Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 69(4): 60-69, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37329547

RESUMO

Our study aimed to reveal the effects and changes, antioxidant metabolism (Oxidative Stress), inflammatory response, mitochondrial biogenesis and mitochondrial dysfunction characteristics in hepatocellular carcinoma cell line HepG2; that occur in genes (NRF-1, NRF-2, NFκB and PGC-1α) and miRNAs (miR15-a, miR16-1, miR181-c) that can control related features. To investigate the effects of Pyrroloquinoline quinone (PQQ) and Coenzyme Q10 (CoQ10) in HepG2, and their effects on cell viability, lateral cell migration, gene expression and miRNA expression levels were investigated. If the data we have obtained are evaluated in terms of anti-cancer effectiveness, the most effective use of CoQ10 can be defined as the use alone rather than the combined use. According to the results of the wound healing experiment, we determined that Pyrroloquinoline quinone and combined drug application increased the wound closure area and cell proliferation compared to the control group, while CoQ10 application decreased it. We found that Pyrroloquinoline quinone and Coenzyme Q10 exposure in the HepG2 cell line increased Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression but not NRF-1 gene expression. We reported only a small increase in expression of the NRF-2 gene in the Pyrroloquinoline quinone application compared to the control group. We found that only Pyrroloquinoline quinone and CoQ10 application caused more expression increase in the Nuclear Factor kappa B (NFκB) gene compared to combined application. Pyrroloquinoline quinone and CoQ10 administration down-regulated the expression levels of miR16-1, miR15a and miR181c. The use of Pyrroloquinoline quinone and CoQ10 is effective on epigenetic factors, miR-15a, miR-16-1 and miR181c are important candidate biomarkers in hepatocellular carcinoma and diseases accompanied by mitochondrial dysfunction.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Fatores de Transcrição/genética , Cofator PQQ/farmacologia , Cofator PQQ/genética , Cofator PQQ/metabolismo , Mitocôndrias , Genes Mitocondriais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Linhagem Celular
2.
Chem Res Toxicol ; 35(3): 355-377, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35166521

RESUMO

The widely distributed, essential redox factor pyrroloquinoline quinone (PQQ, methoxatin) (1) was discovered in the mid-1960s. The breadth and depth of its biological effects are steadily being revealed, and understanding its biosynthesis at the genomic level is a continuing process. In this review, aspects of the chemistry, biology, biosynthesis, and commercial production of 1 at the gene level, and some applications, are presented from discovery through to mid-2021.


Assuntos
Biologia , Cofator PQQ , Oxirredução , Cofator PQQ/genética , Cofator PQQ/metabolismo
3.
J Biomol Struct Dyn ; 40(9): 4237-4249, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33287678

RESUMO

Phosphate solubilization is an important and widely studied plant growth promoting trait exhibited by many bacteria. Pyrroloquinoline quinone (PQQ), a redox cofactor of methanol and glucose dehydrogenases has been well established as essential for phosphate solubilization. PQQ operon has been well studied in growth promoting rhizobacteria like Pseudomonas spp., Gluconobacter oxydans, Klebsiella pneumoniae, etc. However, the role of PqqB is quite ambiguous as its functional role has been contradicted in many studies. In the present study, we selected Pseudomonas stutzeri - a well-known P solubilizing bacterium as a representative species of the Pseudomonas genus on the basis of phylogenetic and statistical analyses of PqqB proteins. A 3 D model was generated for this protein. Docking of PqqB with PQQ showed good interaction with a theoretical binding affinity of -7.4 kcal/mol. On the other hand, docking of PqqC with 3a-(2-amino-2-carboxy-ethyl)-4,5-dioxo-4,5,6,7,8,9-hexahydro-quinoline-7,9-dicarboxylic acid (AHQQ, immediate precursor of PQQ) showed strong interaction (-10.4 kcal/mol) but the same was low with PQQ (-6.4 kcal/mol). Molecular dynamic simulation of both the complexes showed stable conformation. The binding energy of PqqB-PQQ complex (-182.710 ± 16.585 kJ/mol) was greater than PqqC-PQQ complex (-166.114 ± 12.027 kJ/mol). The results clearly indicated that kinetically there is a possibility that after cyclization of AHQQ to PQQ by PqqC, PQQ can be taken up by PqqB and transported to periplasm for the oxidation of glucose. To the best of our knowledge, this is the first attempt to understand the biological role of PqqB on the basis of molecular interactions and dynamics.Communicated by Ramaswamy H. Sarma.


