooperation of adsorption and biodegradation.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Enrofloxacina , Desinfecção/métodos , Halogenação , Áreas Alagadas , Antibacterianos/química , Aminas , Purificação da Água/métodos , Piperazinas , Poluentes Químicos da Água/análise , Cloro/química , Desinfetantes/química
15.
Chemosphere ; 352: 141449, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354864

RESUMO

Carbamazepine (CBZ) is a pharmaceutical compound detected in various water resources. With a view to removing this contaminant, the applicability of non-thermal plasma (NTP) oxidation process has been widely tested in recent years. This study utilized NTP from a dielectric barrier discharge reactor in the treatment of CBZ. NTP on the surface of a water sample containing 25 mg.L-1 of CBZ resulted in a removal efficiency of over 90% with an energy yield of 0.19 g. (kWh)-1. On the other hand, a rapid reduction in pH and an increase of conductivity and nitrate/nitrite ions concentration were observed during the degradation. The applied voltage amplitude significantly affected the removal efficiency and the energy yield as the degradation efficiency was 55%, 70%, and 72% respectively with an applied voltage of 8, 10, and 12 kV. The water matrices containing inorganic anions such as chloride and carbonate ions reduced the removal efficiency by scavenging the reactive species. Accordingly, a reduction in the removal efficiency was observed in tap water. The high-resolution mass spectrometry (HRMS) results revealed that both reactive oxygen and nitrogen species take part in the reaction process which yields many intermediate products including aromatic nitro-products. This study concluded that NTP can effectively degrade CBZ in both pure and tap water, but special attention must be paid to changes in the water quality parameters (pH, conductivity, and nitrate/nitrite ions) and the fate of nitro products.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Nitratos/análise , Nitritos/análise , Carbamazepina/química , Cloro/química , Benzodiazepinas/análise , Oxirredução , Poluentes Químicos da Água/análise , Purificação da Água/métodos
16.
Environ Sci Technol ; 58(8): 3838-3848, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38351523

RESUMO

Substantial natural chlorination processes are a growing concern in diverse terrestrial ecosystems, occurring through abiotic redox reactions or biological enzymatic reactions. Among these, exoenzymatically mediated chlorination is suggested to be an important pathway for producing organochlorines and converting chloride ions (Cl-) to reactive chlorine species (RCS) in the presence of reactive oxygen species like hydrogen peroxide (H2O2). However, the role of natural enzymatic chlorination in antibacterial activity occurring in soil microenvironments remains unexplored. Here, we conceptualized that heme-containing chloroperoxidase (CPO)-catalyzed chlorination functions as a naturally occurring disinfection process in soils. Combining antimicrobial experiments and microfluidic chip-based fluorescence imaging, we showed that the enzymatic chlorination process exhibited significantly enhanced antibacterial activity against Escherichia coli and Bacillus subtilis compared to H2O2. This enhancement was primarily attributed to in situ-formed RCS. Based on semiquantitative imaging of RCS distribution using a fluorescence probe, the effective distance of this antibacterial effect was estimated to be approximately 2 mm. Ultrahigh-resolution mass spectrometry analysis showed over 97% similarity between chlorine-containing formulas from CPO-catalyzed chlorination and abiotic chlorination (by sodium hypochlorite) of model dissolved organic matter, indicating a natural source of disinfection byproduct analogues. Our findings unveil a novel natural disinfection process in soils mediated by indigenous enzymes, which effectively links chlorine-carbon interactions and reactive species dynamics.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção , Cloro/química , Cloro/metabolismo , Halogenação , Peróxido de Hidrogênio , Solo , Ecossistema , Antibacterianos , Catálise
17.
J Environ Sci (China) ; 141: 26-39, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408826

RESUMO

Shaerhu (SEH) coal is abundant in Xinjiang, China. The utilization of SEH suffers from severe ash deposition, slagging, and fouling problems due to its high-chlorine-alkaline characteristics. The co-combustion of high-alkaline coal and other type coals containing high Si/Al oxides has been proven to be a simple and effective method that will alleviate ash-related problems, but the risk of heavy metals (HMs) contamination in this process is nonnegligible. Hence, the volatilization rates and chemical speciation of Pb, Cu, and Zn in co-combusting SEH and a high Si/Al oxides coal, i.e., Yuanbaoshan (YBS) coal were investigated in this study. The results showed that the addition of SEH increased the volatilization rates of Pb, Cu, and Zn during the co-combustion at 800°C from 23.70%, 23.97%, and 34.98% to 82.31%, 30.01%, and 44.03%, respectively, and promoted the extractable state of Cu and Zn. In addition, the interaction between SEH and YBS inhibited the formation of the Pb residue state. SEM-EDS mapping results showed that compared to Zn and Cu, the signal intensity of Pb was extremely weak in regions where some of the Si and Al signal distributions overlap. The DFT results indicated that the O atoms of the metakaolin (Al2O3⋅2SiO2) (001) surface were better bound to the Zn and Cu than Pb atoms after adsorption of the chlorinated HMs. These results contribute to a better understanding of the effects of high-alkaline coal blending combustion on Pb, Cu, and Zn migration and transformation.


