Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33608285

RESUMO

The native ability of Clostridium thermocellum to efficiently solubilize cellulose makes it an interesting platform for sustainable biofuel production through consolidated bioprocessing. Together with other improvements, industrial implementation of C. thermocellum, as well as fundamental studies into its metabolism, would benefit from improved and reproducible consumption of hexose sugars. To investigate growth of C. thermocellum on glucose or fructose, as well as the underlying molecular mechanisms, laboratory evolution was performed in carbon-limited chemostats with increasing concentrations of glucose or fructose and decreasing cellobiose concentrations. Growth on both glucose and fructose was achieved with biomass yields of 0.09 ± 0.00 and 0.18 ± 0.00 gbiomass gsubstrate-1, respectively, compared to 0.15 ± 0.01 gbiomass gsubstrate-1 for wild type on cellobiose. Single-colony isolates had no or short lag times on the monosaccharides, while wild type showed 42 ± 4 h on glucose and >80 h on fructose. With good growth on glucose, fructose, and cellobiose, the fructose isolates were chosen for genome sequence-based reverse metabolic engineering. Deletion of a putative transcriptional regulator (Clo1313_1831), which upregulated fructokinase activity, reduced lag time on fructose to 12 h with a growth rate of 0.11 ± 0.01 h-1 and resulted in immediate growth on glucose at 0.24 ± 0.01 h-1 Additional introduction of a G-to-V mutation at position 148 in cbpA resulted in immediate growth on fructose at 0.32 ± 0.03 h-1 These insights can guide engineering of strains for fundamental studies into transport and the upper glycolysis, as well as maximizing product yields in industrial settings.IMPORTANCEC. thermocellum is an important candidate for sustainable and cost-effective production of bioethanol through consolidated bioprocessing. In addition to unsurpassed cellulose deconstruction, industrial application and fundamental studies would benefit from improvement of glucose and fructose consumption. This study demonstrated that C. thermocellum can be evolved for reproducible constitutive growth on glucose or fructose. Subsequent genome sequencing, gene editing, and physiological characterization identified two underlying mutations with a role in (regulation of) transport or metabolism of the hexose sugars. In light of these findings, such mutations have likely (and unknowingly) also occurred in previous studies with C. thermocellum using hexose-based media with possible broad regulatory consequences. By targeted modification of these genes, industrial and research strains of C. thermocellum can be engineered to (i) reduce glucose accumulation, (ii) study cellodextrin transport systems in vivo, (iii) allow experiments at >120 g liter-1 soluble substrate concentration, or (iv) reduce costs for labeling studies.


Assuntos
Clostridium thermocellum/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/crescimento & desenvolvimento , Genoma Bacteriano , Laboratórios , Engenharia Metabólica , Mutação , Sequenciamento Completo do Genoma
2.
Enzyme Microb Technol ; 141: 109645, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33051021

RESUMO

Rapid expansion of global market of lactic acid (LA) has prompted research towards cheaper and more eco-friendly strategies for its production. Nowadays, LA is produced mainly through fermentation of simple sugars or starchy biomass (e.g. corn) and its price is relatively high. Lignocellulose could be an advantageous alternative feedstock for LA production owing to its high abundance and low cost. However, the most effective natural producers of LA cannot directly ferment lignocellulose. So far, metabolic engineering aimed at developing microorganisms combining efficient LA production and cellulose hydrolysis has been generally based on introducing designer cellulase systems in natural LA producers. In the present study, the approach consisted in improving LA production in the natural cellulolytic bacterium Clostridium thermocellum DSM1313. The expression of the native lactate dehydrogenase was enhanced by functional replacement of its original promoter with stronger ones resulting in a 10-fold increase in specific activity, which resulted in a 2-fold increase of LA yield. It is known that eliminating allosteric regulation can also increase lactic acid production in C. thermocellum, however we were unable to insert strong promoters upstream of the de-regulated ldh gene. A strategy combining these regulations and inactivation of parasitic pathways appears essential for developing a homolactic C. thermocellum.


