Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Neuroimage ; 280: 120322, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586443

RESUMO

The superior colliculus (SC) plays a major role in orienting movements of eyes and the head and in the allocation of attention. Functions of the SC have been mostly investigated in animal models, including non-human primates. Differences in the SC's anatomy and function between different species question extrapolations of these studies to humans without further validation. Few electrophysiological and neuroimaging studies in animal models and humans have reported a role of the SC in visually guided reaching movements. Using BOLD fMRI imaging, we sought to decipher if the SC is also active during reaching movements guided by tactile stimulation. Participants executed reaching movements to visual and tactile target positions. When contrasted against visual and tactile stimulation without reaching, we found increased SC activity with reaching not only for visual but also for tactile targets. We conclude that the SC's involvement in reaching does not rely on visual inputs. It is also independent from a specific sensory modality. Our results indicate a general involvement of the human SC in upper limb reaching movements.


Assuntos
Movimento , Colículos Superiores , Animais , Humanos , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/fisiologia , Estimulação Luminosa , Movimento/fisiologia , Primatas , Atenção/fisiologia
3.
J Vis Exp ; (194)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154575

RESUMO

The superior colliculus (SC), an evolutionarily conserved midbrain structure in all vertebrates, is the most sophisticated visual center before the emergence of the cerebral cortex. It receives direct inputs from ~30 types of retinal ganglion cells (RGCs), with each encoding a specific visual feature. It remains elusive whether the SC simply inherits retinal features or if additional and potentially de novo processing occurs in the SC. To reveal the neural coding of visual information in the SC, we provide here a detailed protocol to optically record visual responses with two complementary methods in awake mice. One method uses two-photon microscopy to image calcium activity at single-cell resolution without ablating the overlaying cortex, while the other uses wide-field microscopy to image the whole SC of a mutant mouse whose cortex is largely undeveloped. This protocol details these two methods, including animal preparation, viral injection, headplate implantation, plug implantation, data acquisition, and data analysis. The representative results show that the two-photon calcium imaging reveals visually evoked neuronal responses at single-cell resolution, and the wide-field calcium imaging reveals neural activity across the entire SC. By combining these two methods, one can reveal the neural coding in the SC at different scales, and such combination can also be applied to other brain regions.


Assuntos
Cálcio , Colículos Superiores , Camundongos , Animais , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/fisiologia , Células Ganglionares da Retina/fisiologia , Retina , Microscopia
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193956

RESUMO

The development of functional topography in the developing brain follows a progression from initially coarse to more precisely organized maps. To examine the emergence of topographically organized maps in the retinotectal system, we performed longitudinal visual receptive field mapping by calcium imaging in the optic tectum of GCaMP6-expressing transgenic Xenopus laevis tadpoles. At stage 42, just 1 d after retinal axons arrived in the optic tectum, a clear retinotopic azimuth map was evident. Animals were imaged over the following week at stages 45 and 48, over which time the tectal neuropil nearly doubled in length and exhibited more precise retinotopic organization. By microinjecting GCaMP6s messenger ribonucleic acid (mRNA) into one blastomere of two-cell stage embryos, we acquired bilateral mosaic tadpoles with GCaMP6s expression in postsynaptic tectal neurons on one side of the animal and in retinal ganglion cell axons crossing to the tectum on the opposite side. Longitudinal observation of retinotopic map emergence revealed the presence of orderly representations of azimuth and elevation as early as stage 42, although presynaptic inputs exhibited relatively less topographic organization than the postsynaptic component for the azimuth axis. Retinotopic gradients in the tectum became smoother between stages 42 and 45. Blocking N-methyl-D-aspartate (NMDA) receptor conductance by rearing tadpoles in MK-801 did not prevent the emergence of retinotopic maps, but it produced more discontinuous topographic gradients and altered receptive field characteristics. These results provide evidence that current through NMDA receptors is dispensable for coarse topographic ordering of retinotectal inputs but does contribute to the fine-scale organization of the retinotectal projection.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Retina/diagnóstico por imagem , Retina/embriologia , Animais , Axônios/metabolismo , Mapeamento Encefálico/métodos , Cálcio/metabolismo , Larva/metabolismo , Células Ganglionares da Retina/fisiologia , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/metabolismo , Vias Visuais/crescimento & desenvolvimento , Xenopus laevis/embriologia
5.
Neuroimage ; 244: 118627, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607020

