Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Lipids Health Dis ; 23(1): 128, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685023

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) refers to the widespread impairment of brain function caused by noncentral nervous system infection mediated by sepsis. Lipid peroxidation-induced ferroptosis contributes to the occurrence and course of SAE. This study aimed to investigate the relationship between neuronal injury and lipid peroxidation-induced ferroptosis in SAE. METHODS: Baseline data were collected from pediatric patients upon admission, and the expression levels of various markers related to lipid peroxidation and ferroptosis were monitored in the serum and peripheral blood mononuclear cells (PBMCs) of patients with SAE as well as SAE model mice. The hippocampal phosphatidylethanolamine-binding protein (PEBP)-1/15-lysine oxidase (LOX)/ glutathione peroxidase 4 (GPX4) pathway was assessed for its role on the inhibitory effect of ferroptosis in SAE treatment. RESULTS: The results showed elevated levels of S100 calcium-binding protein beta (S-100ß), glial fibrillary acidic protein, and malondialdehyde in the serum of SAE patients, while superoxide dismutase levels were reduced. Furthermore, analysis of PBMCs revealed increased transcription levels of PEBP1, LOX, and long-chain fatty acyl-CoA synthetase family member 4 (ACSL4) in SAE patients, while the transcription levels of GPX4 and cystine/glutamate transporter xCT (SLC7A11) were decreased. In comparison to the control group, the SAE mice exhibited increased expression of S-100ß and neuron-specific enolase (NSE) in the hippocampus, whereas the expression of S-100ß and NSE were reduced in deferoxamine (DFO) mice. Additionally, iron accumulation was observed in the hippocampus of SAE mice, while the iron ion levels were reduced in the DFO mice. Inhibition of ferroptosis alleviated the mitochondrial damage (as assessed by transmission electron microscopy, hippocampal mitochondrial ATP detection, and the JC-1 polymer-to-monomer ratio in the hippocampus) and the oxidative stress response induced by SAE as well as attenuated neuroinflammatory reactions. Further investigations revealed that the mechanism underlying the inhibitory effect of ferroptosis in SAE treatment is associated with the hippocampal PEBP-1/15-LOX/GPX4 pathway. CONCLUSION: These results offer potential therapeutic targets for the management of neuronal injury in SAE and valuable insights into the potential mechanisms of ferroptosis in neurological disorders.


Assuntos
Ferroptose , Hipocampo , Peroxidação de Lipídeos , Proteína de Ligação a Fosfatidiletanolamina , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Encefalopatia Associada a Sepse , Ferroptose/efeitos dos fármacos , Animais , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Masculino , Feminino , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/antagonistas & inibidores , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Modelos Animais de Doenças , Pré-Escolar , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Criança , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Malondialdeído/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Lactente
2.
Life Sci ; 294: 120371, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122795

RESUMO

BACKGROUND: Neonatal hearts have considerable regenerative potential within 7 days post birth (P7), but the rate of regeneration is extremely low after P7. Interestingly, lipid metabolism increases dramatically after P7. The similarities in these age profiles suggests a possible link between cardiac regeneration and lipid metabolism. Acyl CoA synthase long chain family member 1 (ACSL1) is the key enzyme that regulates lipid metabolism. The aim of this study was to identify the role of ACSL1 in the regeneration of cardiomyocytes. METHODS AND RESULTS: The uptake of fatty acids in hearts increased after P7; however, myocardial regeneration was decreased. We profiled an RNA-sequence array of hearts from mice of different ages, including E10.5 (embryonic stage)-, 3-, 7-, 21-, 30-, and 60-day-old mice, and found that the expression of ACSL1 was significantly increased after P7. By establishing ACSL1 knockdown mice with adeno-associated virus (AAV9). Then, we verified that knockdown of ACSL1 enhanced the capacity for myocardial regeneration both in mice and in primary cardiomyocytes. Indeed, ACSL1 knockdown in primary cardiomyocytes promoted the cell cycle progression from G0 to G2 phase by regulating specific factors, which may correlate with the activation of AKT by ACSL1 and withdrawal of FOXO1 from the nucleus. In vivo, knockdown of ACSL1 effectively restored cardiac function and myocardial regeneration in adult mice with myocardial infarction (MI). CONCLUSIONS: ACSL1 possibly induces the loss of the myocardial regenerative potential beginning at P7 in mice, and inhibition of ACSL1 effectively promoted myocardial repair after MI in mice.