Assuntos
Pseudomonas stutzeri , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Cofator PQQ/química , Cofator PQQ/genética , Cofator PQQ/metabolismo , Fosfatos , Filogenia , Pseudomonas stutzeri/metabolismo
4.
Nat Commun ; 12(1): 6693, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795278

RESUMO

Bioleaching of rare earth elements (REEs), using microorganisms such as Gluconobacter oxydans, offers a sustainable alternative to environmentally harmful thermochemical extraction, but is currently not very efficient. Here, we generate a whole-genome knockout collection of single-gene transposon disruption mutants for G. oxydans B58, to identify genes affecting the efficacy of REE bioleaching. We find 304 genes whose disruption alters the production of acidic biolixiviant. Disruption of genes underlying synthesis of the cofactor pyrroloquinoline quinone (PQQ) and the PQQ-dependent membrane-bound glucose dehydrogenase nearly eliminates bioleaching. Disruption of phosphate-specific transport system genes enhances bioleaching by up to 18%. Our results provide a comprehensive roadmap for engineering the genome of G. oxydans to further increase its bioleaching efficiency.


Assuntos
Proteínas de Bactérias/genética , Técnicas de Inativação de Genes/métodos , Genoma Bacteriano/genética , Gluconobacter oxydans/genética , Glucose Desidrogenase/genética , Cofator PQQ/genética , Proteínas de Bactérias/metabolismo , Engenharia Genética/métodos , Gluconobacter oxydans/metabolismo , Glucose Desidrogenase/metabolismo , Microbiologia Industrial/métodos , Metais Terras Raras/metabolismo , Cofator PQQ/metabolismo , Reprodutibilidade dos Testes
5.
Protein Expr Purif ; 178: 105777, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33069826

RESUMO

Pyrroloquinoline quinone (PQQ) has been recognized as the third class of redox cofactors in addition to the well-known nicotinamides (NAD(P)+) and flavins (FAD, FMN). It plays important physiological roles in various organisms and has strong antioxidant properties. The biosynthetic pathway of PQQ involves a gene cluster composed of 4-7 genes, named pqqA-G, among which pqqA is a key gene for PQQ synthesis, encoding the precursor peptide PqqA. To produce recombinant PqqA in E. coli, fusion tags were used to increase the stability and solubility of the peptide, as well simplify the scale-up of the fermentation process. In this paper, pqqA from Gluconobacter oxydans 621H was expressed in E. coli BL21 (DE3) as a fusion protein with SUMO and purified using a hexahistidine (His6) tag. The SUMO fusion protein and His6 tag were specifically recognized and cleaved by the SUMO specific ULP protease, and immobilized-metal affinity chromatography was used to obtain high-purity precursor peptide PqqA. Expression and purification of target proteins was confirmed by Tricine-SDS-PAGE. Finally, the synthesis of PQQ in a cell-free enzymatic reaction in vitro was confirmed by LC-MS.


Assuntos
Proteínas de Bactérias , Gluconobacter oxydans/genética , Cofator PQQ , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sistema Livre de Células/química , Escherichia coli/química , Gluconobacter oxydans/enzimologia , Cofator PQQ/biossíntese , Cofator PQQ/química , Cofator PQQ/genética , Cofator PQQ/isolamento & purificação
6.
Enzyme Microb Technol ; 141: 109670, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33051020

RESUMO

6-(N-hydroxyethyl)-amino-6-deoxy-l-sorbofuranose (6NSL), a key precursor in the synthesis of miglitol, is produced from N-2-hydroxyethyl-glucamine (NHEG) by the regioselective oxidation of Gluconobacter oxydans. The limitation of PQQ biosynthesis became a bottleneck for improvement of PQQ-dependent D-sorbitol dehydrogenase (mSLDH) activity. Five expression plasmids were constructed for the co-expression of the pqqABCDE gene cluster and the tldD gene on the basis of pBBR1-gHp0169-sldAB in G. oxydans to increase the biosynthesis of PQQ. The G. oxydans/pGA004, in which pqqABCDE and tldD were expressed as a cluster under the control of gHp0169 promoter, showed the optimal performance. The intracellular PQQ concentration and specific activity of mSLDH in cells increased by 79.3 % and 53.7 %, respectively, compared to that in G. oxydans/pBBR-sldAB. Then, the repeated batch biotransformation of NHEG to 6NSL by G. oxydans/pGA004 was carried out. Up to 75.0 ±â€¯3.0 g/L of 6NSL production with 94.5 ±â€¯3.6 % of average conversion rate of NHEG to 6NSL was achieved after four cycles of run. These results indicated that G. oxydans/pGA004 with high productivity had great potential for 6NSL production in industrial bioprocess.