RESUMO

The surface of the human cerebellar cortex is much more tightly folded than the cerebral cortex. Volumetric analysis of cerebellar morphometry in magnetic resonance imaging studies suffers from insufficient resolution, and therefore has had limited impact on disease assessment. Automatic serial polarization-sensitive optical coherence tomography (as-PSOCT) is an emerging technique that offers the advantages of microscopic resolution and volumetric reconstruction of large-scale samples. In this study, we reconstructed multiple cubic centimeters of ex vivo human cerebellum tissue using as-PSOCT. The morphometric and optical properties of the cerebellar cortex across five subjects were quantified. While the molecular and granular layers exhibited similar mean thickness in the five subjects, the thickness varied greatly in the granular layer within subjects. Layer-specific optical property remained homogenous within individual subjects but showed higher cross-subject variability than layer thickness. High-resolution volumetric morphometry and optical property maps of human cerebellar cortex revealed by as-PSOCT have great potential to advance our understanding of cerebellar function and diseases.


Assuntos
Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Colículos Superiores/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
6.
Neuron ; 109(11): 1888-1905.e10, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33930307

RESUMO

Neuronal cell types are arranged in brain-wide circuits that guide behavior. In mice, the superior colliculus innervates a set of targets that direct orienting and defensive actions. We combined functional ultrasound imaging (fUSI) with optogenetics to reveal the network of brain regions functionally activated by four collicular cell types. Stimulating each neuronal group triggered different behaviors and activated distinct sets of brain nuclei. This included regions not previously thought to mediate defensive behaviors, for example, the posterior paralaminar nuclei of the thalamus (PPnT), which we show to play a role in suppressing habituation. Neuronal recordings with Neuropixels probes show that (1) patterns of spiking activity and fUSI signals correlate well in space and (2) neurons in downstream nuclei preferentially respond to innately threatening visual stimuli. This work provides insight into the functional organization of the networks governing innate behaviors and demonstrates an experimental approach to explore the whole-brain neuronal activity downstream of targeted cell types.


Assuntos
Comportamento Animal , Conectoma/métodos , Optogenética/métodos , Colículos Superiores/fisiologia , Ultrassonografia/métodos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Colículos Superiores/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/fisiologia
7.
Neuroreport ; 32(7): 643-649, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33850087

RESUMO

Gamma-aminobutyric acid (GABA) is regarded as the most important inhibitory neurotransmitter in the central nervous system, including the retina. However, the roles of GABA-immunolabeled retinal ganglion cells (RGCs) have not been explored. Here, we report the expression of GABAergic RGCs that project to many brain areas in mice, including the superior colliculus. Selective ablation of the superior colliculus-projecting GABAergic RGCs, leaving other GABAergic RGCs intact, reduces the looming stimulus-induced defensive response without affecting image-forming functions; it also significantly enhances glucose metabolism in the superior colliculus, as determined by [18F]-fluorodeoxyglucose PET (FDG PET). Our findings demonstrate that superior colliculus-projecting GABAergic RGCs control the visually active defensive response by regulating superior colliculus neurons.