Assuntos
Proliferação de Células , Coenzima A Ligases/antagonistas & inibidores , Metabolismo dos Lipídeos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Regeneração , Fatores Etários , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos ICR , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Ratos
3.
Hepatology ; 75(1): 140-153, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34510514

RESUMO

BACKGROUND AND AIMS: Globally, NAFLD is one of the most common liver disorders, with an estimated prevalence rate of more than 30% in men and 15% in women and an even higher prevalence in people with type 2 diabetes mellitus. Optimal pharmacologic therapeutic approaches for NAFLD are an urgent necessity. APPROACH AND RESULTS: In this study, we showed that compared with healthy controls, hepatic ACSL4 levels in patients with NAFLD were found to be elevated. Suppression of ACSL4 expression promoted mitochondrial respiration, thereby enhancing the capacity of hepatocytes to mediate ß-oxidation of fatty acids and to minimize lipid accumulation by up-regulating peroxisome proliferator-activated receptor coactivator-1 alpha. Moreover, we found that abemaciclib is a potent and selective ACSL4 inhibitor, and low dose of abemaciclib significantly ameliorated most of the NAFLD symptoms in multiple NAFLD mice models. CONCLUSIONS: Therefore, inhibition of ACSL4 is a potential alternative therapeutic approach for NAFLD.


Assuntos
Aminopiridinas/uso terapêutico , Benzimidazóis/uso terapêutico , Coenzima A Ligases/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Aminopiridinas/farmacologia , Animais , Benzimidazóis/farmacologia , Biópsia , Coenzima A Ligases/análise , Coenzima A Ligases/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução/efeitos dos fármacos
4.
Viruses ; 13(12)2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34960652

RESUMO

Murine hepatitis virus strain A59 (MHV-A59) was shown to induce pyroptosis, apoptosis, and necroptosis of infected cells, especially in the murine macrophages. However, whether ferroptosis, a recently identified form of lytic cell death, was involved in the pathogenicity of MHV-A59 is unknown. We utilized murine macrophages and a C57BL/6 mice intranasal infection model to address this. In primary macrophages, the ferroptosis inhibitor inhibited viral propagation, inflammatory cytokines released, and cell syncytia formed after MHV-A59 infection. In the mouse model, we found that in vivo administration of liproxstatin-1 ameliorated lung inflammation and tissue injuries caused by MHV-A59 infection. To find how MHV-A59 infection influenced the expression of ferroptosis-related genes, we performed RNA-seq in primary macrophages and found that MHV-A59 infection upregulates the expression of the acyl-CoA synthetase long-chain family member 1 (ACSL1), a novel ferroptosis inducer. Using ferroptosis inhibitors and a TLR4 inhibitor, we showed that MHV-A59 resulted in the NF-kB-dependent, TLR4-independent ACSL1 upregulation. Accordingly, ACSL1 inhibitor Triacsin C suppressed MHV-A59-infection-induced syncytia formation and viral propagation in primary macrophages. Collectively, our study indicates that ferroptosis inhibition protects hosts from MHV-A59 infection. Targeting ferroptosis may serve as a potential treatment approach for dealing with hyper-inflammation induced by coronavirus infection.


Assuntos
Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Infecções por Coronavirus/terapia , Ferroptose , Animais , Coenzima A Ligases/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Genes Virais , Lesão Pulmonar/patologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina , Quinoxalinas , Células RAW 264.7 , Compostos de Espiro , Receptor 4 Toll-Like , Replicação Viral/genética
5.
Biochem Pharmacol ; 192: 114718, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358518