Assuntos
Clostridium thermocellum/metabolismo , L-Lactato Desidrogenase/genética , Ácido Láctico/biossíntese , Acetatos/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/crescimento & desenvolvimento , Etanol/metabolismo , Fermentação , Expressão Gênica , Genoma Bacteriano/genética , L-Lactato Desidrogenase/metabolismo , Engenharia Metabólica , Regiões Promotoras Genéticas
3.
Can J Microbiol ; 65(4): 296-307, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30608879

RESUMO

Ruminiclostridium thermocellum is one of the most promising candidates for consolidated bioprocessing (CBP) of low-cost lignocellulosic materials to biofuels but it still shows poor performance in its ability to deconstruct untreated lignocellulosic substrates. One promising approach to increase R. thermocellum's rate of hydrolysis is to co-culture this cellulose-specialist with partners that possess synergistic hydrolysis enzymes and metabolic capabilities. We have created co-cultures of R. thermocellum with two hemicellulose utilizers, Ruminiclostridium stercorarium and Thermoanaerobacter thermohydrosulfuricus, both of which secrete xylanolytic enzymes and utilize the pentose oligo- and monosaccharides that inhibit R. thermocellum's hydrolysis and metabolism. When grown on milled wheat straw, the co-cultures were able to solubilize up to 58% more of the total polysaccharides than the R. thermocellum mono-culture control. Repeated passaging of the co-cultures on wheat straw yielded stable populations with reduced R. thermocellum cell numbers, indicating competition for cellodextrins released from cellulose hydrolysis, although these stabilized co-cultures were still able to outperform the mono-culture controls. Repeated passaging on Avicel cellulose also yielded stable populations. Overall, the observed synergism suggests that co-culturing R. thermocellum with other members is a viable option for increasing the rate and extent of untreated lignocellulose deconstruction by R. thermocellum for CBP purposes.


Assuntos
Clostridium thermocellum/crescimento & desenvolvimento , Lignina/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos/metabolismo , Thermoanaerobacter/crescimento & desenvolvimento , Biocombustíveis , Celulose/análogos & derivados , Celulose/metabolismo , Clostridium thermocellum/metabolismo , Técnicas de Cocultura , DNA Bacteriano/genética , Dextrinas/metabolismo , Hidrólise , Reação em Cadeia da Polimerase em Tempo Real , Thermoanaerobacter/metabolismo
4.
Biotechnol Bioeng ; 115(7): 1755-1763, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29537062

RESUMO

Cellulose and hemicellulose are the most abundant components in plant biomass. A preferred Consolidated Bioprocessing (CBP) system is one which can directly convert both cellulose and hemicellulose into target products without adding the costly hydrolytic enzyme cocktail. In this work, the thermophilic, cellulolytic, and anaerobic bacterium, Clostridium thermocellum DSM 1313, was engineered to grow on xylose in addition to cellulose. Both xylA (encoding for xylose isomerase) and xylB (encoding for xylulokinase) genes from the thermophilic anaerobic bacterium Thermoanaerobacter ethanolicus were introduced to enable xylose utilization while still retaining its inherent ability to grow on 6-carbon substrates. Targeted integration of xylAB into C. thermocellum genome realized simultaneous fermentation of xylose with glucose, with cellobiose (glucose dimer), and with cellulose, respectively, without carbon catabolite repression. We also showed that the respective H2 and ethanol production were twice as much when both xylose and cellulose were consumed simultaneously than when consuming cellulose alone. Moreover, the engineered xylose consumer can also utilize xylo-oligomers (with degree of polymerization of 2-7) in the presence of xylose. Isotopic tracer studies also revealed that the engineered xylose catabolism contributed to the production of ethanol from xylan which is a model hemicellulose in mixed sugar fermentation, demonstrating immense potential of this enhanced CBP strain in co-utilizing both cellulose and hemicellulose for the production of fuels and chemicals.


