Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
J Hazard Mater ; 470: 134198, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608582

RESUMO

A novel Ag3PO4/ZnWO4-modified graphite felt electrode (AZW@GF) was prepared by drop coating method and applied to photoelectrocatalytic removal of harmful algae. Results showed that approximately 99.21% of chlorophyll a and 91.57% of Microcystin-LR (MCLR) were degraded by the AZW@GF-Pt photoelectrocatalytic system under the optimal operating conditions with a rate constant of 0.02617 min-1 and 0.01416 min-1, respectively. The calculated synergistic coefficient of photoelectrocatalytic algal removal and MC-LR degradation by the AZW@GF-Pt system was both larger than 1.9. In addition, the experiments of quenching experiments and electron spin resonance (ESR) revealed that the photoelectrocatalytic reaction mainly generated •OH and •O2- for algal removal and MC-LR degradation. Furthermore, the potential pathway for photoelectrocatalytic degradation of MC-LR was proposed. Finally, the photoelectrocatalytic cycle algae removal experiments were carried out on AZW@GF electrode, which was found to maintain the algae removal efficiency at about 91% after three cycles of use, indicating that the photoelectrocatalysis of AZW@GF electrode is an effective emergency algae removal technology.


Assuntos
Eletrodos , Grafite , Toxinas Marinhas , Microcistinas , Compostos de Prata , Grafite/química , Grafite/efeitos da radiação , Microcistinas/química , Microcistinas/isolamento & purificação , Catálise , Compostos de Prata/química , Fosfatos/química , Óxidos/química , Técnicas Eletroquímicas , Tungstênio/química , Clorofila A/química , Zinco/química , Purificação da Água/métodos , Clorofila/química , Processos Fotoquímicos , Proliferação Nociva de Algas
2.
Dalton Trans ; 52(32): 11085-11095, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37526637

RESUMO

The neurotransmitter histamine exists in two isomeric forms and could be an interesting ligand due to three nitrogen atoms with the possibility of binding to metals in different ways besides its crucial role in biological systems. However, no metal-histamine interaction is known in the literature. Therefore, two histamine-bound magnesium porphyrins [MgT(4-Cl)PP(hist)2] 1 and [MgT(4-Br)PP(hist)] 2 have been synthesized and structurally characterized. Interestingly, 1 is a hexa-coordinated magnesium porphyrin due to the axial coordination of two histamine molecules via the nitrogen of the aliphatic amino group with the Mg-Nhistamine distance of 2.300 Å, while 2 is penta-coordinated due to the axial coordination of one histamine molecule through the imidazole nitrogen atom with the Mg-Nhistamine distance of 2.145 Å. The diverse coordination modes of this unique ligand are explored for the first time. Theoretical studies at the level of DFT supported the binding of histamine via imidazole nitrogen atoms for complex 2. Histamine-bound magnesium porphyrins are found to be stable against the photodegradation of magnesium porphyrin in the presence of light and oxygen. Freshly isolated chlorophyll a from spinach showed similar resistivity against photodegradation. Moreover, the histamine-bound complexes showed higher antioxidant activity for 1 (92.45%) compared to the free base porphyrin (73.11%) and MgT(4-Cl)PP (75.89%).


Assuntos
Fotólise , Histamina/química , Magnésio/química , Porfirinas/química , Antioxidantes/química , Clorofila A/química , Modelos Moleculares , Técnicas Eletroquímicas
3.
Mar Drugs ; 20(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35323482