Assuntos
Gluconobacter oxydans/metabolismo , L-Iditol 2-Desidrogenase/metabolismo , Cofator PQQ/biossíntese , Sorbose/análogos & derivados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Biotransformação , Expressão Gênica , Gluconobacter oxydans/genética , Gluconobacter oxydans/crescimento & desenvolvimento , L-Iditol 2-Desidrogenase/genética , Família Multigênica , Nitrosaminas/metabolismo , Cofator PQQ/genética , Cofator PQQ/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sorbose/biossíntese
7.
Sheng Wu Gong Cheng Xue Bao ; 36(6): 1138-1149, 2020 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-32597063

RESUMO

Pyrroloquinoline quinone (PQQ), an important redox enzyme cofactor, has many physiological and biochemical functions, and is widely used in food, medicine, health and agriculture industry. In this study, PQQ production by recombinant Gluconobacter oxydans was investigated. First, to reduce the by-product of acetic acid, the recombinant strain G. oxydans T1 was constructed, in which the pyruvate decarboxylase (GOX1081) was knocked out. Then the pqqABCDE gene cluster and tldD gene were fused under the control of endogenous constitutive promoter P0169, to generate the recombinant strain G. oxydans T2. Finally, the medium composition and fermentation conditions were optimized. The biomass of G. oxydans T1 and G. oxydans T2 were increased by 43.02% and 38.76% respectively, and the PQQ production was 4.82 and 20.5 times higher than that of the wild strain, respectively. Furthermore, the carbon sources and culture conditions of G. oxydans T2 were optimized, resulting in a final PQQ yield of (51.32±0.899 7 mg/L), 345.6 times higher than that of the wild strain. In all, the biomass of G. oxydans and the yield of PQQ can be effectively increased by genetic engineering.


Assuntos
Gluconobacter oxydans , Microbiologia Industrial , Cofator PQQ , Fermentação , Técnicas de Inativação de Genes , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Microbiologia Industrial/métodos , Família Multigênica/genética , Organismos Geneticamente Modificados , Cofator PQQ/biossíntese , Cofator PQQ/genética , Regiões Promotoras Genéticas/genética
8.
Lett Appl Microbiol ; 71(3): 242-250, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32394472

RESUMO

Pyrroloquinoline quinone (PQQ) is a cofactor of glucose dehydrogenase (GDH) and thus participates in glucose utilization. In Klebsiella pneumoniae, glucose utilization involves PQQ-dependent direct oxidation pathway (DOP) and phosphoenolpyruvate-dependent transport system (PTS). It is challenging to overproduce PQQ, as its biosynthesis remains unclear. Here, we report that PQQ production can be enhanced by stimulating the metabolic demand for it. First, we developed CRISPR interference (CRISPRi) system to block PTS and thereby intensify DOP. In shake-flask cultivation, the strain with CRISPRi system (simultaneously inhibiting four PTS-related genes) produced 225·65 nmol l-1 PQQ, which was 2·14 times that of wild type. In parallel, an exogenous soluble glucose dehydrogenase (sGDH) was overexpressed in K. pneumoniae. In the shake-flask cultivation, this sGDH-overexpressing strain accumulated 140·05 nmol l-1 PQQ, which was 1·33 times that of wild type. To combine the above two strategies, we engineered a strain harbouring both CRISPRi vector and sGDH-overexpressing vector. In the shake-flask cultivation, this two-plasmid strain generated 287·01 nmol l-1 PQQ, which was 2·72 times that of wild type. In bioreactor cultivation, this two-plasmid strain produced 2206·1 nmol l-1 PQQ in 57 h, which was 7·69 times that in shake-flask cultivation. These results indicate that PQQ production can be enhanced by intensifying DOP, as the apo-enzyme GDH is intrinsically coupled with cofactor PQQ. This study provides a strategy for the production of cofactors whose biosynthesis mechanisms remain ambiguous. SIGNIFICANCE AND IMPACT OF THE STUDY: Pyrroloquinoline quinone (PQQ) is an economically important chemical, which typically serves as a cofactor of glucose dehydrogenase (GDH) and thus participates in glucose metabolism. Klebsiella pneumoniae can naturally synthesize PQQ, but current yield constrains its commercialization. In this study, the PQQ level was improved by stimulating metabolic demand for PQQ, instead of overexpressing PQQ synthetic genes, as the synthetic mechanism remains ambiguous.