Assuntos
Celulose/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Fermentação , Engenharia Metabólica/métodos , Polissacarídeos/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Anaerobiose , Celobiose/metabolismo , Clonagem Molecular , Clostridium thermocellum/crescimento & desenvolvimento , Glucose/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Thermoanaerobacter/enzimologia , Thermoanaerobacter/genética , Xilose/metabolismo
5.
Appl Microbiol Biotechnol ; 101(17): 6841-6847, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28631221

RESUMO

Fermentation with acetogens can be affected by cultivation gas phase, but to date, there is not enough evidence on that matter for Clostridium thermocellum and Moorella thermoacetica. In this work, the effects of sparged CO2 as well as sparged and non-sparged N2 on these microorganisms were studied using glucose and cellobiose as substrates. It was revealed that sparged CO2 and non-sparged N2 supported growth and acetic acid production by C. thermocellum and M. thermoacetica, while sparged N2 inhibited both of the microorganisms. Notably, part of the sparged CO2 was fermented by the co-culture system and contributed to an overestimation of the products from the actual substrate as well as an erring material balance. The best condition for the co-culture was concluded to be N2 without sparging. These results demonstrate the importance of cultivation conditions for efficient fermentation by anaerobic clostridia species.


Assuntos
Ácido Acético/metabolismo , Clostridium thermocellum/metabolismo , Fermentação , Gases , Moorella/metabolismo , Anaerobiose , Dióxido de Carbono/farmacologia , Celobiose/farmacologia , Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/crescimento & desenvolvimento , Técnicas de Cocultura , Glucose/farmacologia , Hidrogênio , Moorella/efeitos dos fármacos , Moorella/crescimento & desenvolvimento , Nitrogênio/farmacologia
6.
Sci Rep ; 7: 43355, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230109

RESUMO

Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes.


Assuntos
Clostridium thermocellum/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inibidores do Crescimento/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Oligopeptídeos/biossíntese , Pentoses/metabolismo , Peptídeos Cíclicos/biossíntese , Celulose/metabolismo , Clostridium thermocellum/crescimento & desenvolvimento , Clostridium thermocellum/metabolismo , Fermentação , Expressão Gênica , Perfilação da Expressão Gênica , Metabolômica
7.
Sci Rep ; 7: 43583, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240279

RESUMO

Clostridium (Ruminiclostridium) thermocellum is a model organism for its ability to deconstruct plant biomass and convert the cellulose into ethanol. The bacterium forms biofilms adherent to lignocellulosic feedstocks in a continuous cell-monolayer in order to efficiently break down and uptake cellulose hydrolysates. We developed a novel bioreactor design to generate separate sessile and planktonic cell populations for omics studies. Sessile cells had significantly greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division consistent with substrate replete conditions. Planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. This study demonstrates that microbial attachment to cellulose substrate produces widespread gene expression changes for critical functions of this organism and provides physiological insights for two cells populations relevant for engineering of industrially-ready phenotypes.


Assuntos
Biofilmes , Clostridium thermocellum/crescimento & desenvolvimento , Clostridium thermocellum/genética , Regulação da Expressão Gênica , Plâncton/crescimento & desenvolvimento , Plâncton/genética , Biomarcadores , Biomassa , Vias Biossintéticas , Metabolismo dos Carboidratos , Clostridium thermocellum/metabolismo , Metabolismo Energético , Fermentação , Regulação Bacteriana da Expressão Gênica , Metabolismo dos Lipídeos , Estresse Oxidativo , Plâncton/metabolismo , Estresse Fisiológico
8.
J Ind Microbiol Biotechnol ; 44(6): 825-834, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28181082

RESUMO

The plant cell wall is a source of fermentable sugars in second-generation bioethanol production. However, cellulosic biomass hydrolysis remains an obstacle to bioethanol production in an efficient and low-cost process. Clostridium thermocellum has been studied as a model organism able to produce enzymatic blends that efficiently degrade lignocellulosic biomass, and also as a fermentative microorganism in a consolidated process for the conversion of lignocellulose to bioethanol. In this study, a C. thermocellum strain (designated B8) isolated from goat rumen was characterized for its ability to grow on sugarcane straw and cotton waste, and to produce cellulosomes. We also evaluated C. thermocellum gene expression control in the presence of complex lignocellulosic biomasses. This isolate is capable of growing in the presence of microcrystalline cellulose, sugarcane straw and cotton waste as carbon sources, producing free enzymes and residual substrate-bound proteins (RSBP). The highest growth rate and cellulase/xylanase production were detected at pH 7.0 and 60 °C, after 48 h. Moreover, this strain showed different expression levels of transcripts encoding cellulosomal proteins and proteins with a role in fermentation and catabolic repression.