RESUMO

The loss of density and elasticity, the appearance of wrinkles and hyperpigmentation are among the first noticeable signs of skin aging. Beyond UV radiation and oxidative stress, matrix metalloproteinases (MMPs) assume a preponderant role in the process, since their deregulation results in the degradation of most extracellular matrix components. In this survey, four cyanobacteria strains were explored for their capacity to produce secondary metabolites with biotechnological potential for use in anti-aging formulations. Leptolyngbya boryana LEGE 15486 and Cephalothrix lacustris LEGE 15493 from freshwater ecosystems, and Leptolyngbya cf. ectocarpi LEGE 11479 and Nodosilinea nodulosa LEGE 06104 from marine habitats were sequentially extracted with acetone and water, and extracts were analyzed for their toxicity in cell lines with key roles in the skin context (HaCAT, 3T3L1, and hCMEC). The non-toxic extracts were chemically characterized in terms of proteins, carotenoids, phenols, and chlorophyll a, and their anti-aging potential was explored through their ability to scavenge the physiological free radical superoxide anion radical (O2•−), to reduce the activity of the MMPs elastase and hyaluronidase, to inhibit tyrosinase and thus avoid melanin production, and to block UV-B radiation (sun protection factor, SPF). Leptolyngbya species stood out for anti-aging purposes: L. boryana LEGE 15486 presented a remarkable SPF of 19 (at 200 µg/mL), being among the best species regarding O2•− scavenging, (IC50 = 99.50 µg/mL) and also being able to inhibit tyrosinase (IC25 = 784 µg/mL), proving to be promising against UV-induced skin-aging; L. ectocarpi LEGE 11479 was more efficient in inhibiting MMPs (hyaluronidase, IC50 = 863 µg/mL; elastase, IC50 = 391 µg/mL), thus being the choice to retard dermal density loss. Principal component analysis (PCA) of the data allowed the grouping of extracts into three groups, according to their chemical composition; the correlation of carotenoids and chlorophyll a with MMPs activity (p < 0.01), O2•− scavenging with phenolic compounds (p < 0.01), and phycocyanin and allophycocyanin with SPF, pointing to these compounds in particular as responsible for UV-B blockage. This original survey explores, for the first time, the biotechnological potential of these cyanobacteria strains in the field of skin aging, demonstrating the promising, innovative, and multifactorial nature of these microorganisms.


Assuntos
Misturas Complexas , Cosméticos , Cianobactérias/química , Sequestradores de Radicais Livres , Hiperpigmentação , Protetores contra Radiação , Envelhecimento da Pele , Animais , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Biotecnologia , Carotenoides/análise , Carotenoides/química , Carotenoides/farmacologia , Linhagem Celular , Clorofila A/análise , Clorofila A/química , Clorofila A/farmacologia , Misturas Complexas/química , Misturas Complexas/farmacologia , Cianobactérias/metabolismo , Células Endoteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Sequestradores de Radicais Livres/análise , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , Fenóis/análise , Fenóis/química , Fenóis/farmacologia , Protetores contra Radiação/análise , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Metabolismo Secundário , Superóxidos/química , Raios Ultravioleta/efeitos adversos
4.
Phys Chem Chem Phys ; 24(8): 5014-5038, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142765

RESUMO

A structure-based quantitative calculation of excitonic couplings between photosynthetic pigments has to describe the dynamical polarization of the protein/solvent environment of the pigments, giving rise to reaction field and screening effects. Here, this challenging problem is approached by combining the fragment molecular orbital (FMO) method with the polarizable continuum model (PCM). The method is applied to compute excitonic couplings between chlorophyll a (Chl a) pigments of the water-soluble chlorophyll-binding protein (WSCP). By calibrating the vacuum dipole strength of the 0-0 transition of the Chl a chromophores according to experimental data, an excellent agreement between calculated and experimental linear absorption and circular dichroism spectra of WSCP is obtained. The effect of the mutual polarization of the pigment ground states is calculated to be very small. The simple Poisson-Transition-charge-from-Electrostatic-potential (Poisson-TrEsp) method is found to accurately describe the screening part of the excitonic coupling, obtained with FMO/PCM. Taking into account that the reaction field effects of the latter method can be described by a scalar constant leads to an improvement of Poisson-TrEsp that is expected to provide the basis for simple and realistic calculations of optical spectra and energy transfer in photosynthetic light-harvesting complexes. In addition, we present an expression for the estimation of Huang-Rhys factors of high-frequency pigment vibrations from experimental fluorescence line-narrowing spectra that takes into account the redistribution of oscillator strength by the interpigment excitonic coupling. Application to WSCP results in corrected Huang-Rhys factors that are less than one third of the original values obtained by the standard electronic two-state analysis that neglects the above redistribution. These factors are important for the estimation of the dipole strength of the 0-0 transition of the chromophores and for the development of calculation schemes for the spectral density of the exciton-vibrational coupling.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Clorofila/química , Clorofila A/química , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
5.
Physiol Plant ; 174(1): e13598, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34792189