Assuntos
Reatores Biológicos/microbiologia , Glucose Desidrogenase/metabolismo , Klebsiella pneumoniae/metabolismo , Cofator PQQ/genética , Cofator PQQ/metabolismo , Transporte Biológico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Glucose/metabolismo , Glucose Desidrogenase/genética , Klebsiella pneumoniae/genética , Oxirredução , Fosfoenolpiruvato/metabolismo
9.
Curr Microbiol ; 77(7): 1174-1183, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32080751

RESUMO

Klebsiella pneumoniae can naturally synthesize pyrroloquinoline quinone (PQQ), but current low yield restricts its commercialization. Here, we reported that PQQ production can be improved by simultaneously intensifying PQQ gene expression and glucose metabolism. Firstly, tandem repetitive tac promoters were constructed to overexpress PQQ synthesis genes. Results showed that when three repeats of tac promoter were recruited to overexpress PQQ synthesis genes, the recombinant strain generated 1.5-fold PQQ relative to the strain recruiting only one tac promoter. Quantitative real-time PCR (qRT-PCR) revealed the increased transcription levels of PQQ synthesis genes. Next, fermentation parameters were optimized to augment the glucose direct oxidation pathway (GDOP) mediated by PQQ-dependent glucose dehydrogenase (PQQ-GDH). Results demonstrated that the cultivation conditions of sufficient glucose (≥ 32 g/L), low pH (5.8), and limited potassium (0.7 nmol/L) significantly promoted the biosynthesis of gluconic acid, 2-ketogluconic acid, and PQQ. In optimum shake flask fermentation conditions, the K. pneumoniae strain overexpressing PQQ synthesis genes under three repeats of tac promoter generated 363.3 nmol/L of PQQ, which was 2.6-fold of that in original culture conditions. In bioreactor cultivation, this strain produced 2371.7 nmol/L of PQQ. To our knowledge, this is the highest PQQ titer reported so far using K. pneumoniae as a host strain. Overall, simultaneous intensification of pqq gene expression and glucose metabolism is effective to improve PQQ production.


Assuntos
Glucose/metabolismo , Klebsiella pneumoniae , Engenharia Metabólica/métodos , Cofator PQQ , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos/microbiologia , Fermentação , Glucose/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Cofator PQQ/análise , Cofator PQQ/genética , Cofator PQQ/metabolismo
10.
Curr Microbiol ; 76(7): 804-809, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31025087

RESUMO

In this study, the newly designed pqq gene-specific primer sets were used for determination of phosphate-solubilizing capabilities of bacterial isolates from the agricultural regions of Erzurum. The specificity of newly designed primer sets (PqqA2F/PqqA2R, Pqq5F/Pqq5R, PqqF2/PqqF2R) were tested against ten isolates, whose phosphate-solubilizing activities were initially proved by the conventional methods. Non-phosphate-solubilizing bacteria were also chosen as negative control. According to the results, five of ten phosphate-solubilizing bacteria with PqqA2F/PqqA2R, two of ten phosphate-solubilizing bacteria with Pqq5F/Pqq5R primer set, and one of ten phosphate solubilizing with PqqF2F/PqqF2R bacteria were successfully amplificated in the PCR assay and none of the non-phosphate-solubilizing bacteria was amplificated. Then, the molecular characterization of the active phosphate-solubilizing strains was done based on the partial 16S ribosomal RNA gene region sequence analysis method. Two isolates of Enterobacter sp., 1 Rhizobium sp., 1 Enterococcus sp., 1 Bacillus cereus, 1 Bacillus atrophaeus, 1 Bacillus aryabhattai, 1 Acinetobacter sp., 1 Pseudomonas japonica, and 1 Enterobacter cloacae were identified as active phosphate-solubilizing strains. Consequently, the results showed that this specific primer sets could be used as an economic, rapid, and useful tool for the detection of phosphate-solubilizing strains in the agricultural researches.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Técnicas Bacteriológicas/métodos , Fosfatos/metabolismo , Microbiologia do Solo , Agricultura , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Cofator PQQ/genética , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solubilidade , Turquia
11.
J Biosci Bioeng ; 126(6): 667-675, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29914801

RESUMO

Oharaeibacter diazotrophicus strain SM30T, isolated from rice rhizosphere, is an aerobic, facultative lanthanide (Ln3+)-utilizing methylotroph and diazotroph that belongs to the Methylocystaceae family. In this research, the complete genome sequence of strain SM30T was determined, and its methylotrophy modules were characterized. The genome consists of one chromosome and two plasmids, comprising a total of 5,004,097 bp, and the GC content was 71.6 mol%. A total of 4497 CDSs, 67 tRNA, and 9 rRNA were encoded. Typical alpha-proteobacterial methylotrophy genes were found: pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH) (mxaF and xoxF1-4), methylotrophy regulatory proteins (mxbDM and mxcQE), PQQ synthesis, H4F pathway, H4MPT pathway, formate oxidation, serine cycle, and ethylmalonyl-CoA pathway. SDS-PAGE and subsequent LC-MS analysis, and qPCR analysis revealed that MxaF and XoxF1 were the dominant MDH in the absence or presence of lanthanum (La3+), respectively. The growth of MDH gene-deletion mutants on alcohols and qPCR results indicated that mxaF and xoxF1 are also involved in ethanol and propanol oxidation, xoxF2 participates in methanol oxidation in the presence of La3+, while xoxF3 was associated with methanol and ethanol oxidation in the absence of La3+, implying that XoxF3 is a calcium (Ca2+)-binding XoxF. Four Ln3+ such as La3+, cerium (Ce3+), praseodymium (Pr3+), and neodymium (Nd3+) served as cofactors for XoxF1 by supporting ΔmxaF growth on methanol. Some heavier lanthanides inhibited growth of SM30 on methanol. This study contributes to the understanding of the function of various XoxF-type MDHs and their roles in methylotrophs.