RESUMO

The development of radioresistance during radiotherapy is a major cause of tumor recurrence and metastasis. To provide new insights of the mechanisms underlying radioresistance, we established radioresistant cell lines derived from two different subtypes of breast cancer cells, HER2-positive SK-BR-3 and ER-positive MCF-7 breast cancer cells, by exposing cells to 48 ~ 70 Gy of radiation delivered at 4-5 Gy twice weekly over 9 ~ 10 months. The established radioresistant SK-BR-3 (SR) and MCF-7 (MR) cells were resistant not only to a single dose of radiation (2 Gy or 4 Gy) but also to fractionated radiation delivered at 2 Gy/day for 5 days. Furthermore, these cells exhibited tumor-initiating potential in vivo and high CD24-/CD44 + ratio. To identify novel therapeutic molecular targets, we analyzed differentially expressed genes in both radioresistant cell lines and found that the expression of ACSL4 was significantly elevated in both cell lines. Targeting ACSL4 improved response to irradiation and inhibited migration activities. Furthermore, inhibition of ACLS4 using ASCL4 siRNA or triacsin C suppressed FOXM1 expression, whereas inhibition of FOXM1 using thiostrepton did not affect ACSL4 expression. Targeting the ACSL4-FOXM1 signaling axis by inhibiting ASCL4 or FOXM1 overcame the radioresistance by suppressing DNA damage responses and inducing apoptosis. This is the first study to report that ACSL4 plays a crucial role in mediating the radioresistance of breast cancer by regulating FOXM1. We propose the ACSL4-FOXM1 signaling axis be considered a novel therapeutic target in radioresistant breast cancer and suggest treatment strategies targeting this signaling axis might overcome breast cancer radioresistance.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Coenzima A Ligases/metabolismo , Proteína Forkhead Box M1/metabolismo , Tolerância a Radiação/fisiologia , Animais , Coenzima A Ligases/antagonistas & inibidores , Feminino , Proteína Forkhead Box M1/antagonistas & inibidores , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
6.
Eur J Pharmacol ; 909: 174397, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332918

RESUMO

Accumulating evidence shows that deregulation of fatty acid (FA) metabolism is associated with the development of cancer. Long-chain acyl-coenzyme A synthases (ACSLs) are responsible for activating long-chain FAs and are frequently deregulated in cancers. Among the five mammalian ACSL family members, ACSL1 is involved in the TNFα-mediated pro-inflammatory phenotype and mainly facilitates cancer progression. ACSL3 is an androgen-responsive gene. High ACSL3 expression has been detected in a variety of cancers, including melanoma, triple-negative breast cancer (TNBC) and high-grade non-small cell lung carcinoma (NSCLC), and correlates with worse prognosis of patients with these diseases. ACSL4 can exert opposing roles acting as a tumor suppressor or as an oncogene depending on the specific cancer type and tissue environment. Moreover, ACSL4 behaves as a crucial regulator in ferroptosis that is defined as a cell death process caused by iron-dependent peroxidation of lipids. ACSL5 is nuclear-coded and expressed in the mitochondria and physiologically participates in the pro-apoptotic sensing of cells. ACSL5 mainly acts as a tumor suppressor in cancers. ACSL6 downregulation has been observed in many forms of cancers, except in colorectal cancer (CRC). Here, we address the differential regulatory mechanisms of the ACSL family members as well as their functions in carcinogenesis. Moreover, we enumerate the clinical therapeutic implications of ACSLs, which might serve as valuable biomarkers and therapeutic targets for precision cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Coenzima A Ligases/metabolismo , Ativadores de Enzimas/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/genética , Modelos Animais de Doenças , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/agonistas , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Free Radic Res ; 55(7): 853-864, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34323631

RESUMO

Glioblastoma is one of the most frequent malignant tumors derived from the brain in adults with very poor prognosis. Ferroptosis is implicated in the initiation and progression of various tumors, including the glioblastoma. The present study aims to investigate the function of microRNA (miR)-670-3p in glioblastoma, and tries to demonstrate whether ferroptosis is involved in this process. Human glioblastoma cell lines, U87MG and A172, were transfected with the inhibitor, mimic and matched negative controls of miR-670-3p to manipulate intracellular miR-670-3p level. To validate the involvement of ferroptosis in miR-670-3p inhibitor-mediated tumor suppressive effects, ferrostain-1 and liproxstatin-1 were used to inhibit ferroptosis in the presence of miR-670-3p inhibitor. In addition, the small interfering RNA against acyl-CoA synthase long chain family member 4 (ACSL4) was used to knock down endogenous ACSL4 expression. To validate the combined effects between miR-670-3p inhibitor and temozolomide (TMZ), cells were pretreated with TMZ and then transfected with or without miR-670-3p inhibitor. miR-670-3p level was elevated in human glioblastoma, but decreased upon ferroptotic stimulation. miR-670-3p inhibitor suppressed, while miR-670-3p mimic promoted glioblastoma cell growth through modulating ferroptosis. Mechanistically, ACSL4 was required for the regulation on ferroptosis and growth of glioblastoma cells by miR-670-3p. Moreover, U87MG and A172 cells treated with miR-670-3p inhibitor showed an increased chemosensitivity to TMZ. We prove that miR-670-3p suppresses ferroptosis of human glioblastoma cells through targeting ACSL4, and that inhibiting miR-670-3p can be an alternative, at least adjuvant strategy to treat glioblastoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Coenzima A Ligases/antagonistas & inibidores , Ferroptose , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , MicroRNAs/genética , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Células Tumorais Cultivadas
8.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299302