Assuntos
Neurônios GABAérgicos/metabolismo , Células Ganglionares da Retina/metabolismo , Colículos Superiores/metabolismo , Vias Visuais/metabolismo , Animais , Camundongos , Tomografia por Emissão de Pósitrons , Colículos Superiores/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Ácido gama-Aminobutírico/metabolismo
8.
Neuroimage ; 234: 117973, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33762216

RESUMO

Functional magnetic resonance spectroscopy (fMRS) quantifies metabolic variations upon presentation of a stimulus and can therefore provide complementary information compared to activity inferred from functional magnetic resonance imaging (fMRI). Improving the temporal resolution of fMRS can be beneficial to clinical applications where detailed information on metabolism can assist the characterization of brain function in healthy and sick populations as well as for neuroscience applications where information on the nature of the underlying activity could be potentially gained. Furthermore, fMRS with higher temporal resolution could benefit basic studies on animal models of disease and for investigating brain function in general. However, to date, fMRS has been limited to sustained periods of activation which risk adaptation and other undesirable effects. Here, we performed fMRS experiments in the mouse with high temporal resolution (12 s), and show the feasibility of such an approach for reliably quantifying metabolic variations upon activation. We detected metabolic variations in the superior colliculus of mice subjected to visual stimulation delivered in a block paradigm at 9.4 T. A robust modulation of glutamate is observed on the average time course, on the difference spectra and on the concentration distributions during active and recovery periods. A general linear model is used for the statistical analysis, and for exploring the nature of the modulation. Changes in NAAG, PCr and Cr levels were also detected. A control experiment with no stimulation reveals potential metabolic signal "drifts" that are not correlated with the functional activity, which should be taken into account when analyzing fMRS data in general. Our findings are promising for future applications of fMRS.


Assuntos
Ácido Glutâmico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
9.
Neuroimage ; 233: 117924, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753240

RESUMO

Functional magnetic resonance imaging (fMRI) based on the blood oxygenation level-dependent (BOLD) contrast has become an indispensable tool in neuroscience. However, the BOLD signal is nonlocal, lacking quantitative measurement of oxygenation fluctuation. This preclinical study aimed to introduced functional quantitative susceptibility mapping (fQSM) to complement BOLD-fMRI to quantitatively assess the local susceptibility and venous oxygen saturation (SvO2). Rats were subjected to a 5 Hz flashing light and the different inhaled oxygenation levels (30% and 100%) were used to observe the venous susceptibility to quantify SvO2. Phase information was extracted to produce QSM, and the activation responses of magnitude (conventional BOLD) and the QSM time-series were analyzed. During light stimulation, the susceptibility change of fQSM was four times larger than the BOLD signal change in both inhalation oxygenation conditions. Moreover, the responses in the fQSM map were more restricted to the visual pathway, such as the lateral geniculate nucleus and superior colliculus, compared with the relatively diffuse distributions in the BOLD map. Also, the calibrated SvO2 was approximately 84% (88%) when the task was on, 83% (87%) when the task was off during 30% (and during 100%) oxygen inhalation. This is the first fQSM study in a small animal model and increases our understanding of fQSM in the brains of small animals. This study demonstrated the feasibility, sensitivity, and specificity of fQSM using light stimulus, as fQSM provides quantitative clues as well as localized information, complementing the defects of BOLD-fMRI. In addition to neural activity, fQSM also assesses SvO2 as supplementary information while BOLD-fMRI dose not. Accordingly, the fQSM technique could be a useful quantitative tool for functional studies, such as longitudinal follow up of neurodegenerative diseases, functional recovery after brain surgery, and negative BOLD studies.


Assuntos
Mapeamento Encefálico/métodos , Corpos Geniculados/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Colículos Superiores/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Corpos Geniculados/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Colículos Superiores/fisiologia , Vias Visuais/fisiologia
10.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572198

