Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Int Immunopharmacol ; 99: 107956, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34284288

RESUMO

Atherosclerosis (AS) is characterized by dyslipidemia and chronic inflammation. In the high-fat environment, the lipid metabolism of dendritic cells (DCs) is abnormal, which leads to abnormal immune function, promotes the occurrence of immune inflammatory reactions, and promotes the development of AS. Alisol B 23-acetate (23B) is a triterpenoid in the rhizomes of Alisma, which is a traditional Chinese medicine. Here, we identified cholesterol metabolism-related targets of 23B through a virtual screen, and further transcriptome analysis revealed that 23B can change antigen presentation and cholesterol metabolism pathways in cholesterol-loaded DCs. In vitro experiments confirmed that 23B promoted cholesterol efflux from ApoE-/- DCs, reduced the expression of MHC II, CD80, and CD86, and inhibited the activation of CD4+ T cells and the production of inflammatory cytokines IL-12 and IFN-γ. In advanced AS mice, 23B can decrease triacylglycerol (TG) levels and increase high-density lipoprotein-cholesterol (HDL-C) levels in plasma and the expression of cholesterol efflux genes in the aorta. Neither helper T cells 1 (Th1) nor regulatory T cells (Tregs) in peripheral blood changed significantly in the presence of 23B, but 23B reduced the levels of IL-12 and IFN-γ in serum. However, 23B did not change the total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) levels in serum or lipid accumulation in the aorta. Moreover, 23B did not increase the production of IL-10 and TGF-ß1 in vivo or in vitro. These results indicate that 23B promotes cholesterol efflux from DCs, which can improve the immune inflammatory response and contribute to controlling the inflammatory status of AS.


Assuntos
Aterosclerose/metabolismo , Colestenonas/metabolismo , Colesterol/metabolismo , Dislipidemias/metabolismo , Inflamação/metabolismo , Animais , Aorta/metabolismo , Apolipoproteínas E/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Células Dendríticas , Modelos Animais de Doenças , Humanos , Hipercolesterolemia/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Transdução de Sinais , Linfócitos T Reguladores , T-Linfocitopenia Idiopática CD4-Positiva
2.
Microb Cell Fact ; 20(1): 119, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162386

RESUMO

BACKGROUND: 3-Ketosteroid Δ1-dehydrogenases (KSTDs) are the enzymes involved in microbial cholesterol degradation and modification of steroids. They catalyze dehydrogenation between C1 and C2 atoms in ring A of the polycyclic structure of 3-ketosteroids. KSTDs substrate spectrum is broad, even though most of them prefer steroids with small substituents at the C17 atom. The investigation of the KSTD's substrate specificity is hindered by the poor solubility of the hydrophobic steroids in aqueous solutions. In this paper, we used 2-hydroxpropyl-ß-cyclodextrin (HBC) as a solubilizing agent in a study of the KSTDs steady-state kinetics and demonstrated that substrate bioavailability has a pivotal impact on enzyme specificity. RESULTS: Molecular dynamics simulations on KSTD1 from Rhodococcus erythropolis indicated no difference in ΔGbind between the native substrate, androst-4-en-3,17-dione (AD; - 8.02 kcal/mol), and more complex steroids such as cholest-4-en-3-one (- 8.40 kcal/mol) or diosgenone (- 6.17 kcal/mol). No structural obstacle for binding of the extended substrates was also observed. Following this observation, our kinetic studies conducted in the presence of HBC confirmed KSTD1 activity towards both types of steroids. We have compared the substrate specificity of KSTD1 to the other enzyme known for its activity with cholest-4-en-3-one, KSTD from Sterolibacterium denitrificans (AcmB). The addition of solubilizing agent caused AcmB to exhibit a higher affinity to cholest-4-en-3-one (Ping-Pong bi bi KmA = 23.7 µM) than to AD (KmA = 529.2 µM), a supposedly native substrate of the enzyme. Moreover, we have isolated AcmB isoenzyme (AcmB2) and showed that conversion of AD and cholest-4-en-3-one proceeds at a similar rate. We demonstrated also that the apparent specificity constant of AcmB for cholest-4-en-3-one (kcat/KmA = 9.25∙106 M-1 s-1) is almost 20 times higher than measured for KSTD1 (kcat/KmA = 4.71∙105 M-1 s-1). CONCLUSIONS: We confirmed the existence of AcmB preference for a substrate with an undegraded isooctyl chain. However, we showed that KSTD1 which was reported to be inactive with such substrates can catalyze the reaction if the solubility problem is addressed.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/metabolismo , Betaproteobacteria/enzimologia , Betaproteobacteria/metabolismo , Colestenonas/metabolismo , Oxirredutases/metabolismo , Rhodococcus/enzimologia , Rhodococcus/metabolismo , Proteínas de Bactérias/metabolismo , Betaproteobacteria/genética , Catálise , Clonagem Molecular , DNA Bacteriano , Isoenzimas/metabolismo , Cetosteroides/metabolismo , Cinética , Simulação de Dinâmica Molecular , Proteínas Recombinantes/metabolismo , Rhodococcus/genética , Compostos de Espiro/metabolismo , Esteroides/metabolismo , Especificidade por Substrato , Triterpenos/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33853940