RESUMO

Short-chain fatty acid (SCFA) acetate, a byproduct of dietary fiber metabolism by gut bacteria, has multiple immunomodulatory functions. The anti-inflammatory role of acetate is well documented; however, its effect on monocyte chemoattractant protein-1 (MCP-1) production is unknown. Similarly, the comparative effect of SCFA on MCP-1 expression in monocytes and macrophages remains unclear. We investigated whether acetate modulates TNFα-mediated MCP-1/CCL2 production in monocytes/macrophages and, if so, by which mechanism(s). Monocytic cells were exposed to acetate with/without TNFα for 24 h, and MCP-1 expression was measured. Monocytes treated with acetate in combination with TNFα resulted in significantly greater MCP-1 production compared to TNFα treatment alone, indicating a synergistic effect. On the contrary, treatment with acetate in combination with TNFα suppressed MCP-1 production in macrophages. The synergistic upregulation of MCP-1 was mediated through the activation of long-chain fatty acyl-CoA synthetase 1 (ACSL1). However, the inhibition of other bioactive lipid enzymes [carnitine palmitoyltransferase I (CPT I) or serine palmitoyltransferase (SPT)] did not affect this synergy. Moreover, MCP-1 expression was significantly reduced by the inhibition of p38 MAPK, ERK1/2, and NF-κB signaling. The inhibition of ACSL1 attenuated the acetate/TNFα-mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB. Increased NF-κB/AP-1 activity, resulting from acetate/TNFα co-stimulation, was decreased by ACSL1 inhibition. In conclusion, this study demonstrates the proinflammatory effects of acetate on TNF-α-mediated MCP-1 production via the ACSL1/MAPK/NF-κB axis in monocytic cells, while a paradoxical effect was observed in THP-1-derived macrophages.


Assuntos
Acetatos/farmacologia , Quimiocina CCL2/biossíntese , Ácidos Graxos Voláteis/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Acetatos/administração & dosagem , Quimiocina CCL2/genética , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Voláteis/administração & dosagem , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Monócitos/imunologia , NF-kappa B/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1 , Triazenos/farmacologia , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/farmacologia
9.
ASN Neuro ; 13: 17590914211010647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33906483

RESUMO

Intracerebral haemorrhage (ICH) is a devastating subtype of stroke with high morbidity and mortality. It has been reported that paeonol (PAN) inhibits the progression of ICH. However, the mechanism by which paeonol mediates the progression of ICH remains unclear. To mimic ICH in vitro, neuronal cells were treated with hemin. An in vivo model of ICH was established to detect the effect of paeonol on ferroptosis in neurons during ICH. Cell viability was tested by MTT assay. Furthermore, cell injury was detected by GSH, MDA and ROS assays. Ferroptosis was examined by iron assay. RT-qPCR and western blotting were used to detect gene and protein expression, respectively. The correlation among HOTAIR, UPF1 and ACSL4 was explored by FISH, RNA pull-down and RIP assays. Paeonol significantly inhibited the ferroptosis of neurons in ICH mice. In addition, paeonol significantly reversed hemin-induced injury and ferroptosis in neurons, while this phenomenon was notably reversed by HOTAIR overexpression. Moreover, paeonol notably inhibited ferroptosis in hemin-treated neuronal cells via inhibition of ACSL4. Additionally, HOTAIR bound to UPF1, and UPF1 promoted the degradation of ACSL4 by binding to ACSL4. Furthermore, HOTAIR overexpression reversed paeonol-induced inhibition of ferroptosis by mediating the UPF1/ACSL4 axis. Paeonol inhibits the progression of ICH by mediating the HOTAIR/UPF1/ACSL4 axis. Therefore, paeonol might serve as a new agent for the treatment of ICH.


Assuntos
Acetofenonas/uso terapêutico , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/prevenção & controle , Coenzima A Ligases/metabolismo , RNA Longo não Codificante/metabolismo , Transativadores/metabolismo , Acetofenonas/farmacologia , Animais , Coenzima A Ligases/antagonistas & inibidores , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
10.
Sci Rep ; 11(1): 7290, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790399

