Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.023
Filtrar
1.
Curr Microbiol ; 81(8): 244, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935285

RESUMO

A novel thermotolerant caproic acid-producing bacterial strain, Clostridium M1NH, was successfully isolated from sewage sludge. Ethanol and acetic acid at a molar ratio of 4:1 proved to be the optimal substrates, yielding a maximum caproic acid production of 3.5 g/L. Clostridium M1NH exhibited remarkable tolerance to high concentrations of ethanol (up to 5% v/v), acetic acid (up to 5% w/v), and caproic acid (up to 2% w/v). The strain also demonstrated a wide pH tolerance range (pH 5.5-7.5) and an elevated temperature optimum between 35 and 40 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that Clostridium M1NH shares a 98% similarity with Clostridium luticellarii DSM 29923 T. The robustness of strain M1NH and its efficient caproic acid production from low-cost substrates highlight its potential for sustainable bio-based chemical production. The maximum caproic acid yield achieved by Clostridium M1NH was 1.6-fold higher than that reported for C. kluyveri under similar fermentation conditions. This study opens new avenues for valorizing waste streams and advancing a circular economy model in the chemical industry.


Assuntos
Ácido Acético , Clostridium , Etanol , Fermentação , Filogenia , RNA Ribossômico 16S , Ácido Acético/metabolismo , Etanol/metabolismo , Clostridium/genética , Clostridium/metabolismo , Clostridium/classificação , RNA Ribossômico 16S/genética , Termotolerância , Esgotos/microbiologia , Concentração de Íons de Hidrogênio , Caprilatos/metabolismo , Temperatura , Caproatos
2.
Am J Case Rep ; 25: e943084, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923953

RESUMO

BACKGROUND Clostridium cadaveris is a motile, anaerobic, gram-positive, spore-forming bacillus usually found in soil. However, rare cases of opportunistic infections have been documented in immunosuppressed individuals. This report details the case of an immunocompetent young patient who developed septic arthritis of the knee after a traumatic injury involving a rusty nail. The aim of this paper is to provide a comprehensive literature review, shed light on the potential occurrence of Clostridium cadaveris septic arthritis, and explore its management. CASE REPORT A young patient with no medical history presented a traumatic inoculation leading to septic arthritis on a native knee by Clostridium cadaveris. The patient underwent 2 surgical debridements after an initial bad evolution under probabilistic antibiotic therapy. Bacteriological long-growing cultures and antibiotic testing were employed to guide antibiotic therapy selection. The patient had a favorable clinical outcome with no residual knee complications, with laboratory results showed good evolution. A review of the literature showed that Clostridium cadaveris septic arthritis in immunocompetent patients is very rare. The management and subsequent results emphasize the potential impact of the initial emergency room treatment on patient outcomes, especially concerning seemingly benign traumas. CONCLUSIONS This case report highlights the necessity of rapid diagnosis of the cause of septic arthritis, particularly in children, to prevent joint and tissue damage, and the rare diagnosis of knee arthritis with Clostridium cadaveris. This report expands understanding of osteoarticular infections and enhances the need for rapid diagnosis and early treatment, when managing cases with atypical presentations.


Assuntos
Artrite Infecciosa , Infecções por Clostridium , Clostridium , Humanos , Artrite Infecciosa/microbiologia , Artrite Infecciosa/diagnóstico , Clostridium/isolamento & purificação , Masculino , Infecções por Clostridium/diagnóstico , Imunocompetência , Traumatismos do Joelho/complicações , Traumatismos do Joelho/microbiologia , Articulação do Joelho/microbiologia , Antibacterianos/uso terapêutico
3.
Microb Biotechnol ; 17(6): e14502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888486

RESUMO

Butyl butyrate is a short-chain fatty acid ester (C8) with a fruity aroma. It has broad prospects in the fields of foods, cosmetics and biofuels. At present, butyl butyrate is produced by chemical synthesis in the industry, but it is highly dependent on petroleum-based products. The growing concerns regarding the future scarcity of fossil fuels have been strongly promoted the transition from traditional fossil fuels and products to renewable bioenergy and biochemicals. Therefore, it is necessary to develop a green biochemical technology to replace traditional petroleum-based materials. In recent years, microorganisms such as Escherichia coli and Clostridium have been engineered to serve as cell factories for the sustainable one-pot production of short-chain fatty acid esters, including butyl butyrate. This opinion highlights the recent development in the use of lipases and alcohol acyltransferases (AATs) for butyl butyrate production in microbial fermentation, as well as future perspectives.