RESUMO

Post-traumatic stress disorder (PTSD) has a high lifetime prevalence and is one of the more serious challenges in mental health care. Fear-conditioned learning involving the amygdala has been thought to be one of the main causative factors; however, recent studies have reported abnormalities in the thalamus of PTSD patients, which may explain the mechanism of interventions such as eye movement desensitization and reprocessing (EMDR). Therefore, I conducted a miniature literature review on the potential contribution of the thalamus to the pathogenesis of PTSD and the validation of therapeutic approaches. As a result, we noticed the importance of the retinotectal pathway (superior colliculus-pulvinar-amygdala connection) and discussed therapeutic indicators.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Pulvinar/fisiopatologia , Retina/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Colículos Superiores/fisiopatologia , Tonsila do Cerebelo/diagnóstico por imagem , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Conectoma/métodos , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Dessensibilização e Reprocessamento através dos Movimentos Oculares/métodos , Medo/fisiologia , Medo/psicologia , Humanos , Oxigenoterapia Hiperbárica , Ocitocina/administração & dosagem , Pulvinar/diagnóstico por imagem , Retina/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/psicologia , Transtornos de Estresse Pós-Traumáticos/terapia , Colículos Superiores/diagnóstico por imagem , Resultado do Tratamento , Vias Visuais/diagnóstico por imagem , Vias Visuais/efeitos dos fármacos , Vias Visuais/fisiopatologia
11.
J Neurosci ; 41(3): 461-473, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33214319

RESUMO

Neurons in the visual system can be spatially organized according to their response properties such as receptive field location and feature selectivity. For example, the visual cortex of many mammalian species contains orientation and direction columns where neurons with similar preferences are clustered. Here, we examine whether such a columnar structure exists in the mouse superior colliculus (SC), a prominent visual center for motion processing. By performing large-scale physiological recording and two-photon calcium imaging in adult male and female mice, we show that direction-selective neurons in the mouse SC are not organized into stereotypical columns as a function of their preferred directions, although clusters of similarly tuned neurons are seen in a minority of mice. Nearby neurons can prefer similar or opposite directions in a largely position-independent manner. This finding holds true regardless of animal state (anesthetized vs awake, running vs stationary), SC depth (most superficial lamina vs deeper in the SC), research technique (calcium imaging vs electrophysiology), and stimulus type (drifting gratings vs moving dots, full field vs small patch). Together, these results challenge recent reports of region-specific organizations in the mouse SC and reveal how motion direction is represented in this important visual center.


Assuntos
Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Anestesia , Animais , Fenômenos Eletrofisiológicos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Percepção de Movimento , Neuroimagem , Estimulação Luminosa , Corrida/fisiologia , Colículos Superiores/citologia , Colículos Superiores/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Vigília
12.
J Neurosci ; 40(49): 9487-9495, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33115927

RESUMO

Theoretically, working memory (WM) representations are encoded by population activity of neurons with distributed tuning across the stored feature. Here, we leverage computational neuroimaging approaches to map the topographic organization of human superior colliculus (SC) and model how population activity in SC encodes WM representations. We first modeled receptive field properties of voxels in SC, deriving a detailed topographic organization resembling that of the primate SC. Neural activity within human (5 male and 1 female) SC persisted throughout a retention interval of several types of modified memory-guided saccade tasks. Assuming an underlying neural architecture of the SC based on its retinotopic organization, we used an encoding model to show that the pattern of activity in human SC represents locations stored in WM. Our tasks and models allowed us to dissociate the locations of visual targets and the motor metrics of memory-guided saccades from the spatial locations stored in WM, thus confirming that human SC represents true WM information. These data have several important implications. They add the SC to a growing number of cortical and subcortical brain areas that form distributed networks supporting WM functions. Moreover, they specify a clear neural mechanism by which topographically organized SC encodes WM representations.SIGNIFICANCE STATEMENT Using computational neuroimaging approaches, we mapped the topographic organization of human superior colliculus (SC) and modeled how population activity in SC encodes working memory (WM) representations, rather than simpler visual or motor properties that have been traditionally associated with the laminar maps in the primate SC. Together, these data both position the human SC into a distributed network of brain areas supporting WM and elucidate the neural mechanisms by which the SC supports WM.