RESUMO

Cancer can develop into a recurrent metastatic disease with latency periods of years to decades. Dormant cancer cells, which represent a major cause of recurrent cancer, are relatively insensitive to most chemotherapeutic drugs and radiation. We previously demonstrated that cancer cells exhibited dormancy in a cell density-dependent manner. Dormant cancer cells exhibited increased porphyrin metabolism and sensitivity to 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT). However, the metabolic changes in dormant cancer cells or the factors that enhance porphyrin metabolism have not been fully clarified. In this study, we revealed that lipid metabolism was increased in dormant cancer cells, leading to ALA-PDT sensitivity. We performed microarray analysis in non-dormant and dormant cancer cells and revealed that lipid metabolism was remarkably enhanced in dormant cancer cells. In addition, triacsin C, a potent inhibitor of acyl-CoA synthetases (ACSs), reduced protoporphyrin IX (PpIX) accumulation and decreased ALA-PDT sensitivity. We demonstrated that lipid metabolism including ACS expression was positively associated with PpIX accumulation. This research suggested that the enhancement of lipid metabolism in cancer cells induces PpIX accumulation and ALA-PDT sensitivity.


Assuntos
Ácido Aminolevulínico/farmacologia , Metabolismo dos Lipídeos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Próstata/metabolismo , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Humanos , Masculino , Células PC-3 , Porfirinas/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Triazenos/farmacologia
11.
Biochem Biophys Res Commun ; 545: 81-88, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33548628

RESUMO

Cervical cancer remains the leading cause of cancerous death among women worldwide. Oleanolic acid (OA) is a substance that occurs naturally in the leaves, fruits, and rhizomes of plants and has anti-cancer activity. In this study, tumor-bearing mice were used as the animal model and Hela cells were used as cellular model. In vivo experiments have showed that OA significantly reduced the size and mass of cervical cancer tumors in mice. In vitro experiments have showed that OA significantly reduced the viability and proliferative capacity of Hela cells. In both in vivo and in vitro assays, OA increased the oxidative stress levels and Fe2+ content, and increased the expression of ferroptosis-related proteins. We found that ACSL4 was highly expressed in both xenograft models and cervical carcinoma cells with OA treatment. Further use of siRNA to interfere with ACSL4 expression in cervical cancer cells revealed that the inhibitory effect of OA on cell viability and proliferative capacity was counteracted, while a decrease in ROS levels and GPX4 was detected, suggesting that OA activated ferroptosis in Hela cells by promoting ACSL4 expression, thereby reducing the survival rate of Hela cells. Therefore, promotion of ACSL4-dependent ferroptosis by OA may be a potential approach for the treatment of cervical cancer.


Assuntos
Coenzima A Ligases/metabolismo , Ácido Oleanólico/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/genética , Feminino , Ferroptose/efeitos dos fármacos , Células HeLa , Humanos , Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cell Mol Life Sci ; 78(6): 2893-2910, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33068124

RESUMO

Acyl-CoA synthetase 4 (ACSL4) is an isoenzyme of the fatty acid ligase-coenzyme-A family taking part in arachidonic acid metabolism and steroidogenesis. ACSL4 is involved in the development of tumor aggressiveness in breast and prostate tumors through the regulation of various signal transduction pathways. Here, a bioinformatics analysis shows that the ACSL4 gene expression and proteomic signatures obtained using a cell model was also observed in tumor samples from breast and cancer patients. A well-validated ACSL4 inhibitor, however, has not been reported hindering the full exploration of this promising target and its therapeutic application on cancer and steroidogenesis inhibition. In this study, ACSL4 inhibitor PRGL493 was identified using a homology model for ACSL4 and docking based virtual screening. PRGL493 was then chemically characterized through nuclear magnetic resonance and mass spectroscopy. The inhibitory activity was demonstrated through the inhibition of arachidonic acid transformation into arachidonoyl-CoA using the recombinant enzyme and cellular models. The compound blocked cell proliferation and tumor growth in both breast and prostate cellular and animal models and sensitized tumor cells to chemotherapeutic and hormonal treatment. Moreover, PGRL493 inhibited de novo steroid synthesis in testis and adrenal cells, in a mouse model and in prostate tumor cells. This work provides proof of concept for the potential application of PGRL493 in clinical practice. Also, these findings may prove key to therapies aiming at the control of tumor growth and drug resistance in tumors which express ACSL4 and depend on steroid synthesis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Coenzima A Ligases/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Animais , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Coenzima A Ligases/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Próstata/citologia , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Esteroides/sangue , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Bioorg Med Chem Lett ; 33: 127722, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285268

RESUMO

Long-chain acyl-CoA synthetase-1 (ACSL1), an enzyme that catalyzes the synthesis of long-chain acyl-CoA from the corresponding fatty acids, is believed to play essential roles in lipid metabolism. Structure activity relationship studies based on HTS hit compound 1 delivered the benzimidazole series as the first selective and highly potent ACSL1 inhibitors. Representative compound 13 exhibited not only remarkable inhibitory activity against ACSL1 (IC50 = 0.042 µM) but also excellent selectivity for the other ACSL isoforms. In addition, compound 13 demonstrated an in vivo suppression effect against the production of long-chain acyl-CoAs in mouse.