Assuntos
Clostridium thermocellum/enzimologia , Lignina/metabolismo , Animais , Biomassa , Celulase/metabolismo , Celulossomas/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/crescimento & desenvolvimento , Clostridium thermocellum/isolamento & purificação , Fermentação/genética , Regulação Bacteriana da Expressão Gênica , Cabras , Xilosidases/metabolismo
9.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003194

RESUMO

Organisms regulate gene expression in response to the environment to coordinate metabolic reactions. Clostridium thermocellum expresses enzymes for both lignocellulose solubilization and its fermentation to produce ethanol. One LacI regulator termed GlyR3 in C. thermocellum ATCC 27405 was previously identified as a repressor of neighboring genes with repression relieved by laminaribiose (a ß-1,3 disaccharide). To better understand the three C. thermocellum LacI regulons, deletion mutants were constructed using the genetically tractable DSM1313 strain. DSM1313 lacI genes Clo1313_2023, Clo1313_0089, and Clo1313_0396 encode homologs of GlyR1, GlyR2, and GlyR3 from strain ATCC 27405, respectively. Growth on cellobiose or pretreated switchgrass was unaffected by any of the gene deletions under controlled-pH fermentations. Global gene expression patterns from time course analyses identified glycoside hydrolase genes encoding hemicellulases, including cellulosomal enzymes, that were highly upregulated (5- to 100-fold) in the absence of each LacI regulator, suggesting that these were repressed under wild-type conditions and that relatively few genes were controlled by each regulator under the conditions tested. Clo1313_2022, encoding lichenase enzyme LicB, was derepressed in a ΔglyR1 strain. Higher expression of Clo1313_1398, which encodes the Man5A mannanase, was observed in a ΔglyR2 strain, and α-mannobiose was identified as a probable inducer for GlyR2-regulated genes. For the ΔglyR3 strain, upregulation of the two genes adjacent to glyR3 in the celC-glyR3-licA operon was consistent with earlier studies. Electrophoretic mobility shift assays have confirmed LacI transcription factor binding to specific regions of gene promoters.IMPORTANCE Understanding C. thermocellum gene regulation is of importance for improved fundamental knowledge of this industrially relevant bacterium. Most LacI transcription factors regulate local genomic regions; however, a small number of those genes encode global regulatory proteins with extensive regulons. This study indicates that there are small specific C. thermocellum LacI regulons. The identification of LacI repressor activity for hemicellulase gene expression is a key result of this work and will add to the small body of existing literature on the area of gene regulation in C. thermocellum.


Assuntos
Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Regulação Bacteriana da Expressão Gênica/genética , Redes Reguladoras de Genes , Lipoproteínas/genética , Lipoproteínas/metabolismo , Regulon/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Celobiose/metabolismo , Celulose/metabolismo , Clostridium thermocellum/crescimento & desenvolvimento , Dissacarídeos/metabolismo , Fermentação , Genoma Bacteriano , Glicosídeo Hidrolases/efeitos dos fármacos , Glicosídeo Hidrolases/genética , Lipoproteínas/antagonistas & inibidores , Óperon/genética , Panicum/metabolismo , Polissacarídeos/genética , Análise de Sequência de RNA , Deleção de Sequência , Fatores de Transcrição , Transcriptoma , Regulação para Cima
10.
Proc Natl Acad Sci U S A ; 113(46): 13180-13185, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27794122