Assuntos
Genoma Bacteriano/genética , Metanol/metabolismo , Methylocystaceae/genética , Oxirredutases do Álcool/genética , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Composição de Bases , Mapeamento Cromossômico , Etanol/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genômica/métodos , Methylocystaceae/metabolismo , Organismos Geneticamente Modificados , Oxirredução , Cofator PQQ/genética
12.
J Cell Sci ; 130(15): 2631-2643, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28676501

RESUMO

Reactive oxygen species (ROS), originally characterized based on their harmful effects on cells or organisms, are now recognized as important signal molecules regulating various biological processes. In particular, low levels of ROS released from mitochondria extend lifespan. Here, we identified a novel mechanism of generating appropriate levels of ROS at the plasma membrane through a peroxidase and dual oxidase (DUOX) system, which could extend lifespan in Caenorhabditis elegans A redox co-factor, pyrroloquinoline quinone (PQQ), activates the C. elegans DUOX protein BLI-3 to produce the ROS H2O2 at the plasma membrane, which is subsequently degraded by peroxidase (MLT-7), eventually ensuring adequate levels of ROS. These ROS signals are transduced mainly by the oxidative stress transcriptional factors SKN-1 (Nrf2 or NFE2L2 in mammals) and JUN-1, and partially by DAF-16 (a FOXO protein homolog). Cell biology experiments demonstrated a similarity between the mechanisms of PQQ-induced activation of human DUOX1 and DUOX2 and that of C. elegans BLI-3, suggesting that DUOXs are potential targets of intervention for lifespan extension. We propose that low levels of ROS, fine-tuned by the peroxidase and dual oxidase system at the plasma membrane, act as second messengers to extend lifespan by the effect of hormesis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Oxidases Duais/metabolismo , Longevidade/fisiologia , Oxirredutases/metabolismo , Cofator PQQ/metabolismo , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Oxidases Duais/genética , Oxirredutases/genética , Cofator PQQ/genética , Peroxidase/genética
13.
Arch Biochem Biophys ; 608: 20-6, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27592307

RESUMO

The gene encoding a quinoprotein aldose sugar dehydrogenase (ASD) from Thermus thermophilus HJ6 (Tt_ASD) was cloned and sequenced; it comprised 1059 nucleotides encoding a protein containing 352 amino acids that had a predicted molecular mass of 38.9 kDa. The deduced amino acid sequence showed 42.9% and 33.9% identities to the ASD proteins from Pyrobaculum aerophilum and Escherichia coli, respectively. The biochemical properties of Tt_ASD were characterized. The optimum pH for the oxidation of glucose was 7.0-7.5 and the optimum temperature was 70 °C. The half-life of heat inactivation for the apoenzyme was about 25 min at 85 °C. The enzyme was highly thermostable, and the activity of the pyrroloquinoline quinone-bound holoenzyme was not lost after incubation at 85 °C for 100 min. Tt_ASD could oxidize various sugars, including hexoses, pentoses, disaccharides, and polysaccharides, in addition to alcohols. Structural analysis suggested that Tyr156 would be the substrate-binding residue. Two mutants, Y156A and Y156K, had impaired activities and affinities for all substrates and completely lost their activities for alcohols. This structural and mutational analysis of Tt_ASD demonstrates the crucial role of Tyr156 in determining substrate specificity.


Assuntos
Aspartato-Semialdeído Desidrogenase/química , Proteínas de Bactérias/química , Análise Mutacional de DNA , Thermus thermophilus/genética , Aspartato-Semialdeído Desidrogenase/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Conformação Molecular , Mutação , Fases de Leitura Aberta , Cofator PQQ/química , Cofator PQQ/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato , Temperatura , Thermus thermophilus/enzimologia , Tirosina/química , Tirosina/genética
14.
J Bacteriol ; 198(22): 3109-3118, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27573017