Assuntos
Benzimidazóis/farmacologia , Coenzima A Ligases/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Animais , Benzimidazóis/síntese química , Benzimidazóis/química , Coenzima A Ligases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Camundongos , Camundongos Knockout , Estrutura Molecular , Relação Estrutura-Atividade
14.
Oncol Rep ; 44(6): 2595-2609, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33125108

RESUMO

Although previous studies have demonstrated that triterpenoids, such as betulinic acid (BA), can inhibit tumor cell growth, their potential targets in colorectal cancer (CRC) metabolism have not been systematically investigated. In the present study, BA­loaded nanoliposomes (BA­NLs) were prepared, and their effects on CRC cell lines were evaluated. The aim of the present study was to determine the anticancer mechanisms of action of BA­NLs in fatty acid metabolism­mediated glycolysis, and investigate the role of key targets, such as acyl­CoA synthetase (ACSL), carnitine palmitoyltransferase (CPT) and acetyl CoA, in promoting glycolysis, which is activated by inducing hexokinase (HK), phosphofructokinase­1 (PFK­1), phosphoenolpyruvate (PEP) and pyruvate kinase (PK) expression. The results demonstrated that BA­NLs significantly suppressed the proliferation and glucose uptake of CRC cells by regulating potential glycolysis and fatty acid metabolism targets and pathways, which forms the basis of the anti­CRC function of BA­NLs. Moreover, the effects of BA­NLs were further validated by demonstrating that the key targets of HK2, PFK­1, PEP and PK isoenzyme M2 (PKM2) in glycolysis, and of ACSL1, CPT1a and PEP in fatty acid metabolism, were blocked by BA­NLs, which play key roles in the inhibition of glycolysis and fatty acid­mediated production of pyruvate and lactate. The results of the present study may provide a deeper understanding supporting the hypothesis that liposomal BA may regulate alternative metabolic pathways implicated in CRC adjuvant therapy.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Nanopartículas/química , Triterpenos Pentacíclicos/administração & dosagem , Efeito Warburg em Oncologia/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Neoplasias Colorretais/patologia , Ácidos Graxos/metabolismo , Células HCT116 , Humanos , Lipossomos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Ácido Betulínico , Proteínas de Ligação a Hormônio da Tireoide
15.
Pharmacol Res ; 161: 105228, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33027714

RESUMO

Fatty acid transport protein 2 (FATP2) is a multifunctional protein whose specific function is determined by the type of located cell, its intracellular location, or organelle-specific interactions. In the different diseases setting, a newfound appreciation for the biological function of FATP2 has come into view. Two main functions of FATP2 are to activate long-chain fatty acids (LCFAs) as a very long-chain acyl-coenzyme A (CoA) synthetase (ACSVL) and to transport LCFAs as a fatty acid transporter. FATP2 is not only involved in the occurrence of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), but also plays an important role in lithogenic diet-induced cholelithiasis, the formation of cancer tumor immunity, the progression of chronic kidney disease (CKD), and the regulation of zoledronate-induced nephrotoxicity. Herein, we review the updated information on the role of FATP2 in related diseases. In particular, we discuss the new functions of FATP2 and propose that FATP2 is a potential clinical biomarker and therapeutic target. In conclusion, regulatory strategies for FATP2 may bring new treatment options for cancer and lipid metabolism-related disorders.


Assuntos
Antineoplásicos/farmacologia , Coenzima A Ligases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hipolipemiantes/farmacologia , Nefropatias/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Biomarcadores/metabolismo , Coenzima A Ligases/metabolismo , Humanos , Nefropatias/enzimologia , Nefropatias/patologia , Fígado/enzimologia , Fígado/patologia , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia
16.
PLoS One ; 15(10): e0240659, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057430