RESUMO

Clostridium thermocellum can ferment cellulosic biomass to formate and other end products, including CO2 This organism lacks formate dehydrogenase (Fdh), which catalyzes the reduction of CO2 to formate. However, feeding the bacterium 13C-bicarbonate and cellobiose followed by NMR analysis showed the production of 13C-formate in C. thermocellum culture, indicating the presence of an uncharacterized pathway capable of converting CO2 to formate. Combining genomic and experimental data, we demonstrated that the conversion of CO2 to formate serves as a CO2 entry point into the reductive one-carbon (C1) metabolism, and internalizes CO2 via two biochemical reactions: the reversed pyruvate:ferredoxin oxidoreductase (rPFOR), which incorporates CO2 using acetyl-CoA as a substrate and generates pyruvate, and pyruvate-formate lyase (PFL) converting pyruvate to formate and acetyl-CoA. We analyzed the labeling patterns of proteinogenic amino acids in individual deletions of all five putative PFOR mutants and in a PFL deletion mutant. We identified two enzymes acting as rPFOR, confirmed the dual activities of rPFOR and PFL crucial for CO2 uptake, and provided physical evidence of a distinct in vivo "rPFOR-PFL shunt" to reduce CO2 to formate while circumventing the lack of Fdh. Such a pathway precedes CO2 fixation via the reductive C1 metabolic pathway in C. thermocellum These findings demonstrated the metabolic versatility of C. thermocellum, which is thought of as primarily a cellulosic heterotroph but is shown here to be endowed with the ability to fix CO2 as well.


Assuntos
Dióxido de Carbono/metabolismo , Celulose/metabolismo , Clostridium thermocellum/metabolismo , Reatores Biológicos , Carbono/metabolismo , Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/genética , Clostridium thermocellum/crescimento & desenvolvimento , Fermentação , Hidrogênio/metabolismo , Bicarbonato de Sódio/farmacologia
11.
Appl Microbiol Biotechnol ; 100(19): 8607-20, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27538932

RESUMO

Lignocellulosic biohydrogen is a promising renewable energy source that could be a potential alternative to the unsustainable fossil fuel-based energy. Biohydrogen production could be performed by Clostridium thermocellum that is the fastest known cellulose-degrading bacterium. Previous investigations have shown that the co-culture of C. thermocellum JN4 and a non-cellulolytic bacterium Thermoanaerobacterium thermosaccharolyticum GD17 produces more hydrogen than the C. thermocellum JN4 mono-culture, but the mechanism of this improvement is unknown. In this work, we carried out genomic and evolutionary analysis of hydrogenase-coding genes in C. thermocellum and T. thermosaccharolyticum, identifying one Ech-type [NiFe] hydrogenase complex in each species, and, respectively, five and four monomeric or multimeric [FeFe] hydrogenases in the two species. Further transcriptional analysis showed hydrogenase-coding genes in C. thermocellum are regulated by carbon sources, while hydrogenase-coding genes in T. thermosaccharolyticum are not. However, comparison between transcriptional abundance of hydrogenase-coding genes in mono- and co-cultures showed the co-culturing condition leads to transcriptional changes of hydrogenase-coding genes in T. thermosaccharolyticum but not C. thermocellum. Further metabolic analysis showed T. thermosaccharolyticum produces H2 at a rate 4-12-fold higher than C. thermocellum. These findings lead to the suggestion that the improvement of H2 production in the co-culture over mono-culture should be attributed to changes in T. thermosaccharolyticum but not C. thermocellum. Further suggestions can be made that C. thermocellum and T. thermosaccharolyticum perform highly specialized tasks in the co-culture, and optimization of the co-culture for more lignocellulosic biohydrogen production should be focused on the improvement of the non-cellulolytic bacterium.


Assuntos
Celulose/metabolismo , Clostridium thermocellum/crescimento & desenvolvimento , Clostridium thermocellum/metabolismo , Hidrogênio/metabolismo , Thermoanaerobacterium/crescimento & desenvolvimento , Thermoanaerobacterium/metabolismo , Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Técnicas de Cocultura , Evolução Molecular , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Hidrogenase/genética , Hidrogenase/metabolismo , Thermoanaerobacterium/enzimologia , Thermoanaerobacterium/genética
12.
Bioresour Technol ; 197: 422-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26356113

RESUMO

Clostridium thermocellum ATCC 27405 was used to degrade sugarcane bagasse (SCB) directly for hydrogen production, which was significantly enhanced by supplementing medium with CaCO3. The effect of CaCO3 concentration on the hydrogen production was investigated. The hydrogen production was significantly enhanced with the CaCO3 concentration increased from 10mM to 20mM. However, with the CaCO3 concentration further increased from 20mM to 100mM, the hydrogen production didn't increase further. Under the optimal CaCO3 concentration of 20mM, the hydrogen production reached 97.83±5.19mmol/L from 2% sodium hydroxide-pretreated SCB, a 116.72% increase over the control (45.14±1.03mmol/L), and the yield of hydrogen production reached 4.89mmol H2/g SCBadded. Additionally, CaCO3 promoted the biodegradation of SCB and the growth of C. thermocellum. The stimulatory effects of CaCO3 on biohydrogen production are mainly attributed to the buffering capacity of carbonate. The study provides a novel strategy to enhance biohydrogen production from lignocellulose.