RESUMO

Diatoms adapt to various aquatic light environments and play major roles in the global carbon cycle using their unique light-harvesting system, i.e. fucoxanthin chlorophyll a/c binding proteins (FCPs). Structural analyses of photosystem II (PSII)-FCPII and photosystem I (PSI)-FCPI complexes from the diatom Chaetoceros gracilis have revealed the localization and interactions of many FCPs; however, the entire set of FCPs has not been characterized. Here, we identify 46 FCPs in the newly assembled genome and transcriptome of C. gracilis. Phylogenetic analyses suggest that these FCPs can be classified into five subfamilies: Lhcr, Lhcf, Lhcx, Lhcz, and the novel Lhcq, in addition to a distinct type of Lhcr, CgLhcr9. The FCPs in Lhcr, including CgLhcr9 and some Lhcqs, have orthologous proteins in other diatoms, particularly those found in the PSI-FCPI structure. By contrast, the Lhcf subfamily, some of which were found in the PSII-FCPII complex, seems to be diversified in each diatom species, and the number of Lhcqs differs among species, indicating that their diversification may contribute to species-specific adaptations to light. Further phylogenetic analyses of FCPs/light-harvesting complex (LHC) proteins using genome data and assembled transcriptomes of other diatoms and microalgae in public databases suggest that our proposed classification of FCPs is common among various red-lineage algae derived from secondary endosymbiosis of red algae, including Haptophyta. These results provide insights into the loss and gain of FCP/LHC subfamilies during the evolutionary history of the red algal lineage.


Assuntos
Proteínas de Ligação à Clorofila , Diatomáceas , Clorofila A/química , Proteínas de Ligação à Clorofila/genética , Proteínas de Ligação à Clorofila/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Filogenia , Xantofilas
6.
Phys Chem Chem Phys ; 24(1): 149-155, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34901981

RESUMO

Excited-state dynamics plays a key role for light harvesting and energy transport in photosynthetic proteins but it is nontrivial to separate the intrinsic photophysics of the light-absorbers (chlorophylls) from interactions with the protein matrix. Here we study chlorophyll a (4-coordinate complex) and axially ligated chlorophyll a (5-coordinate complex) isolated in vacuo applying mass spectrometry to shed light on the intrinsic dynamics in the absence of nearby chlorophylls, carotenoids, amino acids, and water molecules. The 4-coordinate complexes are tagged by quaternary ammonium ions while the charge is provided by a formate ligand in the case of 5-coordinate complexes. Regardless of excitation to the Soret band or the Q band, a fast ps decay is observed, which is ascribed to the decay of the lowest excited singlet state either by intersystem crossing (ISC) to nearby triplet states or by excited-state relaxation on the excited-state potential-energy surface. The lifetime of the first excited state is 15 ps with Mg2+ at the chlorophyll center, but only 1.7 ps when formate is attached to Mg2+. When the Soret band is excited, an initial sup-ps relaxation is observed which is ascribed to fast internal conversion to the first excited state. With respect to ISC, two factors seem to play a role for the reduced lifetime of the formate-chlorophyll complex: (i) The Mg ion is pulled out of the porphyrin plane thus reducing the symmetry of the chromophore, and (ii) the first excited state (Q band) and T3 are tuned almost into resonance by the ligand, which increases the singlet-triplet mixing.


Assuntos
Clorofila A/metabolismo , Teoria Quântica , Clorofila A/química , Clorofila A/isolamento & purificação , Ligantes , Espectrometria de Massas
7.
Sci Rep ; 11(1): 23439, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873278

RESUMO

The performance index of overall photochemistry (PItotal) is widely used in photosynthesis research, but the PItotal interspecies differences are unclear. To this end, seeds of Quercus liaotungensis from 10 geographical provenances were planted in two different climate types. Two years later, leaf relative chlorophyll content (SPAD) and chlorophyll a fluorescence transient of seedlings were measured. Meanwhile, the environmental factors of provenance location, including temperature, precipitation, solar radiation, wind speed, transpiration pressure, and soil properties, were retrieved to analyze the trends of PItotal among geographic provenance. The results showed that, in each climate type, there was no significant difference in SPAD and electron transfer status between PSII and PSI, but PItotal was significantly different among geographic provenances. The major internal causes of PItotal interspecies differences were the efficiency of electronic transfer to final PSI acceptor and the number of active reaction centers per leaf cross-section. The main external causes of PItotal interspecies differences were precipitation of the warmest quarter, solar radiation intensity in July, and annual precipitation of provenance location. PItotal had the highest correlation with precipitation of the warmest quarter of origin and could be fitted by the Sine function. The peak location and fluctuating trend of precipitation-PItotal fitted curve were different in two climate types, largely due to the difference of precipitation and upper soil conductivity in the two test sites. Utilizing the interspecific variation and trends of PItotal might be a good strategy to screen high and stable photosynthetic efficiency of Q. liaotungensis provenance.