RESUMO

SR-BI binds various lipoproteins, including HDL, LDL as well as VLDL, and mediates selective cholesteryl ester (CE) uptake. HDL derived CE accumulates in cellular lipid droplets (LDs), which also store triacylglycerol (TAG). We hypothesized that SR-BI could significantly facilitate LD formation, in part, by directly transporting LDL derived neutral lipids (NL) such as CE and TAG into LDs without lipolysis and de novo lipid synthesis. SR-BI overexpression greatly increased LDL uptake and LD formation in stably transfected HeLa cells (SR-BI-HeLa). LDs isolated from SR-BI-HeLa contained 4- and 7-times more CE and TAG, respectively, than mock-transfected HeLa (Mock-HeLa). In contrast, LDL receptor overexpression in HeLa (LDLr-HeLa) greatly increased LDL uptake, degradation with moderate 1.5- and 2-fold increases of CE and TAG, respectively. Utilizing CE and TAG analogs, BODIPY-TAG (BP-TAG) and BODIPY-CE (BP-CE), for tracking LDL NL, we found that after initial binding of LDL to SR-BI-HeLa, apoB remained at the cell surface, while BP-CE and BP-TAG were sorted and simultaneously transported together to LDs. Both lipids demonstrated limited internalization to lysosomes or endoplasmic reticulum in SR-BI-HeLa. In LDLr-HeLa, NLs demonstrated clear lysosomal sequestration without their sorting to LDs. An inhibition of TAG and CE de novo synthesis by 90-95% only reduced TAG and CE LD content by 45-50%, and had little effect on BP-CE and BP-TAG transport to LDs in SR-BI HeLa. Furthermore, intravenous infusion of 1-2 mg of LDL increased liver LDs in normal (WT) but not in SR-BI KO mice. Mice transgenic for human SR-BI demonstrated higher liver LD accumulation than WT mice. Finally, Electro Spray Infusion Mass Spectrometry (ESI-MS) using deuterated d-CE found that LDs accumulated up to 40% of unmodified d-CE LDL. We conclude that SR-BI mediates LDL-induced LD formation in vitro and in vivo. In addition to cytosolic NL hydrolysis and de novo lipid synthesis, this process includes selective sorting and transport of LDL NL to LDs with limited lysosomal NL sequestration and the transport of LDL CE, and TAG directly to LDs independently of de novo synthesis.


Assuntos
Gotículas Lipídicas/metabolismo , Lipídeos/química , Lipoproteínas LDL/metabolismo , Receptores Depuradores Classe B/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Compostos de Boro/metabolismo , Ésteres do Colesterol/metabolismo , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Gotículas Lipídicas/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/metabolismo , Triazenos/farmacologia , Triglicerídeos/metabolismo
17.
FASEB J ; 34(12): 16262-16275, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070393

RESUMO

Lung ischemia-reperfusion (IR) injury is a common clinical pathology associated with high mortality. Ferroptosis, a novel mode of cell death elicited by iron-dependent phospholipid peroxidation, has been implicated in ischemic events. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is one of the main enzymes in pro-ferroptotic lipid metabolism. In this study, the involvement of ferroptotic death in different durations of reperfusion was evaluated by assessing the iron content, malondialdehyde, and glutathione levels, ferroptosis-related protein expression, and mitochondria morphology. The roles of ferroptosis-specific inhibitor, liproxastin-1 (Lip-1), and ACSL4 modulation in a preventive regimen were assessed in vivo and in vitro. The hallmarks of pulmonary function, such as histological lung injury score, wet/dry ratio, and oxygenation index, were evaluated as well. Results showed that lung IR increased the tissue iron content and lipid peroxidation accumulation, along with key protein (GPX4 and ACSL4) expression alteration during reperfusion. Pretreatment with Lip-1 inhibited ferroptosis and ameliorated lung IR-induced injury in animal and cell models. In addition, administering ACSL4 inhibitor rosiglitazone before ischemia diminished the ferroptotic damage in IR-injured lung tissue, consistent with the protective effect of ACSL4 knockdown on lung epithelial cells subjected to hypoxia/reoxygenation. Thus, this study delineated that IR-induced ferroptotic cell death in lung tissue and ACSL4 were correlated with this process. Inhibition of ferroptosis and ACSL4 mitigated the ferroptotic damage in IR-induced lung injury by reducing lipid peroxidation and increasing the glutathione and GPX4 levels.