Assuntos
Carbonato de Cálcio/metabolismo , Clostridium thermocellum/metabolismo , Hidrogênio/metabolismo , Saccharum/metabolismo , Biodegradação Ambiental , Biocombustíveis , Carbonato de Cálcio/administração & dosagem , Celulose/química , Celulose/metabolismo , Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/crescimento & desenvolvimento , Fermentação , Concentração de Íons de Hidrogênio , Saccharum/efeitos dos fármacos , Hidróxido de Sódio/farmacologia
13.
J Ind Microbiol Biotechnol ; 42(9): 1263-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162629

RESUMO

The ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield is far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, genes encoding pyruvate:formate lyase (pflB) and PFL-activating enzyme (pflA) were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50 % on both complex and defined medium. The growth rate of the Δpfl strain decreased by 2.9-fold on defined medium and biphasic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80 % of the parent strain. The role of pfl in metabolic engineering strategies and C1 metabolism is discussed.


Assuntos
Clostridium thermocellum/metabolismo , Formiatos/metabolismo , Acetatos/metabolismo , Acetiltransferases/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Biocombustíveis , Reatores Biológicos , Carbono/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/crescimento & desenvolvimento , Enzimas/genética , Etanol/metabolismo , Técnicas de Inativação de Genes , Ácido Láctico/metabolismo , Engenharia Metabólica
14.
J Appl Microbiol ; 118(6): 1333-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25801786

RESUMO

AIMS: Currently, there is no direct method for detecting Clostridium thermocellum in the insoluble medium. In this study, a quantitative real-time PCR assay was developed for the direct growth detection of C. thermocellum at the single-cell level in lignocellulosic biomasses. METHODS AND RESULTS: The assay targeted the cipA gene and was able to distinguish C. thermocellum from other species with good reproducibility which quantitative detection limit was 10 cell equivalents (CE) per reaction. OD600-based counting and qPCR quantification of C. thermocellum cultured in soluble medium were compared and an excellent consistency was revealed, indicating the appropriateness of the developed qPCR method. Analysis based on yellow affinity substrate and fermentation products may incorrectly estimate its population. CONCLUSIONS: The developed assay can serve as a specific, sensitive and reproducible method for the detection of C. thermocellum in lignocellulosic biomass at the single-cell level. SIGNIFICANCE AND IMPACT OF THE STUDY: With the ability to rapidly detect C. thermocellum, this method will contribute substantially to the understanding of the lignocellulosic biomass degradation mechanism. Moreover, it can also be applied to detect C. thermocellum growth in certain co-culture system for the understanding of the metabolic interactions.


Assuntos
Clostridium thermocellum/crescimento & desenvolvimento , Lignina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Proteínas de Bactérias/genética , Biomassa , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Fermentação , Dados de Sequência Molecular , Reprodutibilidade dos Testes
15.
Int J Mol Sci ; 16(2): 3116-32, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25647413

RESUMO

Combinatorial effects of influential growth nutrients were investigated in order to enhance hydrogen (H2) production during direct conversion of cellulose by Clostridium thermocellum DSM 1237. A central composite face-centered design and response surface methodology (RSM) were applied to optimize concentrations of cellulose, yeast extract (YE), and magnesium chloride (Mg) in culture. The overall optimum composition generated by the desirability function resulted in 57.28 mmol H2/L-culture with 1.30 mol H2/mol glucose and 7.48 mmol/(g·cell·h) when cultures contained 25 g/L cellulose, 2 g/L YE, and 1.75 g/L Mg. Compared with the unaltered medium, the optimized medium produced approximately 3.2-fold more H2 within the same time-frame with 50% higher specific productivity, which are also better than previously reported values from similar studies. Nutrient composition that diverted carbon and electron flux away from H2 promoting ethanol production was also determined. This study represents the first investigation dealing with multifactor optimization with RSM for H2 production during direct cellulose fermentation.