RESUMO

Lanthanides are utilized by microbial methanol dehydrogenases, and it has been proposed that lanthanides may be important for other type I alcohol dehydrogenases. A triple mutant strain (mxaF xoxF1 xoxF2; named MDH-3), deficient in the three known methanol dehydrogenases of the model methylotroph Methylobacterium extorquens AM1, is able to grow poorly with methanol if exogenous lanthanides are added to the growth medium. When the gene encoding a putative quinoprotein ethanol dehydrogenase, exaF, was mutated in the MDH-3 background, the quadruple mutant strain could no longer grow on methanol in minimal medium with added lanthanum (La3+). ExaF was purified from cells grown with both calcium (Ca2+) and La3+ and with Ca2+ only, and the protein species were studied biochemically. Purified ExaF is a 126-kDa homodimer that preferentially binds La3+ over Ca2+ in the active site. UV-visible spectroscopy indicates the presence of pyrroloquinoline quinone (PQQ) as a cofactor. ExaF purified from the Ca2+-plus-La3+ condition readily oxidizes ethanol and has secondary activities with formaldehyde, acetaldehyde, and methanol, whereas ExaF purified from the Ca2+-only condition has minimal activity with ethanol as the substrate and activity with methanol is not detectable. The exaF mutant is not affected for growth with ethanol; however, kinetic and in vivo data show that ExaF contributes to ethanol metabolism when La3+ is present, expanding the role of lanthanides to multicarbon metabolism. IMPORTANCE: ExaF is the most efficient PQQ-dependent ethanol dehydrogenase reported to date and, to our knowledge, the first non-XoxF-type alcohol oxidation system reported to use lanthanides as a cofactor, expanding the importance of lanthanides in biochemistry and bacterial metabolism beyond methanol dehydrogenases to multicarbon metabolism. These results support an earlier proposal that an aspartate residue near the catalytic aspartate residue may be an indicator of rare-earth element utilization by type I alcohol dehydrogenases.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Etanol/metabolismo , Elementos da Série dos Lantanídeos/metabolismo , Methylobacterium extorquens/enzimologia , Cofator PQQ/metabolismo , Acetaldeído/metabolismo , Oxirredutases do Álcool/genética , Proteínas de Bactérias/genética , Formaldeído/metabolismo , Lantânio/metabolismo , Metanol/metabolismo , Methylobacterium extorquens/genética , Mutação , Oxirredução , Cofator PQQ/genética
15.
Appl Environ Microbiol ; 82(16): 4955-64, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27287323

RESUMO

UNLABELLED: Soil-dwelling microbes solubilize mineral phosphates by secreting gluconic acid, which is produced from glucose by a periplasmic glucose dehydrogenase (GDH) that requires pyrroloquinoline quinone (PQQ) as a redox coenzyme. While GDH-dependent phosphate solubilization has been observed in numerous bacteria, little is known concerning the mechanism by which this process is regulated. Here we use the model rhizosphere-dwelling bacterium Pseudomonas putida KT2440 to explore GDH activity and PQQ synthesis, as well as gene expression of the GDH-encoding gene (gcd) and PQQ biosynthesis genes (pqq operon) while under different growth conditions. We also use reverse transcription-PCR to identify transcripts from the pqq operon to more accurately map the operon structure. GDH specific activity and PQQ levels vary according to growth condition, with the highest levels of both occurring when glucose is used as the sole carbon source and under conditions of low soluble phosphate. Under these conditions, however, PQQ levels limit in vitro phosphate solubilization. GDH specific activity data correlate well with gcd gene expression data, and the levels of expression of the pqqF and pqqB genes mirror the levels of PQQ synthesized, suggesting that one or both of these genes may serve to modulate PQQ levels according to the growth conditions. The pqq gene cluster (pqqFABCDEG) encodes at least two independent transcripts, and expression of the pqqF gene appears to be under the control of an independent promoter and terminator. IMPORTANCE: Plant growth promotion can be enhanced by soil- and rhizosphere-dwelling bacteria by a number of different methods. One method is by promoting nutrient acquisition from soil. Phosphorus is an essential nutrient that plants obtain through soil, but in many cases it is locked up in forms that are not available for plant uptake. Bacteria such as the model bacterium Pseudomonas putida KT2440 can solubilize insoluble soil phosphates by secreting gluconic acid. This chemical is produced from glucose by the activity of the bacterial enzyme glucose dehydrogenase, which requires a coenzyme called PQQ. Here we have studied how the glucose dehydrogenase enzyme and the PQQ coenzyme are regulated according to differences in bacterial growth conditions. We determined that glucose dehydrogenase activity and PQQ production are optimal under conditions when the bacterium is grown with glucose as the sole carbon source and under conditions of low soluble phosphate.