Assuntos
Cloro , Metais Pesados , Cloro/química , Chumbo , Incineração , Cinza de Carvão/química , Carvão Mineral , Metais Pesados/química , Óxidos , Zinco
18.
Water Res ; 251: 121153, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246080

RESUMO

The chlorination of extracellular polymeric substances (EPS) secreted by biofilm often induces the formation of high-toxic disinfection byproducts (DBPs) in drinking water distribution systems. The protein components in EPS are the main precursors of DBPs, which mostly exist in the form of combined amino acids. The paper aimed to study the action of a pipe corrosion product (Cu2+) on the formation of DBPs (trihalomethanes, THMs; haloacetonitriles, HANs) with aspartic acid tetrapeptide (TAsp) as a precursor. Cu2+ mainly promoted the reaction of oxidants with TAsp (i.e., TAsp-induced decay) to produce DBPs, rather than self-decay of oxidants to generate BrO3‒ and ClO3‒. Cu2+ increased THMs yield, but decreased HANs yield due to the catalytic hydrolysis. Cu2+ was more prone to promote the reaction of TAsp with HOCl than with HOBr, leading to a DBPs shift from brominated to chlorinated species. The chemical characterizations of Cu2+-TAsp complexations demonstrate that Cu2+ combined with TAsp at the N and O sites in both amine and amide groups, and the intermediate identification suggests that Cu2+ enhanced the stepwise chlorination process by promoting the substitution of chlorine and the breakage of CC bonds. The effect of Cu2+ on THMs yield changed from promoting to inhibiting with the increase of pH, while that on HANs yield was inhibiting regardless of pH variation. Additionally, the impact of Cu2+ on the formation of DBPs was also affected by Cu2+ dose, Cl2/C ratio and Br- concentration. This study helps to understand the formation of EPS-derived DBPs in water pipes, and provides reference for formulating control strategies during biofilm outbreaks.


Assuntos
Desinfetantes , Fumar Cachimbo de Água , Poluentes Químicos da Água , Purificação da Água , Desinfetantes/química , Cobre , Ácido Aspártico , Halogenação , Trialometanos , Oxidantes , Poluentes Químicos da Água/análise , Desinfecção , Cloro/química
19.
Chemosphere ; 350: 141117, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184079

RESUMO

Among numerous disinfection by-products (DBP) forming during aqueous chlorination nitrogen containing species are of special concern due to their toxicological properties. Nevertheless, corresponding reaction products of these natural and anthropogenic compounds are not sufficiently studied so far. An interesting reaction involves dealkylation of the substituted amine moiety. Here we present the results of the comparative study of one-electron oxidation and aqueous chlorination of several aliphatic and aromatic amines. The reaction products were reliably identified with gas chromatography - high resolution mass spectrometry (GC-HRMS), high pressure liquid chromatography - electrospray ionization high resolution mass spectrometry HPLC-ESI/HRMS), and electrochemistry - electrospray ionization high resolution mass spectrometry (EC-ESI/HRMS). Certain similarities dealing with the formation of the corresponding aldehydes and substitution of alkyl groups at the nitrogen atom for hydrogen were shown for the studied processes. The mechanism of the substituted amines' aqueous chlorination involving one-electron oxidation is proposed and confirmed by the array of the observed reaction products. Alternative reactions taking place in conditions of aqueous chlorination, i.e. aromatic electrophilic substitution, may successfully compete with dealkylation and produce major products.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Água , Aminas , Halogenação , Remoção de Radical Alquila , Nitrogênio/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Cloro/química , Desinfetantes/química
20.
Sci Total Environ ; 917: 170352, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38286293

RESUMO

The contamination of indoor areas is a global health problem that can cause the dispersion of infectious diseases. In that sense, it is urgent to find new strategies applying a lower concentration of the traditional chemicals used for cleaning and disinfection. Ultraviolet radiation (UV), in particular far-UV-C (200-225 nm), has emerged as a successful, powerful, easy-to-apply, and inexpensive approach for bacterial eradication that still requires scientific assessment. This study investigated new strategies for disinfection based on far-UV-C (222 nm) combined with chlorine and mechanical cleaning, providing an innovative solution using low doses. The bactericidal activity of far-UV-C (222 nm) was tested at an intensity of irradiation from 78.4 µW/cm2 to 597.7 µW/cm2 (for 1 min) against Escherichia coli and Staphylococcus epidermidis adhered on polystyrene microtiter plates. It was further tested in combination with mechanical cleaning (ultrasounds for 1 min) and free chlorine (0.1, 0.5, and 1 mg/L for 5 min). The triple combination consisting of mechanical cleaning + free chlorine (0.5 mg/L) + far-UV-C (54 mJ/cm2) was tested against cells adhered to materials found in hospital settings and other public spaces: polyvinyl chloride (PVC), stainless steel (SS), and polyetheretherketone (PEEK). Disinfection with far-UV-C (54 mJ/cm2) and free chlorine at 0.5 mg/L for 5 min allowed a total reduction of culturable E. coli cells and a logarithmic reduction of 2.98 ± 0.03 for S. epidermidis. The triple combination of far-UV-C, free chlorine, and mechanical cleaning resulted in a total reduction of culturable cells for both adhered bacteria. Bacterial adhesion to PVC, SS, and PEEK occurred at distinct extents and influenced the bactericidal activity of the triple combination, with logarithmic reductions of up to three. The overall results highlight that, based on culturability assessment, far-UV-C (54 mJ/cm2) with chlorine (0.5 mg/L; 5 min) and mechanical cleaning (1 min) as an efficient disinfection strategy using mild conditions. The combination of culturability and viability assessment of disinfection is recommended to detect regrowth events and increase the effectiveness in microbial growth control.


Assuntos
Benzofenonas , Escherichia coli , Polímeros , Raios Ultravioleta , Staphylococcus epidermidis , Cloro/farmacologia , Cloro/química , Desinfecção/métodos , Cloretos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...