Assuntos
Butiratos , Fermentação , Engenharia Metabólica , Butiratos/metabolismo , Engenharia Metabólica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Clostridium/metabolismo , Clostridium/genética , Lipase/metabolismo , Lipase/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Microbiologia Industrial/métodos , Biocombustíveis
4.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828876

RESUMO

The objective was to determine the influence of long-term supplementation (258 d) of a direct-fed microbial (DFM) and/or yeast cell wall (YCW) product on bacterial populations in beef steers. Single-sourced Charolais × Red Angus steers (n = 256; body weight = 246 ±â€…1.68 kg) were used in a randomized complete block design and blocked by location into one of four treatments: 1) fed no DFM and no YCW (Control); 2) fed only the DFM (DFM; Certillus CP B1801 Dry, 28 g/steer d-1 ); 3) fed only the YCW (YCW; Celmanax; 18 g/steer d-1 ); and 4) fed the DFM and the YCW (DFM+YCW). Steers were vaccinated for respiratory and clostridial diseases and treated for internal and external parasites at processing and individually weighed on days 1, 14, 42, 77, 105, 133, 161, 182, 230, and 258. To determine bacterial prevalence, fecal samples were collected on days 1, 14, 77, 133, 182, and 230 and environmental (pen area, feed, and water) samples were collected at the beginning of the week when cattle were weighed. No treatment × day interactions or treatment effects (P > 0.05) were observed between treatment groups at any sampling days for the bacterial populations. Samples on days 1, 133, and 182 had greater (P < 0.05) Clostridia levels compared to the other sampling points but were not different from each other. Clostridia levels were also greater (P < 0.05) on day 77 compared to days 14 and 230. Samples on days 77 and 230 had greater (P < 0.05) Clostridium perfringens levels compared to the other sampling points but were not different (P > 0.05) from each other. Samples on days 1 and 14 had lower (P < 0.05) total Escherichia coli levels compared to the other sampling points but were not different (P > 0.05) from each other. Escherichia coli levels on day 77 were higher (P < 0.05) compared to days 133, 182, and 230. Little Salmonella prevalence (1.5%) was observed throughout the study. This study had greater levels of Clostridia compared to small and large commercial feedlots in the Church and Dwight research database, but C. perfringens, total and pathogenic E. coli, and Salmonella prevalence were notably lower. Collectively, there were no appreciable treatment influences on bacterial populations. These data further indicate a low pathogenic bacterial challenge at the trial site, which could partially explain the lack of differences with DFM or YCW supplementation. The DFM and YCW used alone or in combination cannot be expected to show additional benefits when animals are relatively unstressed with a low pathogenic bacterial challenge.


The objective of this research was to determine the influence of long-term supplementation (258 d) of a direct-fed microbial (DFM) and/or yeast cell wall (YCW) product on bacterial populations in beef steers. Collectively, there were no appreciable treatment influences on bacterial populations. These data further indicate a low pathogenic bacterial challenge at the trial site, which could further explain the reasons for little differences. The DFM and YCW used alone or in combination cannot be expected to show productive benefits when animals are relatively unstressed with a low pathogenic bacterial challenge.