Assuntos
Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Colículos Superiores/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Retina/fisiologia , Movimentos Sacádicos/fisiologia , Colículos Superiores/diagnóstico por imagem , Campos Visuais/fisiologia , Percepção Visual/fisiologia
13.
Hum Brain Mapp ; 41(18): 5083-5096, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32870572

RESUMO

Dorsal human midbrain contains two nuclei with clear laminar organization, the superior and inferior colliculi. These nuclei extend in depth between the superficial dorsal surface of midbrain and a deep midbrain nucleus, the periaqueductal gray matter (PAG). The PAG, in turn, surrounds the cerebral aqueduct (CA). This study examined the use of two depth metrics to characterize depth and thickness relationships within dorsal midbrain using the superficial surface of midbrain and CA as references. The first utilized nearest-neighbor Euclidean distance from one reference surface, while the second used a level-set approach that combines signed distances from both reference surfaces. Both depth methods provided similar functional depth profiles generated by saccadic eye movements in a functional MRI task, confirming their efficacy for delineating depth for superficial functional activity. Next, the boundaries of the PAG were estimated using Euclidean distance together with elliptical fitting, indicating that the PAG can be readily characterized by a smooth surface surrounding PAG. Finally, we used the level-set approach to measure tissue depth between the superficial surface and the PAG, thus characterizing the variable thickness of the colliculi. Overall, this study demonstrates depth-mapping schemes for human midbrain that enables accurate segmentation of the PAG and consistent depth and thickness estimates of the superior and inferior colliculi.


Assuntos
Aqueduto do Mesencéfalo/anatomia & histologia , Colículos Inferiores/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Substância Cinzenta Periaquedutal/anatomia & histologia , Colículos Superiores/anatomia & histologia , Adulto , Aqueduto do Mesencéfalo/diagnóstico por imagem , Aqueduto do Mesencéfalo/fisiologia , Neuroimagem Funcional , Humanos , Colículos Inferiores/diagnóstico por imagem , Colículos Inferiores/fisiologia , Substância Cinzenta Periaquedutal/diagnóstico por imagem , Substância Cinzenta Periaquedutal/fisiologia , Movimentos Sacádicos/fisiologia , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/fisiologia
14.
J Neurosci Res ; 98(11): 2232-2244, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32840025

RESUMO

Previous studies suggest that long-term supplementation and dietary intake of omega-3 polyunsaturated fatty acids (PUFAs) may have neuroprotective effects following brain injury. The objective of this study was to investigate potential neuroprotective effects of omega-3 PUFAs on white matter following closed-head trauma. The closed-head injury model of engineered rotational acceleration (CHIMERA) produces a reproducible injury in the optic tract and brachium of the superior colliculus in mice. Damage is detectable using diffusion tensor imaging (DTI) metrics, particularly fractional anisotropy (FA), with sensitivity comparable to histology. We acquired in vivo (n = 38) and ex vivo (n = 41) DTI data in mice divided into sham and CHIMERA groups with two dietary groups: one deficient in omega-3 PUFAs and one adequate in omega-3 PUFAs. We examined injury effects (reduction in FA) and neuroprotection (FA reduction modulated by diet) in the optic tract and brachium. We verified that diet did not affect FA in sham animals. In injured animals, we found significantly reduced FA in the optic tract and brachium (~10% reduction, p < 0.001), and Bayes factor analysis showed strong evidence to reject the null hypothesis. However, Bayes factor analysis showed substantial evidence to accept the null hypothesis of no diet-related FA differences in injured animals in the in vivo and ex vivo samples. Our results indicate no neuroprotective effect from adequate dietary omega-3 PUFA intake on white matter damage following traumatic brain injury. Since damage from CHIMERA mainly affects white matter, our results do not necessarily contradict previous findings showing omega-3 PUFA-mediated neuroprotection in gray matter.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Dieta , Ácidos Graxos Ômega-3/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Substância Branca/diagnóstico por imagem , Substância Branca/lesões , Animais , Teorema de Bayes , Imagem de Tensor de Difusão , Substância Cinzenta/patologia , Traumatismos Cranianos Fechados/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Trato Óptico/diagnóstico por imagem , Trato Óptico/lesões , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/lesões
15.
Neuron ; 107(3): 487-495.e9, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32445624

RESUMO

At various stages of the visual system, visual responses are modulated by arousal. Here, we find that in mice this modulation operates as early as in the first synapse from the retina and even in retinal axons. To measure retinal activity in the awake, intact brain, we imaged the synaptic boutons of retinal axons in the superior colliculus. Their activity depended not only on vision but also on running speed and pupil size, regardless of retinal illumination. Arousal typically reduced their visual responses and selectivity for direction and orientation. Recordings from retinal axons in the optic tract revealed that arousal modulates the firing of some retinal ganglion cells. Arousal had similar effects postsynaptically in colliculus neurons, independent of activity in the other main source of visual inputs to the colliculus, the primary visual cortex. These results indicate that arousal modulates activity at every stage of the mouse visual system.


