Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(19): 10265-10270, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350138

RESUMO

Coformycin and pentostatin are structurally related N-nucleoside inhibitors of adenosine deaminase characterized by an unusual 1,3-diazepine nucleobase. Herein, the cof gene cluster responsible for coformycin biosynthesis is identified. Reconstitution of the coformycin biosynthetic pathway in vitro demonstrates that it overlaps significantly with the early stages of l-histidine biosynthesis. Committed entry into the coformycin pathway takes place via conversion of a shared branch point intermediate to 8-ketocoformycin-[Formula: see text]-monophosphate catalyzed by CofB, which is a homolog of succinylaminoimidazolecarboxamide ribotide (SAICAR) synthetase. This reaction appears to proceed via a Dieckmann cyclization and a retro-aldol elimination, releasing ammonia and D-erythronate-4-phosphate as coproducts. Completion of coformycin biosynthesis involves reduction and dephosphorylation of the CofB product, with the former reaction being catalyzed by the NADPH-dependent dehydrogenase CofA. CofB also shows activation by adenosine triphosphate (ATP) despite the reaction requiring neither a phosphorylated nor an adenylated intermediate. This may serve to help regulate metabolic partitioning between the l-histidine and coformycin pathways.


Assuntos
Adenosina Desaminase/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Coformicina/biossíntese , Família Multigênica , Streptomyces/genética , Adenosina Desaminase/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Fosforilação , Streptomyces/metabolismo
2.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217843

RESUMO

Purine nucleoside antibiotic pairs, concomitantly produced by a single strain, are an important group of microbial natural products. Here, we report a target-directed genome mining approach to elucidate the biosynthesis of the purine nucleoside antibiotic pair aristeromycin (ARM) and coformycin (COF) in Micromonospora haikouensis DSM 45626 (a new producer for ARM and COF) and Streptomyces citricolor NBRC 13005 (a new COF producer). We also provide biochemical data that MacI and MacT function as unusual phosphorylases, catalyzing an irreversible reaction for the tailoring assembly of neplanocin A (NEP-A) and ARM. Moreover, we demonstrate that MacQ is shown to be an adenosine-specific deaminase, likely relieving the potential "excess adenosine" for producing cells. Finally, we report that MacR, an annotated IMP dehydrogenase, is actually an NADPH-dependent GMP reductase, which potentially plays a salvage role for the efficient supply of the precursor pool. Hence, these findings illustrate a fine-tuned pathway for the biosynthesis of ARM and also open the way for the rational search for purine antibiotic pairs.IMPORTANCE ARM and COF are well known for their prominent biological activities and unusual chemical structures; however, the logic of their biosynthesis has long been poorly understood. Actually, the new insights into the ARM and COF pathway will not only enrich the biochemical repertoire for interesting enzymatic reactions but may also lay a solid foundation for the combinatorial biosynthesis of this group of antibiotics via a target-directed genome mining strategy.


Assuntos
Actinobacteria/metabolismo , Adenosina/análogos & derivados , Antibacterianos/metabolismo , Coformicina/biossíntese , Nucleosídeos de Purina/biossíntese , Actinobacteria/genética , Adenosina/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , GMP Redutase/genética , GMP Redutase/metabolismo
3.
Arch Biochem Biophys ; 270(1): 374-82, 1989 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2784655

RESUMO

2'-Amino-2'-deoxyadenosine and 2'-chloro-2'-deoxycoformycin (2'-CldCF) are two nucleoside antibiotics produced by Actinomadura. The biosynthesis of these two nucleoside antibiotics has been studied by the addition of [U-14C]adenosine with or without unlabeled adenine to cultures of Actinomadura. By this experimental approach, it is possible to demonstrate that adenosine is the direct precursor for the biosynthesis of 2'-amino-2'-deoxyadenosine and 2'-CldCF. These conclusions are based on the observation that the percentage distribution of 14C in the aglyconic and pentofuranosyl moieties of 2'-amino-2'-deoxyadenosine and 2'-CldCF were similar to the distribution of 14C in the adenine and ribosyl moieties of the [U-14C]adenosine (i.e., 48:52) added to cultures of Actinomadura. Experimentally, the percentage distribution of 14C in the (i) adenine:2-amino-2-deoxy-beta-D-ribofuranose of 2'-amino-2'-deoxyadenosine is 51:49; (ii) 8-(R)-3,6,7,8-tetrahydroimidazo[4,5-d]-[1,3-diazepin-8-o1]:2 -chloro-2- beta-D-ribofuranose of 2'-CldCF is 45:55; and (iii) adenine:ribose of the adenosine isolated from the RNA of Actinomadura is 42:58. Further proof that adenosine is the direct precursor for the biosynthesis 2'-amino-2'-deoxyadenosine and 2'-CldCF was demonstrated by the addition of 75 mumol of unlabeled adenine together with [U-14C]adenosine to nucleoside-producing cultures of Actinomadura. The percentage distribution of 14C in the aglycon and the sugar moieties of 2'-amino-2'-deoxyadenosine and 2'-CldCF were 46:54 and 47:53, respectively; the percentage distribution of 14C in the adenine and ribose moieties of the adenosine isolated from the RNA of Actinomadura was 51:49. These data show that the hydroxyl on C-2' of the ribosyl moiety of adenosine undergoes a replacement by a 2'-amino or a 2'-chloro group to form 2'-amino-2'-deoxyadenosine or 2'-CldCF with retention of stereconfiguration at C-2'. Finally, Actinomadura can utilize inorganic chloride from the medium as demonstrated by the isolation of [36Cl]2'-CldCF following the addition of [36Cl]chloride to the culture medium. Mechanisms for the regioselective modification of the C-2' hydroxyl group and stereospecific insertion of the amino and chloro groups are discussed.