Assuntos
Ração Animal , Bacillus subtilis , Clostridium perfringens , Dieta , Suplementos Nutricionais , Probióticos , Animais , Bovinos , Masculino , Ração Animal/análise , Dieta/veterinária , Clostridium perfringens/fisiologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Suplementos Nutricionais/análise , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Salmonella , Escherichia coli , Fezes/microbiologia , Infecções por Clostridium/veterinária , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/microbiologia , Clostridium , Distribuição Aleatória
5.
Artigo em Inglês | MEDLINE | ID: mdl-38864839

RESUMO

A Gram-stain-positive, strictly anaerobic, endospore-forming and rod-shaped (0.6-0.8×2.7-13.1 µm) bacterium, designated as 5 N-1T, was isolated from a yellow water sample collected from the manufacturing process of Nongxiangxing baijiu in the Yibin region of Sichuan, PR China. Growth occurred at 15-40 °C (optimum growth at 37 °C), at pH 6.0-9.0 (optimum growth at pH 7.0) and in NaCl concentrations of 0-1 % (w/v) and ethanol concentrations of 0-2 % (v/v). The major fatty acids in strain 5 N-1T were C16 : 0, C18 : 0 and C14 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unidentified aminophospholipids and one unidentified lipid. Phylogenetic analysis of its 16S rRNA gene sequence indicated that strain 5 N-1T was most closely related to Clostridium weizhouense YB-6T (97.70 %) and Clostridium uliginosum DSM 12992T (97.56 %). The average nucleotide identity and digital DNA‒DNA hybridization values between strain 5 N-1T and the above two type strains were 80.89 and 80.05 % and 25.80 and 25.30 %, respectively, which were all below the species thresholds. The genome size of strain 5 N-1T was 3.5 Mbp and the DNA G+C content was 27.5 mol%. Based on the results of phenotypic and genotypic analyses, strain 5 N-1T represents a novel species of the genus Clostridium, for which the name Clostridium aquiflavi sp. nov. is proposed. The type strain is Clostridium aquiflavi 5 N-1T (=CICC 24886T=JCM 35355T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridium , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , China , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Clostridium/genética , Clostridium/isolamento & purificação , Clostridium/classificação , Microbiologia da Água , Fosfolipídeos/análise
6.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893534

RESUMO

Electrocatalytic CO2 reduction to CO and formate can be coupled to gas fermentation with anaerobic microorganisms. In combination with a competing hydrogen evolution reaction in the cathode in aqueous medium, the in situ, electrocatalytic produced syngas components can be converted by an acetogenic bacterium, such as Clostridium ragsdalei, into acetate, ethanol, and 2,3-butanediol. In order to study the simultaneous conversion of CO, CO2, and formate together with H2 with C. ragsdalei, fed-batch processes were conducted with continuous gassing using a fully controlled stirred tank bioreactor. Formate was added continuously, and various initial CO partial pressures (pCO0) were applied. C. ragsdalei utilized CO as the favored substrate for growth and product formation, but below a partial pressure of 30 mbar CO in the bioreactor, a simultaneous CO2/H2 conversion was observed. Formate supplementation enabled 20-50% higher growth rates independent of the partial pressure of CO and improved the acetate and 2,3-butanediol production. Finally, the reaction conditions were identified, allowing the parallel CO, CO2, formate, and H2 consumption with C. ragsdalei at a limiting CO partial pressure below 30 mbar, pH 5.5, n = 1200 min-1, and T = 32 °C. Thus, improved carbon and electron conversion is possible to establish efficient and sustainable processes with acetogenic bacteria, as shown in the example of C. ragsdalei.


Assuntos
Reatores Biológicos , Butileno Glicóis , Dióxido de Carbono , Monóxido de Carbono , Clostridium , Fermentação , Formiatos , Hidrogênio , Formiatos/metabolismo , Formiatos/química , Clostridium/metabolismo , Clostridium/crescimento & desenvolvimento , Monóxido de Carbono/metabolismo , Hidrogênio/metabolismo , Dióxido de Carbono/metabolismo , Butileno Glicóis/metabolismo , Butileno Glicóis/química , Gases/metabolismo , Gases/química , Etanol/metabolismo
7.
ACS Synth Biol ; 13(6): 1893-1905, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38825826