Assuntos
Celulose/metabolismo , Clostridium thermocellum/metabolismo , Hidrogênio/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/crescimento & desenvolvimento , Meios de Cultura/farmacologia , Etanol/metabolismo , Modelos Estatísticos , Oxirredução
16.
BMC Microbiol ; 14: 215, 2014 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-25128475

RESUMO

BACKGROUND: The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. RESULTS: In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell defense mechanisms. CONCLUSION: These results suggest the mechanisms of tolerance for the Populus hydrolysate-tolerant mutant strain of C. thermocellum are based on increased cellular efficiency caused apparently by downregulation of non-critical genes and increasing the expression of genes in energy production and conversion rather than tolerance to specific hydrolysate components. The wild type, conversely, responds to hydrolysate media by down-regulating growth genes and up-regulating stress response genes.


Assuntos
Antibacterianos/farmacologia , Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/genética , Tolerância a Medicamentos , Perfilação da Expressão Gênica , Extratos Vegetais/farmacologia , Populus/química , Antibacterianos/isolamento & purificação , Celulose/química , Clostridium thermocellum/crescimento & desenvolvimento , Meios de Cultura/química , Hidrólise , Redes e Vias Metabólicas/genética , Extratos Vegetais/isolamento & purificação
17.
Prep Biochem Biotechnol ; 44(2): 206-16, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24152105

RESUMO

The affinity digestion process for cellulase purification consisting of binding to amorphous cellulose, and amorphous cellulose hydrolysis in the presence of dialysis (Morag et al., 1991), was optimized to obtain high activity recoveries and consistent protein recoveries in the isolation of Clostridium thermocellum cellulase. Experiments were conducted using crude supernatant prepared from C. thermocellum grown on either Avicel or cellobiose. While no difference was observed between Avicel-grown or cellobiose-grown cellulase in the adsorption step, differences were observed during the hydrolysis step. The optimal amorphous cellulose loading was found to be 3 mg amorphous cellulose per milligram supernatant protein. At this loading, 90-100% of activity in the crude supernatant was adsorbed. Twenty-four-hour incubation with the amorphous cellulose during the adsorption stage was found to result in maximal and stable adsorption of activity to the substrate. By fitting the adsorption data to the Langmuir model, an adsorption constant of 410 L/g and a binding capacity of 0.249 g cellulase/g cellulose were obtained. The optimal length of time for hydrolysis was found to be 3 hr for cellulase purified from Avicel cultures and 4 hr for cellulase purified from cellobiose cultures. These loadings and incubation times allowed for more than 85% activity recovery.


Assuntos
Celulossomas/metabolismo , Cromatografia de Afinidade/métodos , Clostridium thermocellum/metabolismo , Adsorção , Clostridium thermocellum/crescimento & desenvolvimento , Hidrólise
18.
J Environ Sci (China) ; 25(5): 849-56, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24218813

RESUMO

Live cell imaging methods provide important insights into the dynamics of cellular processes that cannot be derived easily from population-averaged datasets. In the bioenergy field, much research is focused on fermentation of cellulosic biomass by thermophilic microbes to produce biofuels; however, little effort is dedicated to the development of imaging tools to monitor this dynamic biological process. This is, in part, due to the experimental challenges of imaging cells under both anaerobic and thermophilic conditions. Here an imaging system is described that integrates confocal microscopy, a flow cell device, and a lipophilic dye to visualize cells. Solutions to technical obstacles regarding suitable fluorescent markers, photodamage during imaging, and maintenance of environmental conditions during imaging are presented. This system was utilized to observe cellulose colonization by Clostridium thermocellum under anaerobic conditions at 60 degrees C. This method enables live cell imaging of bacterial growth under anaerobic and thermophilic conditions and should be widely applicable to visualizing different cell types or processes in real time.