Assuntos
Actinomycetales/metabolismo , Adenosina/metabolismo , Antibacterianos/biossíntese , Desoxiadenosinas/análogos & derivados , Nucleosídeos , Pentostatina/análogos & derivados , Aminação , Cloro/metabolismo , Coformicina/análogos & derivados , Coformicina/biossíntese , Desoxiadenosinas/biossíntese , Pró-Fármacos/metabolismo , Estereoisomerismo
4.
Biochemistry ; 27(15): 5790-5, 1988 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-3052586

RESUMO

An enzyme has been isolated from cell-free extracts of Streptomyces antibioticus that can catalyze the reduction of 8-ketodeoxycoformycin (8-KetodCF) and 8-ketocoformycin (8-ketoCoF) to the naturally occurring nucleoside analogues 2'-deoxycoformycin (dCF) and coformycin (CoF), respectively. The partially purified reductase requires NADPH as the cofactor and stereospecifically reduces the 8-keto group of both ketonucleoside substrates to a hydroxyl group with the R configuration at C-8. This is the same configuration of the hydroxyl group as that of the dCF and CoF isolated from S. antibioticus. The reduction proceeds at the nucleoside level, and ATP is not required. The reductase is stereospecific for the NADPH cofactor in that it transfers the pro-S but not the pro-R hydrogen from C-4 of NADPH to the 8-keto group. The apparent Km for 8-ketodCF and 8-ketoCoF were 250 and 150 microM, respectively. These in vitro results, which show that 8-ketodCF and 8-ketoCoF may be intermediates in the biosynthesis of dCF and CoF, support and extend our earlier results from in vivo studies which established that adenosine and C-1 of D-ribose are the carbon-nitrogen precursors of dCF. A possible mechanism for the formation of dCF is presented.


Assuntos
Coformicina/biossíntese , Ribonucleosídeos/biossíntese , Streptomyces antibioticus/metabolismo , Streptomyces/metabolismo , Inibidores de Adenosina Desaminase , Coformicina/análogos & derivados , Cetonas , NADP/metabolismo , Oxirredução , Pentostatina , Fosforilação , Estereoisomerismo
5.
J Antibiot (Tokyo) ; 38(10): 1344-9, 1985 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-3934118

RESUMO

2'-Chloropentostatin (2-CP) is a new nucleoside antibiotic produced by Actinomadura sp. ATCC 39365. A selectively sensitive assay organism, Enterococcus faecalis PD 05045 (MIC 0.005 micrograms/ml) was instrumental in the discovery of this compound. 2-CP is a tight-binding inhibitor of adenosine deaminase (Ki = 1.1 X 10(-10) M).


Assuntos
Antibacterianos/biossíntese , Nucleosídeos , Pentostatina/análogos & derivados , Actinomycetales/metabolismo , Inibidores de Adenosina Desaminase , Antibacterianos/farmacologia , Bioensaio , Coformicina/análogos & derivados , Coformicina/biossíntese , Coformicina/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Fermentação , Vidarabina/farmacologia
6.
Biochemistry ; 23(5): 904-7, 1984 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-6608958

RESUMO

The incorporation and distribution of 14C in 2'-deoxycoformycin, elaborated by Streptomyces antibioticus, were studied with [U-14C]glycine, [U-14C]adenosine and [U-14C]adenine. Similar ratios of 14C in the aglycon and carbohydrate portions of 2'-deoxycoformycin, ara-A, and adenosine isolated from the RNA indicated that [U-14C]adenosine was incorporated into 2'-deoxycoformycin without cleavage of the N-glycosylic bond. Following the addition of [U-14C]adenine, 98% of the 14C isolated from [14C]-2'-deoxycoformycin resided in the aglycon. 2'-Deoxycoformycin biosynthesis may not require the de novo purine biosynthetic pathway as evidenced by the failure to detect incorporation of [U-14C]glycine into 2'-deoxycoformycin. These data suggest that the biosynthesis of 2'-deoxycoformycin involves the incorporation of the carbon-nitrogen skeleton of an intact purine nucleoside or nucleotide, thereby implying that a purine ring is opened enzymatically between C-6 and N-1 and a one-carbon unit is added to form the 1,3-diazepine ring of 2'-deoxycoformycin.


Assuntos
Adenosina/metabolismo , Coformicina/biossíntese , Ribonucleosídeos/biossíntese , Streptomyces/metabolismo , Adenina/metabolismo , Inibidores de Adenosina Desaminase , Radioisótopos de Carbono , Cromatografia em Camada Fina , Coformicina/análogos & derivados , Coformicina/isolamento & purificação , Citarabina/isolamento & purificação , Glicina/metabolismo , Pentostatina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...