RESUMO

Gas-fermenting Clostridium species hold tremendous promise for one-carbon biomanufacturing. To unlock their full potential, it is crucial to unravel and optimize the intricate regulatory networks that govern these organisms; however, this aspect is currently underexplored. In this study, we employed pooled CRISPR interference (CRISPRi) screening to uncover a wide range of functional transcription factors (TFs) in Clostridium ljungdahlii, a representative species of gas-fermenting Clostridium, with a special focus on TFs associated with the utilization of carbon resources. Among the 425 TF candidates, we identified 75 and 68 TF genes affecting the heterotrophic and autotrophic growth of C. ljungdahlii, respectively. We focused our attention on two of the screened TFs, NrdR and DeoR, and revealed their pivotal roles in the regulation of deoxyribonucleoside triphosphates (dNTPs) supply, carbon fixation, and product synthesis in C. ljungdahlii, thereby influencing the strain performance in gas fermentation. Based on this, we proceeded to optimize the expression of deoR in C. ljungdahlii by adjusting its promoter strength, leading to an improved growth rate and ethanol synthesis of C. ljungdahlii when utilizing syngas. This study highlights the effectiveness of pooled CRISPRi screening in gas-fermenting Clostridium species, expanding the horizons for functional genomic research in these industrially important bacteria.


Assuntos
Sistemas CRISPR-Cas , Clostridium , Fermentação , Fatores de Transcrição , Clostridium/genética , Clostridium/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Engenharia Metabólica/métodos , Gases/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38861306

RESUMO

Reductive soil disinfestation (RSD), also known as biological soil disinfestation, is a bioremediation method used to suppress soil-borne plant pathogens by stimulating the activity of indigenous anaerobic bacteria in the soil. An anaerobic bacterial strain (E14T) was isolated from an anoxic soil sample subjected to RSD treatment and then comprehensively characterized. Cells of the strain were Gram-stain-positive, curved to sigmoid, and spore-forming rods. Cells were motile with a polar flagellum. Strain E14T grew in peptone-yeast extract broth, indicating that it utilized proteinous compounds. Strain E14T was also saccharolytic and produced acetate, isobutyrate, butyrate, isovalerate and gases (H2 and CO2) as fermentation products. The strain did not decompose any of examined polysaccharides except for starch. The major cellular fatty acids of strain E14T were iso-C15:0 and iso-C15:0 DMA. The closest relative to strain E14T, based on 16S rRNA gene sequences, was Clostridium thermarum SYSU GA15002T (96.2 %) in the Clostridiaceae. Whole-genome analysis of strain E14T showed that its genome was 4.66 Mb long with a genomic DNA G+C content of 32.5 mol%. The average nucleotide identity (ANIb) between strain E14T and C. thermarum SYSU GA15002T was 69.0 %. The presence of the genes encoding glycolysis and butyrate production via the acetyl-CoA pathway was confirmed through genome analysis. Based on the obtained phylogenetic, genomic and phenotypic data, we propose that strain E14T should be assigned to the genus Clostridium in the family Clostridiaceae as Clostridium omnivorum sp. nov. The type strain is E14T (=NBRC 115133T=DSM 114974T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridium , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , RNA Ribossômico 16S/genética , Clostridium/genética , Clostridium/isolamento & purificação , Clostridium/classificação , DNA Bacteriano/genética , Genoma Bacteriano , Anaerobiose , Biodegradação Ambiental
9.
Bioresour Technol ; 403: 130881, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788806

RESUMO

Carbon dioxide (CO2) plays a crucial role in carbon chain elongation with ethanol serving as an electron donor. In this study, the impacts of various carbonates on CO2 concentration, hexanoic acid production, and microbial communities during ethanol-butyric acid fermentation were explored. The results showed that the addition of MgCO3 provided sustained inorganic carbon and facilitated interspecific electron transfer, thereby increasing hexanoic acid yield by 58%. MgCO3 and NH4HCO3 inhibited the excessive ethanol oxidation and decreased the yield of acetic acid by 51% and 42%, respectively. The yields of hexanoic acid and acetic acid in the CaCO3 group increased by 19% and 15%, respectively. The NaHCO3 group exhibited high headspace CO2 concentration, promoting acetogenic bacteria enrichment while reducing the abundance of Clostridium_sensu_stricto_12. The batch addition of NaHCO3 accelerated the synthesis of hexanoic acid and increased its production by 26%. The relative abundance of Clostridium_sensus_stricto_12 was positively correlated with hexanoic acid production.