Assuntos
Clorofila A/química , Clorofila/química , Quercus/metabolismo , Plântula/metabolismo , China , Clima , Mudança Climática , Ecologia , Transporte de Elétrons , Geografia , Fotossíntese , Folhas de Planta , Solo , Especificidade da Espécie , Temperatura
8.
Sci Rep ; 11(1): 22517, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795331

RESUMO

The global daily gap-free chlorophyll-a (Chl-a) data derived using the data interpolating empirical orthogonal functions (DINEOF) technique from observations of the Visible Infrared Imaging Radiometer Suite (VIIRS) in 2020 and the in situ measurements at the Tropical Ocean Atmosphere (TAO) moorings are used to characterize and quantify the biological variability modulated by the tropical instability wave (TIW). Our study aims to understand how ocean physical processes are linked to biological variability. In this study, we use the TAO in situ measurements and the coincident VIIRS Chl-a data to identify the mechanism that drives ocean biological variability corresponding to the TIW. Satellite observations show that the TIW-driven Chl-a variability stretched from 90°W to 160°E in the region. The enhanced Chl-a pattern propagated westward and moderately matched the cooler sea surface temperature (SST) patterns in the Equatorial Pacific Ocean. In fact, the Chl-a variation driven by the TIW is about ± 30% of mean Chl-a values. Furthermore, the time series of Chl-a at 140°W along the equator was found to be in phase with sea surface salinity (SSS) at 140°W along the equator at the TAO mooring since late May 2020. The cross-correlation coefficients with the maximum magnitude between Chl-a and SST, Chl-a and SSS, and Chl-a and dynamic height were -0.46, + 0.74, and -0.58, respectively, with the corresponding time lags of about 7 days, 1 day, and 8 days, respectively. The different spatial patterns of the cooler SST and enhanced Chl-a are attributed to the phase difference in Chl-a and SST. Indeed, a Chl-a peak normally coincided with a SSS peak and vice versa. This could be attributed to the consistency in the change in nutrient concentration with respect to the change of SSS. The vertical distributions of the temperature and salinity at 140°W along the equator reveal that the TIW leads to changes in both salinity and nutrient concentrations in the sea surface, and consequently drives the Chl-a variability from late May until the end of the year 2020.


Assuntos
Clorofila A/química , Oceanos e Mares , Fitoplâncton/fisiologia , Espectrofotometria Infravermelho/métodos , Monitoramento Ambiental , Biologia Marinha , Oceanografia , Oceano Pacífico , Salinidade , Estações do Ano , Temperatura , Fatores de Tempo
9.
Molecules ; 26(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500650

RESUMO

Recent increased interest in seaweed is motivated by attention generated in their bioactive components that have potential applications in the functional food and nutraceutical industries. In the present study, nutritional composition, metabolite profiles, phytochemical screening and physicochemical properties of freeze-dried brown seaweed, Sargassum polycystum were evaluated. Results showed that the S. polycystum had protein content of 8.65 ± 1.06%, lipid of 3.42 ± 0.01%, carbohydrate of 36.55 ± 1.09% and total dietary fibre content of 2.75 ± 0.58% on dry weight basis. The mineral content of S. polycystum including Na, K, Ca, Mg Fe, Se and Mn were 8876.45 ± 0.47, 1711.05 ± 0.07, 1079.75 ± 0.30, 213.85 ± 0.02, 277.6 ± 0.12, 4.70 ± 0.00 and 4.45 ± 0.00 mg 100/g DW, respectively. Total carotenoid, chlorophyll a and b content in S. polycystum were detected at 45.28 ± 1.77, 141.98 ± 1.18 and 111.29 µg/g respectively. The total amino acid content was 74.90 ± 1.45%. The study revealed various secondary metabolites and major constituents of S. polycystum fibre to include fucose, mannose, galactose, xylose and rhamnose. The metabolites extracted from the seaweeds comprised n-hexadecanoic acid, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy- methyl ester, 1-dodecanol, 3,7,11-trimethyl-, which were the most abundant. The physicochemical properties of S. polycystum such as water-holding and swelling capacity were comparable to several commercial fibre-rich products. In conclusion, results of this study indicate that S. polycystum is a potential candidate as functional food sources for human consumption and its cultivation needs to be encouraged.