Assuntos
Celulose/metabolismo , Clostridium thermocellum/metabolismo , Anaerobiose , Carbocianinas/farmacologia , Clostridium thermocellum/crescimento & desenvolvimento , Escherichia coli/genética , Corantes Fluorescentes/farmacologia , Temperatura Alta , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Análise de Célula Única
19.
PLoS One ; 8(10): e78829, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205326

RESUMO

BACKGROUND: An industrially robust microorganism that can efficiently degrade and convert lignocellulosic biomass into ethanol and next-generation fuels is required to economically produce future sustainable liquid transportation fuels. The anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum is a candidate microorganism for such conversions but it, like many bacteria, is sensitive to potential toxic inhibitors developed in the liquid hydrolysate produced during biomass processing. Microbial processes leading to tolerance of these inhibitory compounds found in the pretreated biomass hydrolysate are likely complex and involve multiple genes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we developed a 17.5% v/v Populus hydrolysate tolerant mutant strain of C. thermocellum by directed evolution. The genome of the wild type strain, six intermediate population samples and seven single colony isolates were sequenced to elucidate the mechanism of tolerance. Analysis of the 224 putative mutations revealed 73 high confidence mutations. A longitudinal analysis of the intermediate population samples, a pan-genomic analysis of the isolates, and a hotspot analysis revealed 24 core genes common to all seven isolates and 8 hotspots. Genetic mutations were matched with the observed phenotype through comparison of RNA expression levels during fermentation by the wild type strain and mutant isolate 6 in various concentrations of Populus hydrolysate (0%, 10%, and 17.5% v/v). CONCLUSION/SIGNIFICANCE: The findings suggest that there are multiple mutations responsible for the Populus hydrolysate tolerant phenotype resulting in several simultaneous mechanisms of action, including increases in cellular repair, and altered energy metabolism. To date, this study provides the most comprehensive elucidation of the mechanism of tolerance to a pretreated biomass hydrolysate by C. thermocellum. These findings make important contributions to the development of industrially robust strains of consolidated bioprocessing microorganisms.


Assuntos
Clostridium thermocellum/genética , Clostridium thermocellum/fisiologia , Mutação , Populus/metabolismo , Dióxido de Carbono/metabolismo , Celulose/metabolismo , Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/crescimento & desenvolvimento , Fermentação/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genômica , Hidrogênio/metabolismo , Hidrólise , Análise de Sequência de DNA , Especificidade da Espécie
20.
Can J Microbiol ; 59(10): 679-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24102221

RESUMO

Ethanol production from direct cellulose fermentation has mainly been described as a strictly anaerobic process. The use of air-tolerant organisms or consortia for this process would reduce the need for prereduction of the medium and also permit continuous feed of aerobic feedstock. To this end, moderately thermophilic (60 °C) consortia of fermentative, cellulolytic bacteria were enriched from 3 distinct environments (manure, marsh, and rotten wood) from a farm in southeast Saskatchewan, Canada. Community phenotypic and metabolic profiles were characterized. Selection methods included direct plating under an aerobic atmosphere and repeated passaging; the methods were designed to select for robust, stable aerotolerant cellulose-degrading communities. Several of the isolated communities exhibited an increase in total cellulose degradation and total ethanol yield when compared with a monoculture of Clostridium thermocellum DSMZ 1237. Owing to stringent selection conditions, low diversity enrichments were found, and many appeared to be binary cultures via density gradient gel electrophoresis analysis. On the basis of 16S rRNA gene sequencing, aerobic conditions selected for a mix of organisms highly related to C. thermocellum and Geobacillus species, while anaerobic conditions led to the development of consortia containing strains related to C. thermocellum with strains from either the genus Geobacillus or the genus Thermoanaerobacter. The presence of a Geobacillus-like species appeared to be a prerequisite for aerotolerance of the cellulolytic enrichments, a highly desired phenotype in lignocellulosic consolidated bioprocessing.


Assuntos
Biocombustíveis , Celulose/metabolismo , Etanol/metabolismo , Geobacillus/metabolismo , Thermoanaerobacter/metabolismo , Aerobiose , Metabolismo dos Carboidratos , Clostridium thermocellum/genética , Clostridium thermocellum/crescimento & desenvolvimento , Clostridium thermocellum/metabolismo , Fermentação , Geobacillus/classificação , Geobacillus/genética , Geobacillus/crescimento & desenvolvimento , Thermoanaerobacter/classificação , Thermoanaerobacter/genética , Thermoanaerobacter/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...