Assuntos
Caproatos , Carbono , Fermentação , Carbono/farmacologia , Anaerobiose , Caproatos/metabolismo , Etanol/metabolismo , Dióxido de Carbono/farmacologia , Dióxido de Carbono/metabolismo , Clostridium/metabolismo , Ácido Butírico/metabolismo
10.
Bioresour Technol ; 403: 130853, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759895

RESUMO

This study introduces a two-stage hydrogen production enhancement mechanism using natural particle additives, with a focus on the effects of thermally modified maifanite (TMM) and pH self-regulation on dark fermentation (DF). Initial single-factor experiments identified preliminary parameters for the addition of TMM, which were further optimized using a Box-Behnken design. The established optimal conditions which include mass of 5.5 g, particle size of 120 mesh, and temperature of 324 °C, resulted in a 28.7 % increase in cumulative hydrogen yield (CHY). During the primary hydrogen production stage, TMM significantly boosted the growth and activity of Clostridium_sensu_stricto_1, enhancing hydrogen output. Additionally, a pH self-regulating phenomenon was observed, capable of initiating secondary hydrogen production and further augmenting CHY. These findings presented a novel and efficient approach for optimizing biohydrogen production, offering significant implications for future research and application in sustainable energy technologies.


Assuntos
Fermentação , Hidrogênio , Zea mays , Hidrogênio/metabolismo , Zea mays/química , Concentração de Íons de Hidrogênio , Clostridium/metabolismo , Temperatura
11.
Bioelectrochemistry ; 158: 108724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38714063

RESUMO

Microbial conversion of CO2 to multi-carbon compounds such as acetate and butyrate is a promising valorisation technique. For those reactions, the electrochemical supply of hydrogen to the biocatalyst is a viable approach. Earlier we have shown that trace metals from microbial growth media spontaneously form in situ electro-catalysts for hydrogen evolution. Here, we show biocompatibility with the successful integration of such metal mix-based HER catalyst for immediate start-up of microbial acetogenesis (CO2 to acetate). Also, n-butyrate formation started fast (after twenty days). Hydrogen was always produced in excess, although productivity decreased over the 36 to 50 days, possibly due to metal leaching from the cathode. The HER catalyst boosted microbial productivity in a two-step microbial community bioprocess: acetogenesis by a BRH-c20a strain and acetate elongation to n-butyrate by Clostridium sensu stricto 12 (related) species. These findings provide new routes to integrate electro-catalysts and micro-organisms showing respectively bio and electrochemical compatibility.


Assuntos
Hidrogênio , Hidrogênio/química , Hidrogênio/metabolismo , Catálise , Metais/química , Acetatos/química , Acetatos/metabolismo , Clostridium/metabolismo , Eletrodos , Materiais Biocompatíveis/química , Fontes de Energia Bioelétrica/microbiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-38728064

RESUMO

A strictly anaerobic, Gram-stain-negative rod-shaped bacterium, designated A1-XYC3T, was isolated from the faeces of an alpaca (Lama pacos). On the basis of the results of a comparative 16S rRNA gene sequence analysis, the isolate was assigned to the genus Clostridium with the highest sequence similarities to Clostridium magnum DSM 2767T (96.8 %), Clostridium carboxidivorans P7T (96.3 %) and Clostridium aciditolerans JW/YJL-B3T (96.1 %). The average nucleotide identity between A1-XYC3T, C. magnum, C. carboxidivorans and C. aciditolerans was 77.4, 76.1 and 76.6  %, respectively. The predominant components of the cellular fatty acids of A1-XYC3T were C14 : 0, C16 : 0 and summed feature 10, containing C18:0/C17:0 cyclo. The DNA G+C content was 32.4 mol%. On the basis of biochemical, phylogenetic, genotypic and chemotaxonomic criteria, this isolate represents a novel species within Clostridium sensu stricto for which the name Clostridium tanneri sp. nov. is proposed. The type strain of this species is strain A1-XYC3T (=CCM 9376T=NRRL B-65691T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , Camelídeos Americanos , Clostridium , DNA Bacteriano , Ácidos Graxos , Fezes , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Camelídeos Americanos/microbiologia , Fezes/microbiologia , RNA Ribossômico 16S/genética , Animais , Clostridium/genética , Clostridium/classificação , Clostridium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular
13.
Sci Data ; 11(1): 432, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693191