Assuntos
Nutrientes/química , Phaeophyceae/química , Compostos Fitoquímicos/química , Sargassum/química , Alga Marinha/química , Antioxidantes/química , Carotenoides/química , Clorofila A/química , Fibras na Dieta , Humanos , Malásia , Minerais/química , Extratos Vegetais/química , Verduras/química
10.
Nat Commun ; 12(1): 2801, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990569

RESUMO

Photochemical reaction centers are the engines that drive photosynthesis. The reaction center from heliobacteria (HbRC) has been proposed to most closely resemble the common ancestor of photosynthetic reaction centers, motivating a detailed understanding of its structure-function relationship. The recent elucidation of the HbRC crystal structure motivates advanced spectroscopic studies of its excitonic structure and charge separation mechanism. We perform multispectral two-dimensional electronic spectroscopy of the HbRC and corresponding numerical simulations, resolving the electronic structure and testing and refining recent excitonic models. Through extensive examination of the kinetic data by lifetime density analysis and global target analysis, we reveal that charge separation proceeds via a single pathway in which the distinct A0 chlorophyll a pigment is the primary electron acceptor. In addition, we find strong delocalization of the charge separation intermediate. Our findings have general implications for the understanding of photosynthetic charge separation mechanisms, and how they might be tuned to achieve different functional goals.


Assuntos
Proteínas de Bactérias/química , Clostridiales/química , Imageamento Hiperespectral/métodos , Complexo de Proteínas do Centro de Reação Fotossintética/química , Bacterioclorofilas/química , Clorofila A/química , Eletroquímica , Modelos Moleculares , Estrutura Quaternária de Proteína
11.
Biotechnol Lett ; 43(7): 1487-1502, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33822305

RESUMO

The interest in bioactive compounds from microalgae is increasing since they have medicinal and nutritional areas. The present work aims to evaluate the potential pharmaceutical interest of extracts from three eustigmatophyte strains from the Coimbra Collection of Algae (ACOI): Chlorobotrys gloeothece, Chlorobotrys regularis and Characiopsis aquilonaris. Antioxidant and antiproliferative activities were determined as well as chlorophyll a, carotenoid and phenolic total contents. In addition, major pigments and sterols were identified and quantified. The three strains were grown until the stationary phase and then the biomass was extracted. Antioxidant activity was measured by TEAC, DPPH and FRAP assays and antiproliferative effect was assessed by the MTT method on MCF-7, PC-3 and NHDF cells. The pigment and phenolic total contents were determined by spectrophotometry. Of these strains, C. aquilonaris showed the highest antioxidant activity measured by TEAC and FRAP assays (23.98 ± 0.01 µmol TE eq g-1 DW and 42.57 ± 0.04 µmol TE eq g-1 DW, respectively), a selective effect in reduting MCF-7 cells proliferation and a larger amount of chlorophyll a, carotenoids and phenolic content (18.40 ± 0.00 µg chlorophyll a mg-1 DW, 2.27 ± 0.00 mg carotenoids g-1 DW and 6.23 ± 0.01 mg GAE g-1 DW, respectively). A positive correlation between chlorophyll a and TEAC assay was observed, as well as between carotenoids and TEAC and FRAP assays, suggesting these compounds as important contributors to significant antioxidant activity. Violaxanthin, cholesterol and stigmasterol were present in larger amount in C. aquilonaris while C. regularis showed a higher amount of ß-carotene. These results suggest that these three ACOI eustigmatophytes are promising for applications in the improvement of human health, particularly in cancer prevention and treatment.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Fatores Biológicos/farmacologia , Estramenópilas/crescimento & desenvolvimento , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Fatores Biológicos/química , Fatores Biológicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorofila A/química , Colesterol/química , Humanos , Células MCF-7 , Células PC-3 , Estigmasterol/química , Estramenópilas/química , Xantofilas/química , beta Caroteno/química
12.
Biochim Biophys Acta Bioenerg ; 1862(7): 148424, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33785317

RESUMO

Recent studies on Photosystem I (PS I) have shown that the six core chlorophyll a molecules are highly coupled, allowing for efficient creation and stabilization of the charge-separated state. One area of particular interest is the identity and function of the primary acceptor, A0, as the factors that influence its ultrafast processes and redox properties are not yet fully elucidated. It was recently shown that A0 exists as a dimer of the closely-spaced Chl2/Chl3 molecules wherein the reduced A0- state has an asymmetric distribution of electron spin density that favors Chl3. Previous experimental work in which this ligand was changed to a hard base (histidine, M688HPsaA) revealed severely impacted electron transfer processes at both the A0 and A1 acceptors; molecular dynamics simulations further suggested two distinct conformations of PS I in which the His residue coordinates and forms a hydrogen bond to the A0 and A1 cofactors, respectively. In this study, we have applied 2D HYSCORE spectroscopy in conjunction with molecular dynamics simulations and density functional theory calculations to the study of the M688HPsaA variant. Analysis of the hyperfine parameters demonstrates that the His imidazole serves as the axial ligand to the central Mg2+ ion in Chl3A in the M688HPsaA variant. Although the change in ligand identity does not alter delocalization of electron density over the Chl2/Chl3 dimer, a small shift in the asymmetry of delocalization, coupled with the electron withdrawing properties of the ligand, most likely accounts for the inhibition of forward electron transfer in the His-ligated conformation.