Assuntos
Coenzima A Ligases/antagonistas & inibidores , Ferroptose/efeitos dos fármacos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Pulmão/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Rosiglitazona/farmacologia , Células A549 , Animais , Morte Celular/fisiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Traumatismo por Reperfusão/metabolismo
18.
Cancer Discov ; 10(9): 1282-1295, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32499221

RESUMO

Older patients with melanoma (>50 years old) have poorer prognoses and response rates to targeted therapy compared with young patients (<50 years old), which can be driven, in part, by the aged microenvironment. Here, we show that aged dermal fibroblasts increase the secretion of neutral lipids, especially ceramides. When melanoma cells are exposed to the aged fibroblast lipid secretome, or cocultured with aged fibroblasts, they increase the uptake of lipids via the fatty acid transporter FATP2, which is upregulated in melanoma cells in the aged microenvironment and known to play roles in lipid synthesis and accumulation. We show that blocking FATP2 in melanoma cells in an aged microenvironment inhibits their accumulation of lipids and disrupts their mitochondrial metabolism. Inhibiting FATP2 overcomes age-related resistance to BRAF/MEK inhibition in animal models, ablates tumor relapse, and significantly extends survival time in older animals. SIGNIFICANCE: These data show that melanoma cells take up lipids from aged fibroblasts, via FATP2, and use them to resist targeted therapy. The response to targeted therapy is altered in aged individuals because of the influences of the aged microenvironment, and these data suggest FATP2 as a target to overcome resistance.See related commentary by Montal and White, p. 1255.This article is highlighted in the In This Issue feature, p. 1241.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Coenzima A Ligases/metabolismo , Fibroblastos/metabolismo , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Senescência Celular , Técnicas de Cocultura , Coenzima A Ligases/antagonistas & inibidores , Derme/citologia , Derme/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Metabolismo dos Lipídeos , Melanoma/patologia , Terapia de Alvo Molecular/métodos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Cutâneas/patologia , Microambiente Tumoral
19.
Eur J Med Chem ; 201: 112408, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574901

RESUMO

Lipid metabolism in Mycobacterium tuberculosis (Mtb) relies on 34 fatty acid adenylating enzymes (FadDs) that can be grouped into two classes: fatty acyl-CoA ligases (FACLs) involved in lipid and cholesterol catabolism and long chain fatty acyl-AMP ligases (FAALs) involved in biosynthesis of the numerous essential and virulence-conferring lipids found in Mtb. The precise biochemical roles of many FACLs remain poorly characterized while the functionally non-redundant FAALs are much better understood. Here we describe the systematic investigation of 5'-O-[N-(alkanoyl)sulfamoyl]adenosine (alkanoyl adenosine monosulfamate, alkanoyl-AMS) analogs as potential multitarget FadD inhibitors for their antitubercular activity and biochemical selectivity towards representative FAAL and FACL enzymes. We identified several potent compounds including 12-azidododecanoyl-AMS 28, 11-phenoxyundecanoyl-AMS 32, and nonyloxyacetyl-AMS 36 with minimum inhibitory concentrations (MICs) against M. tuberculosis ranging from 0.098 to 3.13 µM. Compound 32 was notable for its impressive biochemical selectivity against FAAL28 (apparent Ki = 0.7 µM) versus FACL19 (Ki > 100 µM), and uniform activity against a panel of multidrug and extensively drug-resistant TB strains with MICs ranging from 3.13 to 12.5 µM in minimal (GAST) and rich (7H9) media. The SAR analysis provided valuable insights for further optimization of 32 and also identified limitations to overcome.


Assuntos
Adenosina/análogos & derivados , Adenosina/farmacologia , Antituberculosos/farmacologia , Coenzima A Ligases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Adenosina/toxicidade , Animais , Antituberculosos/síntese química , Antituberculosos/toxicidade , Proteínas de Bactérias/antagonistas & inibidores , Chlorocebus aethiops , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/toxicidade , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Sulfonamidas/toxicidade , Células Vero
20.
Breast Cancer ; 27(4): 527-533, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31939077

RESUMO

Quadruple negative breast cancer (QNBC), lacking the expression of ER (estrogen receptor), PR (progesterone receptor), HER2 (human epidermal growth factor receptor-2) and AR (androgen receptor), was regarded as one breast cancer subtype with the worst prognosis. Recently, the molecular features of QNBC are not well understood. Different from AR-positive triple-negative breast cancer, QNBC is insensitive to conventional chemotherapeutic agents and has no efficient treatment targets. However, QNBC has been shown to express unique proteins that may be amenable to use in the development of targeted therapies. Here we reviewed the features of QNBC and proteins that may serve as effective targets for QNBC treatment, such as ACSL4, SKP2, immune checkpoint inhibitors, EGFR, MicroRNA signatures and Engrailed 1.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/metabolismo , Humanos , MicroRNAs/metabolismo , Prognóstico , Receptor ErbB-2/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Proteínas Quinases Associadas a Fase S/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...