Assuntos
Proteínas de Bactérias/genética , Expressão Gênica , Glucose 1-Desidrogenase/genética , Cofator PQQ/genética , Pseudomonas putida/genética , Proteínas de Bactérias/metabolismo , Glucose 1-Desidrogenase/metabolismo , Óperon , Cofator PQQ/metabolismo , Pseudomonas putida/metabolismo , Rizosfera
16.
Nutrition ; 32(11-12): 1285-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27209211

RESUMO

OBJECTIVE: Antioxidants, chelating agents, and probiotics are used to manage the toxic effects of cadmium (Cd) and mercury (Hg). The aim of this study was to investigate the combined effects of antioxidants, chelating agents, and probiotics against heavy metal toxicity. METHOD: Genetically modified probiotic Escherichia coli Nissle 1917 (EcN-20) producing a potent water soluble antioxidant pyrroloquinoline quinone (PQQ) was supplemented with oral citric acid and compared with another genetically modified probiotic EcN-21 producing PQQ and citric acid against oxidative stress induced by Cd and Hg. Rats were independently given 100 ppm Cd and 80 ppm Hg in drinking water for 4 wk. RESULTS: EcN-20 was found to be more effective than EcN-2 (EcN strain with genomic integration of vgb and gfp genes) with orally given PQQ against oxidative stress induced by Cd and Hg. EcN-20 supplemented with oral citric acid was more effective against Cd and Hg toxicity compared with EcN-2+citric acid (oral), EcN-2+PQQ (oral), EcN-2+PQQ (oral)+citric acid (oral), EcN-20, and EcN-21. However, protection shown by EcN-21 was similar to EcN-20. CONCLUSION: The combination therapy involving probiotic EcN-20 producing PQQ with citric acid given orally was found to be a moderately effective strategy against toxicity induced by Cd and Hg, whereas the protective effect of EcN-21 was the same as EcN-20.


Assuntos
Cádmio/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mercúrio/toxicidade , Cofator PQQ/biossíntese , Cofator PQQ/genética , Probióticos/uso terapêutico , Administração Oral , Animais , Antioxidantes/administração & dosagem , Quelantes/administração & dosagem , Ácido Cítrico/administração & dosagem , Ácido Cítrico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética , Rim/lesões , Rim/metabolismo , Fígado/lesões , Fígado/metabolismo , Masculino , Ratos
17.
J Microbiol Biotechnol ; 25(8): 1349-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25839331

RESUMO

The rhizospheric zone abutting plant roots usually clutches a wealth of microbes. In the recent past, enormous genetic resources have been excavated with potential applications in host plant interaction and ancillary aspects. Two Pseudomonas strains were isolated and identified through 16S rRNA and rpoD sequence analyses as P. fluorescens QAU67 and P. putida QAU90. Initial biochemical characterization and their root-colonizing traits indicated their potential role in plant growth promotion. Such aerobic systems, involved in gluconic acid production and phosphate solubilization, essentially require the pyrroloquinoline quinine (PQQ)- dependent glucose dehydrogenase (GDH) in the genome. The PCR screening and amplification of GDH and PQQ and subsequent induction of mutagenesis characterized their possible role as antioxidants as well as in growth promotion, as probed in vitro in lettuce and in vivo in rice, bean, and tomato plants. The results showed significant differences (p < or = 0.05) in parameters of plant height, fresh weight, and dry weight, etc., deciphering a clear and in fact complementary role of GDH and PQQ in plant growth promotion. Our study not only provides direct evidence of the in vivo role of GDH and PQQ in host plants but also reveals their functional inadequacy in the event of mutation at either of these loci.


Assuntos
Glucose 1-Desidrogenase/metabolismo , Cofator PQQ/metabolismo , Pseudomonas fluorescens/enzimologia , Pseudomonas fluorescens/isolamento & purificação , Pseudomonas putida/enzimologia , Pseudomonas putida/isolamento & purificação , Aerobiose , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glucose 1-Desidrogenase/genética , Dados de Sequência Molecular , Mutagênese , Cofator PQQ/genética , Filogenia , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Plantas/microbiologia , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Microbiologia do Solo
18.
Exp Gerontol ; 66: 1-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25843018