Assuntos
Clorofila A/metabolismo , Elétrons , Histidina/metabolismo , Imidazóis/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila A/química , Transporte de Elétrons , Histidina/química , Ligação de Hidrogênio , Imidazóis/química , Cinética , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Complexo de Proteína do Fotossistema I/genética
13.
J Photochem Photobiol B ; 217: 112155, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33640830

RESUMO

Electrical lighting favours the development of photosynthetic biofilms in caves which can induce biodeterioration in the colonized substrates. The use of specific lights as a limiting factor for biofilm growth could be effective in their control and represents an alternative to chemical methods since they can damage the substrate. However, studies about lighting and the photosynthetic activity of organisms in caves are scarce. In order to select the most effective LED light source in reducing photosynthesis and therefore, in reducing the growth rates of microalgae and cyanobacteria, four biofilms in the Nerja Cave were illuminated by several light emitted diodes (LEDs) with different spectral compositions and the photobiological responses were measured both by empirical and theoretical methodologies. The empirical approach was based on the photosynthetic efficiency, by measuring the in vivo chlorophyll a (Chl a) fluorescence and the theoretical approach was based on the photonic assimilation performance related to the proportion of the light quality used for photosynthesis, according to the action spectra for photosynthesis available in the literature. The photobiological responses showed differences between the empirical and theoretical approach mainly in biofilms dominated by cyanobacteria and red algae, probably because the available action spectra were not useful for monitoring these Nerja Cave biofilms. However, the expected spectral responses of photosynthesis were observed in green microalgal biofilms with maximum photosynthetic efficiency in red and blue light although the green light was also unexpectedly high. The high photosynthetic efficiency in green light could be explained by the predictable high chlorophyll content due to a very dark environment. The results were not conclusive enough for all the biofilm types to be able to recommend a specific lighting system for the photocontrol of biofilm expansion. Therefore, new action spectra for photosynthesis of the extremophile organisms of the Nerja Cave are required. This approach, based on theoretical and empirical methodologies, is a useful tool to obtain information to allow the design of the most adequate lighting systems to reduce photosynthetic activity and favour the conservation of the caves.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cianobactérias/fisiologia , Luz , Fotossíntese/efeitos da radiação , Cavernas/microbiologia , Clorofila A/química , Clorófitas/fisiologia , Cianobactérias/química , Rodófitas/fisiologia , Espanha
14.
Photosynth Res ; 147(3): 253-267, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33555518

RESUMO

Heterosis is a phenomenon wherein F1 hybrid often displays phenotypic superiority and surpasses its parents in terms of growth and agronomic traits. Investigations on the physiological and biochemical properties of the heterotic F1 hybrid are important to uncover the mechanisms underlying heterosis in plants. In the present study, the photosynthetic capacity of a heterotic F1 hybrid of Zea mays L. (DHM 117) that exhibited a higher growth rate and increased biomass was compared with its parental inbreds at vegetative and reproductive stages in the field during 2017 and 2018. The net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E) as well as foliar carbohydrates were higher in F1 hybrid than parental inbreds at vegetative and reproductive stages. An increase in total chlorophyll content along with better chlorophyll a fluorescence characteristics including effective quantum yield of photosystem II (ΔF/Fm'), maximum quantum yield of PSII (Fv/Fm), photochemical quenching (qp) and decreased non-photochemical quenching (NPQ) was observed in F1 hybrid than the parental inbreds. Further, the expression of potential genes related to C4 photosynthesis was considerably upregulated in F1 hybrid than the parental inbreds during vegetative and reproductive stages. Moreover, the F1 hybrid exhibited distinct heterosis in yield with 63% and 62% increase relative to parental inbreds during 2017 and 2018. We conclude that improved photosynthetic efficiency associated with increased foliar carbohydrates could have contributed to higher growth rate, biomass and yield in the F1 hybrid.