RESUMO

The genus Clostridium is a large and diverse group within the Bacillota (formerly Firmicutes), whose members can encode useful complex traits such as solvent production, gas-fermentation, and lignocellulose breakdown. We describe 270 genome sequences of solventogenic clostridia from a comprehensive industrial strain collection assembled by Professor David Jones that includes 194 C. beijerinckii, 57 C. saccharobutylicum, 4 C. saccharoperbutylacetonicum, 5 C. butyricum, 7 C. acetobutylicum, and 3 C. tetanomorphum genomes. We report methods, analyses and characterization for phylogeny, key attributes, core biosynthetic genes, secondary metabolites, plasmids, prophage/CRISPR diversity, cellulosomes and quorum sensing for the 6 species. The expanded genomic data described here will facilitate engineering of solvent-producing clostridia as well as non-model microorganisms with innately desirable traits. Sequences could be applied in conventional platform biocatalysts such as yeast or Escherichia coli for enhanced chemical production. Recently, gene sequences from this collection were used to engineer Clostridium autoethanogenum, a gas-fermenting autotrophic acetogen, for continuous acetone or isopropanol production, as well as butanol, butanoic acid, hexanol and hexanoic acid production.


Assuntos
Clostridium , Genoma Bacteriano , Filogenia , Clostridium/genética , Solventes , Fermentação
14.
Nat Commun ; 15(1): 4276, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769296

RESUMO

Alterations in gut microbiota composition are suggested to contribute to cardiometabolic diseases, in part by producing bioactive molecules. Some of the metabolites are produced by very low abundant bacterial taxa, which largely have been neglected due to limits of detection. However, the concentration of microbially produced metabolites from these taxa can still reach high levels and have substantial impact on host physiology. To explore this concept, we focused on the generation of secondary bile acids by 7α-dehydroxylating bacteria and demonstrated that addition of a very low abundant bacteria to a community can change the metabolic output dramatically. We show that Clostridium scindens converts cholic acid into the secondary bile acid deoxycholic acid (DCA) very efficiently even though the abundance of C. scindens is low, but still detectable by digital droplet PCR. We also show that colonization of germ-free female mice with a community containing C. scindens induces DCA production and affects host metabolism. Finally, we show that DCA correlates with impaired glucose metabolism and a worsened lipid profile in individuals with type 2 diabetes, which implies that this metabolic pathway may contribute to the development of cardiometabolic disease.


Assuntos
Ácido Desoxicólico , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Glucose , Ácido Desoxicólico/metabolismo , Animais , Microbioma Gastrointestinal/fisiologia , Feminino , Glucose/metabolismo , Camundongos , Humanos , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Clostridium/metabolismo , Clostridium/genética , Ácido Cólico/metabolismo , Masculino
15.
Biotechnol Adv ; 73: 108379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38754796

RESUMO

Biological production of hydrogen has a tremendous potential as an environmentally sustainable technology to generate a clean fuel. Among the different available methods to produce biohydrogen, dark fermentation features the highest productivity and can be used as a means to dispose of organic waste biomass. Within this approach, Clostridia have the highest theoretical H2 production yield. Nonetheless, most strains show actual yields far lower than the theoretical maximum: improving their efficiency becomes necessary for achieving cost-effective fermentation processes. This review aims at providing a survey of the metabolic network involved in H2 generation in Clostridia and strategies used to improve it through metabolic engineering. Together with current achievements, a number of future perspectives to implement these results will be illustrated.