RESUMO

BACKGROUND: Ageing involves oxidative stress mediated by Reactive Oxygen Species (ROS) and mitochondrial dysfunction. The present work demonstrates the protective effect of PQQ producing EcN against rotenone induced mitochondrial oxidative stress and consequence of mitochondrial and cellular dysfunction in naturally ageing rat model. PQQ is a potent antioxidant molecule also known to stimulate mitochondrial biogenesis and function in mammals. METHODS: Firstly, adult rats (16-18 weeks old) were treated with rotenone (2.5 mg/kg body weight; i.p.) daily for 28 days along with PQQ (10 mg/kg diet, daily) and modified probiotic EcN strains (10(8) CFU twice weekly). Secondly, ageing rats (48-50 weeks old) were gavaged with probiotic EcN strains (10(8)CFU twice weekly) and PQQ (10 mg/kg diet, daily) for 8 months. RESULTS: PQQ producing EcN-5 treatment prevented rotenone induced hepatic oxidative stress and mitochondrial damage in rats as assessed by reduced lipid peroxidation (29%), elevated glutathione (GSH) content (43%), increased catalase (52%) and superoxide dismutase (52%) activities when compared to only rotenone treatment. Moreover, increased hepatic mitochondrial content (41%), peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) mRNA (25%) and mitochondrial Superoxide Dismutase (Mit-SOD) activity (94%) were also observed in EcN-5 treated rats. Rotenone treated rats did not exhibit gain in body weight, whereas rats co-treated with EcN-5 showed significant restoration in body weight gain. Furthermore, weekly administration of EcN-5 to naturally ageing rats for eight months resulted in significant reduction of oxidative stress in hepatic and colonic tissues (assessed by lipid peroxidation, GSH content and catalase and SOD enzyme activities) along with increase in hepatic mitochondrial enzyme activities (Mit-SOD and succinate dehydrogenase) and biogenesis, when compared to untreated rats. Additionally, these rats also exhibited reduced expression of fatty acid synthase (50%) and increased expression of acyl coenzyme oxidase (225%) genes in liver in contrast to untreated rats resulting in lowered triglyceride (13% & 13.5%) and cholesterol (21% & 27%) levels in plasma and liver, respectively. Increased levels of butyrate (93%), propionate (45%) and acetate (18%) were also found in colonic content of these rats. PQQ administered daily (supplemented in diet) exhibited more or less similar effect as weekly gavaged EcN-5 in both the experiments, which substantiate that these effects are mediated by PQQ. CONCLUSION: These results suggest that genetically modified EcN-5 can be used as a nutritional supplement which can reduce age related oxidative stress and hyperlipidemia. Furthermore, it also rejuvenates healthy mitochondria by stimulating mitochondrial biogenesis and metabolism.


Assuntos
Antioxidantes/administração & dosagem , Escherichia coli/genética , Hiperlipidemias/tratamento farmacológico , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Cofator PQQ/administração & dosagem , Rotenona/administração & dosagem , Envelhecimento/efeitos dos fármacos , Animais , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Cofator PQQ/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo
19.
J Basic Microbiol ; 55(3): 312-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23828377

RESUMO

Pyrroloquinoline quinone is the third redox cofactor after nicotinamide and flavin in bacteria, and its biosynthesis pathway comprise five steps initiated from a precursor peptide PqqA coded by pqqA gene. Methylovorus sp. MP688 is equipped with five copies of pqqA genes. Herein, the transcription of pqqA genes under different conditions by real-time quantitative PCR and ß-galactosidase reporter genes are reported. Multiple pqqA genes were proved to play significant roles and contribute differently in PQQ synthesis. pqqA1, pqqA2, and pqqA4 were determined to be dominantly transcribed over the others, and correspondingly absence of any of the three genes caused a decrease in PQQ synthesis. Notably, pqqA was up-regulated in low pH and limited oxygen environment, and it is pqqA2 promoter that could be induced when bacteria were transferred from pH 7.0 to pH 5.5. Deletion analysis revealed a region within pqqA2 promoter inhibiting transcription. PQQ concentration was increased by overexpression of pqq genes under control of truncated pqqA2 promoter. The results not only imply there exist negative transcriptional regulators for pqqA2 but also provide us a new approach to achieve higher PQQ production by deleting the target binding sequence.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Methylophilaceae/genética , Cofator PQQ/biossíntese , Cofator PQQ/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Concentração de Íons de Hidrogênio , Methylophilaceae/metabolismo , Família Multigênica , Mutação , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
20.
Mikrobiologiia ; 84(6): 697-704, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26964359

RESUMO

Activation of expression of the xoxFgene encoding PQQ-dependent methanol/ethanol dehydrogenase (METDI2492) in dichloromethane- (DCM) -grown Methylobacterium dichloromethanicum DM4 was first demonstrated. The sequence of the only XoxF homolog found in the genome of strain DM4 exhibited 50% identity to that of the protein (MxaF) of the large subunit of methanol dehydrogenase (MDH). A knockout mutant with the inactivate xoxF gene (ΔxoxF) was found to be unable to grow on methanol due to the absence of the expression of the gene cluster of the classical MDH, as was confirmed by the GFP test. When grown of succinate, the ΔxoxF mutant exhibited a lower growth rate on DCM than the original strain and was more sensitive to various stress factors (oxidative, osmotic, and heat shock). Based on these data, the xoxF gene was hypothesized to belong to a group of genes affecting expression of the proteins of general stress response.


Assuntos
Oxirredutases do Álcool/biossíntese , Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Methylobacterium/enzimologia , Oxirredutases do Álcool/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Cloreto de Metileno/farmacologia , Methylobacterium/genética , Cofator PQQ/genética , Cofator PQQ/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...