Assuntos
Fotossíntese/genética , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Zea mays/genética , Zea mays/fisiologia , Biomassa , Clorofila A/química , Clorofila A/metabolismo , Fluorescência , Água/metabolismo , Zea mays/crescimento & desenvolvimento
15.
Biomolecules ; 11(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546462

RESUMO

Synechocystis strains are cyanobacteria that can produce useful biomaterials for biofuel and pharmaceutical resources. In this study, the effects of exogenous glucose (5-mM) on cell growth, photosynthetic pigments, metabolites, and lipids in Synechocystis sp. PCC 7338 (referred to as Synechocystis 7338) were investigated. Exogenous glucose increased cell growth on days 9 and 18. The highest production (mg/L) of chlorophyll a (34.66), phycocyanin (84.94), allophycocyanin (34.28), and phycoerythrin (6.90) was observed on day 18 in Synechocystis 7338 culture under 5-mM glucose. Alterations in metabolic and lipidomic profiles under 5-mM glucose were investigated using gas chromatography-mass spectrometry (MS) and nanoelectrospray ionization-MS. The highest production (relative intensity/L) of aspartic acid, glutamic acid, glycerol-3-phosphate, linolenic acid, monogalactosyldiacylglycerol (MGDG) 16:0/18:1, MGDG 16:0/20:2, MGDG 18:1/18:2, neophytadiene, oleic acid, phosphatidylglycerol (PG) 16:0/16:0, and PG 16:0/17:2 was achieved on day 9. The highest production of pyroglutamic acid and sucrose was observed on day 18. We suggest that the addition of exogenous glucose to Synechocystis 7338 culture could be an efficient strategy for improving growth of cells and production of photosynthetic pigments, metabolites, and intact lipid species for industrial applications.


Assuntos
Lipídeos/química , Fotossíntese , Synechocystis/metabolismo , Ácido Aspártico/química , Materiais Biocompatíveis/química , Clorofila A/química , Galactolipídeos/química , Cromatografia Gasosa-Espectrometria de Massas , Glucose/química , Glucose/metabolismo , Ácido Glutâmico/química , Glicerofosfatos/química , Lipidômica , Metabolômica , Ficocianina/química , Ficoeritrina/química , Espectrometria de Massas por Ionização por Electrospray , Ácido alfa-Linolênico/química
16.
Toxins (Basel) ; 13(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435505

RESUMO

Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed.


Assuntos
Toxinas Bacterianas/toxicidade , Cianobactérias/fisiologia , Proliferação Nociva de Algas , Lagos/microbiologia , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clorofila A/química , Great Lakes Region , Lagos/química
17.
Phys Chem Chem Phys ; 23(2): 806-821, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33427836

RESUMO

Diatoms are a major group of algae, responsible for a quarter of the global primary production on our planet. Their adaptation to marine environments is ensured by their light-harvesting antenna - the fucoxanthin-chlorophyll protein (FCP) complex, which absorbs strongly in the blue-green spectral region. Although these essential proteins have been the subject of many studies, for a long time their comprehensive description was not possible in the absence of structural data. Last year, the 3D structures of several FCP complexes were revealed. The structure of an FCP dimer was resolved by crystallography for the pennate diatom Phaeodactylum tricornutum [W. Wang et al., Science, 2019, 363, 6427] and the structure of the PSII supercomplex from the centric diatom Chaetoceros gracilis, containing several FCPs, was obtained by electron microscopy [X. Pi et al., Science, 2019, 365, 6452; R. Nagao et al., Nat. Plants, 2019, 5, 890]. In this Perspective article, we evaluate how precisely these structures may account for previously published ultrafast spectroscopy results, describing the excitation energy transfer in the FCP from another centric diatom Cyclotella meneghiniana. Surprisingly, we find that the published FCP structures cannot explain several observations obtained from ultrafast spectroscopy. Using the available structures, and results from electron microscopy, we construct a trimer-based FCP model for Cyclotella meneghiniana, consistent with ultrafast experimental data. As a whole, our observations suggest that the structures from the proteins belonging to the FCP family display larger variations than the equivalent LHC proteins in plants, which may reflect species-specific adaptations or original strategies for adapting to rapidly changing marine environments.