Assuntos
Nível de Alerta/fisiologia , Axônios/fisiologia , Neurônios/fisiologia , Orientação Espacial/fisiologia , Células Ganglionares da Retina/fisiologia , Colículos Superiores/fisiologia , Animais , Axônios/metabolismo , Locomoção , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Trato Óptico , Terminações Pré-Sinápticas/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/metabolismo , Vias Visuais/fisiologia , Vigília
16.
Nat Methods ; 17(6): 605-608, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32341543

RESUMO

Behaviors emerge from activity throughout the brain, but noninvasive optical access in adult vertebrate brains is limited. We show that three-photon (3P) imaging through the head of intact adult zebrafish allows structural and functional imaging at cellular resolution throughout the telencephalon and deep into the cerebellum and optic tectum. With 3P imaging, considerable portions of the brain become noninvasively accessible from embryo to sexually mature adult in a vertebrate model.


Assuntos
Cerebelo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Fótons , Colículos Superiores/diagnóstico por imagem , Telencéfalo/diagnóstico por imagem , Peixe-Zebra/anatomia & histologia , Animais
17.
Ann Neurol ; 87(4): 533-546, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32030799

RESUMO

OBJECTIVE: The dual hit hypothesis about the pathogenesis of Parkinson disease (PD) suggests that the brainstem is a convergent area for the propagation of pathological α-synuclein from the periphery to the brain. Although brainstem structures are likely to be affected early in the course of the disease, detailed information regarding specific brainstem regions is lacking. The aim of our study was to investigate the function of the superior colliculus, a sensorimotor brainstem structure, in de novo PD patients compared to controls using brain functional magnetic imaging and visual stimulation paradigms. METHODS: De novo PD patients and controls were recruited. PD subjects were imaged before and after starting PD medications. A recently developed functional magnetic resonance imaging protocol was used to stimulate and visualize the superior colliculus and 2 other visual structures: the lateral geniculate nucleus and the primary visual cortex. RESULTS: In the 22 PD patients, there was no modulation of the superior colliculus responses to the luminance contrasts compared to controls. This implies a hypersensitivity to low luminance contrast and abnormal rapid blood oxygenation level-dependent signal saturation to high luminance contrasts. The lateral geniculate nucleus was only modulated by 3 to 9% luminance contrasts compared to controls. No major differences were found in the primary visual cortex between both groups. INTERPRETATION: Our findings suggest that pathological superior colliculus visual responses in de novo PD patients are present early in the course of the disease. Changes in imaging the superior colliculus could play an important role as a preclinical biomarker of the disease. ANN NEUROL 2020;87:533-546.


Assuntos
Corpos Geniculados/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Colículos Superiores/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem , Adulto , Idoso , Estudos de Casos e Controles , Sensibilidades de Contraste , Feminino , Neuroimagem Funcional , Corpos Geniculados/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Estimulação Luminosa , Colículos Superiores/fisiopatologia , Córtex Visual/fisiopatologia , Vias Visuais/diagnóstico por imagem , Vias Visuais/fisiopatologia
18.
Sci Rep ; 10(1): 1331, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992744

RESUMO

Research on rodents and non-human primates has established the involvement of the superior colliculus in defensive behaviours and visual threat detection. The superior colliculus has been well-studied in humans for its functional roles in saccade and visual processing, but less is known about its involvement in affect. In standard functional MRI studies of the human superior colliculus, it is challenging to discern activity in the superior colliculus from activity in surrounding nuclei such as the periaqueductal gray due to technological and methodological limitations. Employing high-field strength (7 Tesla) fMRI techniques, this study imaged the superior colliculus at high (0.75 mm isotropic) resolution, which enabled isolation of the superior colliculus from other brainstem nuclei. Superior colliculus activation during emotionally aversive image viewing blocks was greater than that during neutral image viewing blocks. These findings suggest that the superior colliculus may play a role in shaping subjective emotional experiences in addition to its visuomotor functions, bridging the gap between affective research on humans and non-human animals.


