Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 43(6): 2895-2907, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36862242

RESUMO

Isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies are genetic diseases biochemically characterized by the toxic accumulation of sulfite in the tissues of patients, including the brain. Neurological dysfunction and brain abnormalities are commonly observed soon after birth, and some patients also have neuropathological alterations in the prenatal period (in utero). Thus, we investigated the effects of sulfite on redox and mitochondrial homeostasis, as well as signaling proteins in the cerebral cortex of rat pups. One-day-old Wistar rats received an intracerebroventricular administration of sulfite (0.5 µmol/g) or vehicle and were euthanized 30 min after injection. Sulfite administration decreased glutathione levels and glutathione S-transferase activity, and increased heme oxygenase-1 content in vivo in the cerebral cortex. Sulfite also reduced the activities of succinate dehydrogenase, creatine kinase, and respiratory chain complexes II and II-III. Furthermore, sulfite increased the cortical content of ERK1/2 and p38. These findings suggest that redox imbalance and bioenergetic impairment induced by sulfite in the brain are pathomechanisms that may contribute to the neuropathology of newborns with ISOD and MoCD. Sulfite disturbs antioxidant defenses, bioenergetics, and signaling pathways in the cerebral cortex of neonatal rats. CII: complex II; CII-III: complex II-III; CK: creatine kinase; GST: glutathione S-transferase; HO-1: heme oxygenase-1; SDH: succinate dehydrogenase; SO32-: sulfite.


Assuntos
Córtex Cerebral , Metabolismo Energético , Cofatores de Molibdênio , Sulfito Oxidase , Sulfitos , Animais , Ratos , Animais Recém-Nascidos , Oxirredução , Sulfitos/efeitos adversos , Sulfito Oxidase/metabolismo , Cofatores de Molibdênio/metabolismo , Ratos Wistar , Homeostase , Mitocôndrias/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Antioxidantes/metabolismo
2.
J Biol Chem ; 299(1): 102736, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423681

RESUMO

Molybdenum cofactor (Moco) is a prosthetic group necessary for the activity of four unique enzymes, including the essential sulfite oxidase (SUOX-1). Moco is required for life; humans with inactivating mutations in the genes encoding Moco-biosynthetic enzymes display Moco deficiency, a rare and lethal inborn error of metabolism. Despite its importance to human health, little is known about how Moco moves among and between cells, tissues, and organisms. The prevailing view is that cells that require Moco must synthesize Moco de novo. Although, the nematode Caenorhabditis elegans appears to be an exception to this rule and has emerged as a valuable system for understanding fundamental Moco biology. C. elegans has the seemingly unique capacity to both synthesize its own Moco as well as acquire Moco from its microbial diet. However, the relative contribution of Moco from the diet or endogenous synthesis has not been rigorously evaluated or quantified biochemically. We genetically removed dietary or endogenous Moco sources in C. elegans and biochemically determined their impact on animal Moco content and SUOX-1 activity. We demonstrate that dietary Moco deficiency dramatically reduces both animal Moco content and SUOX-1 activity. Furthermore, these biochemical deficiencies have physiological consequences; we show that dietary Moco deficiency alone causes sensitivity to sulfite, the toxic substrate of SUOX-1. Altogether, this work establishes the biochemical consequences of depleting dietary Moco or endogenous Moco synthesis in C. elegans and quantifies the surprising contribution of the diet to maintaining Moco homeostasis in C. elegans.


Assuntos
Metaloproteínas , Cofatores de Molibdênio , Sulfito Oxidase , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Dieta , Metaloproteínas/genética , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Cofatores de Molibdênio/metabolismo , Pteridinas/metabolismo , Sulfito Oxidase/genética , Sulfito Oxidase/metabolismo
3.
Molecules ; 27(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956883

RESUMO

The transition element molybdenum (Mo) is an essential micronutrient for plants, animals, and microorganisms, where it forms part of the active center of Mo enzymes. To gain biological activity in the cell, Mo has to be complexed by a pterin scaffold to form the molybdenum cofactor (Moco). Mo enzymes and Moco are found in all kingdoms of life, where they perform vital transformations in the metabolism of nitrogen, sulfur, and carbon compounds. In this review, I recall the history of Moco in a personal view, starting with the genetics of Moco in the 1960s and 1970s, followed by Moco biochemistry and the description of its chemical structure in the 1980s. When I review the elucidation of Moco biosynthesis in the 1990s and the early 2000s, I do it mainly for eukaryotes, as I worked with plants, human cells, and filamentous fungi. Finally, I briefly touch upon human Moco deficiency and whether there is life without Moco.


Assuntos
Metaloproteínas , Cofatores de Molibdênio , Animais , Coenzimas/química , Eucariotos/metabolismo , Humanos , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Cofatores de Molibdênio/genética , Cofatores de Molibdênio/metabolismo , Plantas/metabolismo , Pterinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...