Assuntos
Clorofila A/química , Complexos de Proteínas Captadores de Luz/química , Xantofilas/química , Sequência de Aminoácidos , Clorofila/química , Diatomáceas/química , Transferência de Energia , Conformação Proteica , Espectrometria de Fluorescência
18.
J Membr Biol ; 254(2): 157-173, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33427943

RESUMO

The structural basis for the stability of the trimeric form of the light harvesting complex (LHCII), a pigmented protein from green plants pivotal for photosynthesis, remains elusive till date. The protein embedded in a dipalmitoylphosphatidylcholine (DPPC) lipid membrane is investigated using all-atom molecular dynamics simulations to find out the interactions responsible for the structural integrity of the trimer and its relation to antenna function. Central association of chlorophyll a (CLA) molecules near the LHCII chains is attributed to a conserved coordination between the Mg of CLA and the oxygen of a specific residue of the first helix of a chain. The residue forms a salt-bridge with the fourth helix of the same chain of the trimer, not of the monomer. In an earlier experiment, three residues (WYR) at each chain of the trimer have been found indispensable for the trimerization and referred to as trimerization motif. We find that the residues of the trimerization motif are connected to the lipids or pigments by a chain of interactions rather than a direct contact. Synergistic effects of sequentially located hydrogen bonds and salt-bridges within monomers of the trimer keep the trimer conformation stable in association with the pigments or the lipids. These interactions are exclusively present in the pigmented trimer and not present in the monomer or in the unpigmented trimer. Thus, our results provide a molecular basis for the inherent stability of the LHCII trimer in a lipid membrane and explain many pre-existing experimental data.


Assuntos
Clorofila A , Complexos de Proteínas Captadores de Luz/química , Lipídeos , Clorofila A/química , Lipídeos/química , Plantas , Multimerização Proteica
19.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467778

RESUMO

In the methyl-D-erythritol-4-phosphate (MEP) pathway, 1-deoxy-D-xylose-5-phosphate synthase (DXS) is considered the key enzyme for the biosynthesis of terpenoids. In this study, PmDXS (MK970590) was isolated from Pinus massoniana. Bioinformatics analysis revealed homology of MK970590 with DXS proteins from other species. Relative expression analysis suggested that PmDXS expression was higher in roots than in other plant parts, and the treatment of P. massoniana seedlings with mechanical injury via 15% polyethylene glycol 6000, 10 mM H2O2, 50 µM ethephon (ETH), 10 mM methyl jasmonate (MeJA), and 1 mM salicylic acid (SA) resulted in an increased expression of PmDXS. pET28a-PmDXS was expressed in Escherichia coli TransB (DE3) cells, and stress analysis showed that the recombinant protein was involved in resistance to NaCl and drought stresses. The subcellular localization of PmDXS was in the chloroplast. We also cloned a full-length 1024 bp PmDXS promoter. GUS expression was observed in Nicotiana benthamiana roots, stems, and leaves. PmDXS overexpression significantly increased carotenoid, chlorophyll a, and chlorophyll b contents and DXS enzyme activity, suggesting that DXS is important in isoprenoid biosynthesis. This study provides a theoretical basis for molecular breeding for terpene synthesis regulation and resistance.


Assuntos
Pentosefosfatos/química , Pinus/enzimologia , Terpenos/química , Transferases/metabolismo , Acetatos/química , Clorofila/química , Clorofila A/química , Biologia Computacional , Ciclopentanos/química , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Oxilipinas/química , Pigmentação , Folhas de Planta , Caules de Planta/enzimologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Ácido Salicílico/química , Nicotiana/metabolismo , Transferases/genética , Xilose
20.
ACS Appl Bio Mater ; 4(1): 399-405, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35014291

RESUMO

Taking inspiration from biology's effectiveness in nanoscale organization of chlorophylls for photosynthesis, we describe here a design for chlorophyll-protein conjugates that exploits the central hydrophobic cavity of GroEL protein nanobarrel as a binding pocket for chlorophyll. We found water-soluble conjugates of chlorophyll with GroEL could be easily generated via detergent dialysis. The number of chlorophyll units bound to GroEL is tunable by varying the equilibrium concentration of chlorophyll during dialysis. Meanwhile, it is shown that an increase in the entrapped chlorophyll amount leads to an improvement of chlorophyll-GroEL photostability. Using methyl viologen as an electron acceptor, we demonstrate that chlorophyll-GroEL has photoreduction activity, which is also switchable in on/off illumination mode. Finally, it is shown that chlorophyll-GroEL-sensitized solar cells have good photoelectric properties, yielding a high photoelectric conversion efficiency of ∼0.9%. The current strategy may be adopted for integrating other photosensitizing dyes or for other photocatalytic reactions.


Assuntos
Chaperonina 60/química , Clorofila A/química , Sítios de Ligação , Catálise , Chaperonina 60/genética , Chaperonina 60/metabolismo , Clorofila A/metabolismo , Nanoestruturas/química , Oxirredução , Paraquat/química , Estabilidade Proteica , Energia Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...