Assuntos
Clostridium , Fermentação , Hidrogênio , Engenharia Metabólica , Hidrogênio/metabolismo , Engenharia Metabólica/métodos , Clostridium/metabolismo , Clostridium/genética , Redes e Vias Metabólicas , Biocombustíveis
16.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749675

RESUMO

AIMS: In previous studies, it was demonstrated that co-culturing Clostridium pasteurianum and Geobacter sulfurreducens triggers a metabolic shift in the former during glycerol fermentation. This shift, attributed to interspecies electron transfer and the exchange of other molecules, enhances the production of 1,3-propanediol at the expense of the butanol pathway. The aim of this investigation is to examine the impact of fumarate, a soluble compound usually used as an electron acceptor for G. sulfurreducens, in the metabolic shift previously described in C. pasteurianum. METHODS AND RESULTS: Experiments were conducted by adding along with glycerol, acetate, and different quantities of fumarate in co-cultures of G. sulfurreducens and C. pasteurianum. A metabolic shift was exhibited in all the co-culture conditions. This shift was more pronounced at higher fumarate concentrations. Additionally, we observed G. sulfurreducens growing even in the absence of fumarate and utilizing small amounts of this compound as an electron donor rather than an electron acceptor in the co-cultures with high fumarate addition. CONCLUSIONS: This study provided evidence that interspecies electron transfer continues to occur in the presence of a soluble electron acceptor, and the metabolic shift can be enhanced by promoting the growth of G. sulfurreducens.


Assuntos
Clostridium , Fermentação , Fumaratos , Geobacter , Geobacter/metabolismo , Geobacter/crescimento & desenvolvimento , Fumaratos/metabolismo , Clostridium/metabolismo , Clostridium/crescimento & desenvolvimento , Transporte de Elétrons , Glicerol/metabolismo , Técnicas de Cocultura , Propilenoglicóis/metabolismo
17.
Anaerobe ; 87: 102855, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614289

RESUMO

OBJECTIVES: The objective of this study was to investigate the effects of medium composition on CO fermentation by Clostridium carboxidivorans. The focus was to reduce the medium cost preserving acceptable levels of solvent production. METHODS: Yeast extract (YE) concentration was set in the range of 0-3 g/L. Different reducing agents were investigated, including cysteine-HCl 0.6 g/L, pure cysteine 0.6 g/L, sodium sulphide (Na2S) 0.6 g/L, cysteine-sodium sulphide 0.6 g/L and cysteine-sodium sulphide 0.72 g/L. The concentration of the metal solution was decreased down to 25 % of the standard value. Fermentation tests were also carried out with and without tungsten or selenium. RESULTS: The results demonstrated that under optimized conditions, namely yeast extract (YE) concentration set at 1 g/L, pure cysteine as the reducing agent and trace metal concentration reduced to 75 % of the standard value, reasonable solvent production was achieved in less than 150 h. Under these operating conditions, the production levels were found to be 1.39 g/L of ethanol and 0.27 g/L of butanol. Furthermore, the study revealed that selenium was not necessary for C. carboxidivorans fermentation, whereas the presence of tungsten played a crucial role in both cell growth and solvent production. CONCLUSIONS: The optimization of the medium composition in CO fermentation by Clostridium carboxidivorans is crucial for cost-effective solvent production. Tuning the yeast extract (YE) concentration, using pure cysteine as the reducing agent and reducing trace metal concentration contribute to reasonable solvent production within a relatively short fermentation period. Tungsten is essential for cell growth and solvent production, while selenium is not required.


Assuntos
Reatores Biológicos , Clostridium , Meios de Cultura , Fermentação , Clostridium/metabolismo , Clostridium/crescimento & desenvolvimento , Meios de Cultura/química , Reatores Biológicos/microbiologia , Monóxido de Carbono/metabolismo , Etanol/metabolismo , Selênio/metabolismo , Butanóis/metabolismo , Tungstênio/metabolismo
18.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611721

RESUMO

Despite the technologies applied to food production, microbial contamination and chemical deterioration are still matters of great concern. In order to limit these phenomena, new natural approaches should be applied. In this context, the present study aimed to assess the antioxidant and anti-Clostridial effects of two different polyphenolic extracts derived from olive mill vegetation water, one liquid (LE) and one encapsulated (EE). The extracts have been preliminary characterized using Liquid Chromatography Quadrupole Time-Of Flight spectrometry. The Oxygen Radical Absorbance Capacity method was used to determine the antioxidant capacity, registering a higher value for EE compared to that for LE (3256 ± 85 and 2446 ± 13 µgTE/g, respectively). The antibacterial activity against C. perfringens, C. botulinum and C. difficile was studied by the agar well diffusion method, MIC and MBC determination and a time-kill test. The results confirm that EE and LE are able to limit microbial growth, albeit with minor effects when the phenolic compounds are encapsulated. Further studies are needed to evaluate the possible application of these extracts in food systems.