Assuntos
Afeto , Imageamento por Ressonância Magnética , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/fisiologia , Percepção Visual , Adulto , Emoções , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
19.
Neuroimage ; 200: 405-413, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31280011

RESUMO

Task based and resting state fMRI has been widely utilized to study brain functions. As the foundation of fMRI, the underlying neural basis of the BOLD signal has been extensively studied, but the detailed mechanism remains elusive, particularly during the resting state. To examine the neurovascular coupling, it is important to simultaneously record neural and vascular signals. Here we developed a novel setup of camera based, scalable simultaneous calcium fiber photometry and fMRI in rats. Using this setup, we recorded calcium signals of superior colliculus (SC) and lateral geniculate nucleus (LGN) and fMRI simultaneously during visual stimulation and the resting state. Our results revealed robust, region-specific coupling between calcium and BOLD signals in the task state and weaker, whole brain correlation in the resting state. Interestingly, the spatial specificity of such correlation in the resting state was improved upon regression of white matter, ventricle signals and global signals in fMRI data. Overall, our results suggest differential coupling of calcium and BOLD signals for subcortical regions between evoked and resting states, and the coupling relationship in the resting state was related with resting state BOLD preprocessing strategies.


Assuntos
Cálcio , Ventrículos Cerebrais/fisiologia , Neuroimagem Funcional/métodos , Corpos Geniculados/fisiologia , Acoplamento Neurovascular/fisiologia , Fotometria/métodos , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Substância Branca/fisiologia , Animais , Cálcio/metabolismo , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/metabolismo , Corpos Geniculados/diagnóstico por imagem , Corpos Geniculados/metabolismo , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Fotometria/instrumentação , Ratos , Ratos Sprague-Dawley , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo
20.
Neuropsychologia ; 128: 78-86, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410291

RESUMO

Probabilistic diffusion tractography was used to provide the first direct evidence for a subcortical pathway from the retina to the amygdala, via the superior colliculus and pulvinar, that transmits visual stimuli signaling threat. A bias to orient toward threat was measured in a temporal order judgement saccade decision task, under monocular viewing, in a group of 19 healthy participants who also underwent diffusion weighted MR imaging. On each trial of the behavioural task a picture depicting threat was presented in one visual field and a competing non-threatening stimulus in the other. The onset interval between the two pictures was randomly varied and participants made a saccade toward the stimulus that they judged to have appeared first. The bias to orient toward threat was stronger when the threatening stimulus was in the temporal visual hemifield, suggesting that afferents via the retinotectal tract contributed to the bias. Probabalistic tractography was used to virtually dissect connections between the superior colliculus and the amygdala traversing the pulvinar. Individual differences in microstructure (fractional anisotropy) of the streamline predicted the magnitude of the bias to orient toward threat, providing supporting evidence for a functional role of the subcortical SC-amygdala pathway in processing threat in healthy humans.


Assuntos
Vias Aferentes/fisiologia , Tonsila do Cerebelo/fisiologia , Vias Neurais/fisiologia , Orientação/fisiologia , Pulvinar/fisiologia , Retina/fisiologia , Colículos Superiores/fisiologia , Adolescente , Adulto , Vias Aferentes/diagnóstico por imagem , Tonsila do Cerebelo/diagnóstico por imagem , Imagem de Tensor de Difusão , Medo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Estimulação Luminosa , Pulvinar/diagnóstico por imagem , Retina/diagnóstico por imagem , Movimentos Sacádicos , Colículos Superiores/diagnóstico por imagem , Campos Visuais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...