Assuntos
Clostridioides difficile , Olea , Águas Residuárias , Antioxidantes/farmacologia , Clostridium , Clostridium perfringens
19.
Proc Natl Acad Sci U S A ; 121(16): e2321002121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593072

RESUMO

Bacterial collagenases are important virulence factors, secreted by several pathogenic Clostridium, Bacillus, Spirochaetes, and Vibrio species. Yet, the mechanism by which these enzymes cleave collagen is not well understood. Based on biochemical and mutational studies we reveal that collagenase G (ColG) from Hathewaya histolytica recognizes and processes collagen substrates differently depending on their nature (fibrillar vs. soluble collagen); distinct dynamic interactions between the activator and peptidase domain are required based on the substrate type. Using biochemical and circular dichroism studies, we identify the presumed noncatalytic activator domain as the single-domain triple helicase that unwinds collagen locally, transiently, and reversibly.


Assuntos
Colágeno , Colagenases , Colágeno/química , Clostridium histolyticum , Clostridium
20.
Microb Cell Fact ; 23(1): 119, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659027

RESUMO

BACKGROUND: Clostridium spp. has demonstrated therapeutic potential in cancer treatment through intravenous or intratumoral administration. This approach has expanded to include non-pathogenic clostridia for the treatment of various diseases, underscoring the innovative concept of oral-spore vaccination using clostridia. Recent advancements in the field of synthetic biology have significantly enhanced the development of Clostridium-based bio-therapeutics. These advancements are particularly notable in the areas of efficient protein overexpression and secretion, which are crucial for the feasibility of oral vaccination strategies. Here, we present two examples of genetically engineered Clostridium candidates: one as an oral cancer vaccine and the other as an antiviral oral vaccine against SARS-CoV-2. RESULTS: Using five validated promoters and a signal peptide derived from Clostridium sporogenes, a series of full-length NY-ESO-1/CTAG1, a promising cancer vaccine candidate, expression vectors were constructed and transformed into C. sporogenes and Clostridium butyricum. Western blotting analysis confirmed efficient expression and secretion of NY-ESO-1 in clostridia, with specific promoters leading to enhanced detection signals. Additionally, the fusion of a reported bacterial adjuvant to NY-ESO-1 for improved immune recognition led to the cloning difficulties in E. coli. The use of an AUU start codon successfully mitigated potential toxicity issues in E. coli, enabling the secretion of recombinant proteins in C. sporogenes and C. butyricum. We further demonstrate the successful replacement of PyrE loci with high-expression cassettes carrying NY-ESO-1 and adjuvant-fused NY-ESO-1, achieving plasmid-free clostridia capable of secreting the antigens. Lastly, the study successfully extends its multiplex genetic manipulations to engineer clostridia for the secretion of SARS-CoV-2-related Spike_S1 antigens. CONCLUSIONS: This study successfully demonstrated that C. butyricum and C. sporogenes can produce the two recombinant antigen proteins (NY-ESO-1 and SARS-CoV-2-related Spike_S1 antigens) through genetic manipulations, utilizing the AUU start codon. This approach overcomes challenges in cloning difficult proteins in E. coli. These findings underscore the feasibility of harnessing commensal clostridia for antigen protein secretion, emphasizing the applicability of non-canonical translation initiation across diverse species with broad implications for medical or industrial biotechnology.


Assuntos
Clostridium butyricum , Clostridium , Proteínas Recombinantes , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Clostridium/genética , Clostridium/metabolismo , Humanos , Proteínas Recombinantes/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Administração Oral , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/imunologia , Vacinação , COVID-19/prevenção & controle , Engenharia Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...