RESUMO

Helicobacter pylori, a pathogen responsible for gastric cancer, contains a unique glycolipid, cholesteryl-α-D-glucopyranoside (CGL), in its cell wall. Moreover, O-glycans having α1,4-linked N-acetylglucosamine residues (αGlcNAc) are secreted from gland mucous cells of gastric mucosa. Previously, we demonstrated that CGL is critical for H. pylori survival and that αGlcNAc serves as antibiotic against H. pylori by inhibiting CGL biosynthesis. In this study, we tested whether a cholesterol analog, cholest-4-en 3-one (cholestenone), exhibits antibacterial activity against H. pylori in vitro and in vivo. When the H. pylori standard strain ATCC 43504 was cultured in the presence of cholestenone, microbial growth was significantly suppressed dose-dependently relative to microbes cultured with cholesterol, and cholestenone inhibitory effects were not altered by the presence of cholesterol. Morphologically, cholestenone-treated H. pylori exhibited coccoid forms. We obtained comparable results when we examined the clarithromycin-resistant H. pylori strain "2460." We also show that biosynthesis of CGL and its derivatives cholesteryl-6-O-tetradecanoyl-α-D-glucopyranoside and cholesteryl-6-O-phosphatidyl-α-D-glucopyranoside in H. pylori is remarkably inhibited in cultures containing cholestenone. Lastly, we asked whether orally administered cholestenone eradicated H. pylori strain SS1 in C57BL/6 mice. Strikingly, mice fed a cholestenone-containing diet showed significant eradication of H. pylori from the gastric mucosa compared with mice fed a control diet. These results overall strongly suggest that cholestenone could serve as an oral medicine to treat patients infected with H. pylori, including antimicrobial-resistant strains.


Assuntos
Colestenonas/farmacologia , Colesterol/análogos & derivados , Helicobacter pylori/metabolismo , Acetilglucosamina/farmacologia , Animais , Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Colestenonas/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Feminino , Glucosiltransferases/metabolismo , Glicolipídeos/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia
4.
Hepatol Commun ; 5(2): 244-257, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553972

RESUMO

The protein phosphatase 1 regulatory subunit 3B (PPP1R3B) gene is a target of farnesoid X receptor (FXR), which is a major regulator of bile acid metabolism. Both PPP1R3B and FXR have been suggested to take part in glycogen metabolism, which may explain the association of PPP1R3B gene variants with altered hepatic computed tomography attenuation. We analyzed the effect of PPP1R3B rs4240624 variant on bile acid composition in individuals with obesity. The study cohort consisted of 242 individuals from the Kuopio Obesity Surgery Study (73 men, 169 women, age 47.6 ± 9.0 years, body mass index 43.2 ± 5.4 kg/m2) with PPP1R3B genotype and liver RNA sequencing (RNA-seq) data available. Fasting plasma and gallbladder bile samples were collected from 50 individuals. Bile acids in plasma did not differ based on the PPP1R3B rs4240624 genotype. However, the concentration of total bile acids (109 ± 55 vs. 35 ± 19 mM; P = 1.0 × 10-5) and all individual bile acids (also 7α-hydroxy-4-cholesten-3-one [C4]) measured from bile were significantly lower in those with the AG genotype compared to those with the AA genotype. In addition, total cholesterol (P = 0.011) and phospholipid (P = 0.001) levels were lower in individuals with the AG genotype, but cholesterol saturation index did not differ, indicating that the decrease in cholesterol and phospholipid levels was secondary to the change in bile acids. Liver RNA-seq data demonstrated that expression of PPP1R3B, tankyrase (TNKS), Homo sapiens chromosome 8 clone RP11-10A14.5 (AC022784.1 [LOC157273]), Homo sapiens chromosome 8 clone RP11-375N15.1 (AC021242.1), and Homo sapiens chromosome 8, clone RP11-10A14 (AC022784.6) associated with the PPP1R3B genotype. In addition, genes enriched in transmembrane transport and phospholipid binding pathways were associated with the genotype. Conclusion: The rs4240624 variant in PPP1R3B has a major effect on the composition of gallbladder bile. Other transcripts in the same loci may be important mediators of the variant effect.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colestenonas/metabolismo , Vesícula Biliar/metabolismo , Metabolismo dos Lipídeos/genética , Proteína Fosfatase 1/genética , Adulto , Ácidos e Sais Biliares/genética , Jejum/sangue , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA
5.
Ann Clin Biochem ; 58(1): 22-28, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998535

RESUMO

Chronic diarrhoea is common and mostly due to diarrhoea predominant irritable bowel syndrome. Diarrhoea predominant irritable bowel syndrome affects about 11% of the population; however, up to a third of these patients actually have bile acid diarrhoea. There are, therefore, more than one million sufferers of bile acid diarrhoea in the UK. Bile acid diarrhoea is caused by small bowel malabsorption of bile acids and the increased bile acids in the large intestine cause diarrhoea. Once diagnosed, the treatment of bile acid diarrhoea is simple and effective. Bile acid diarrhoea , however, is often not diagnosed because of a lack of easily available and reliable diagnostic methods. In the United Kingdom, the radiolabelled 23-seleno-25-homotaurocholic acid test is the gold-standard method of diagnosis. 23-seleno-25-homotaurocholic acid test, however, is expensive, inconvenient to the patient, involves radiation exposure and has limited availability. As such, a laboratory biomarker is desirable. This review briefly discusses the pathophysiology and management of bile acid diarrhoea and critically evaluates methods for its diagnosis, including serum 7α-hydroxy-4-cholesten-3-one, faecal bile acid measurement, serum fibroblast growth factor 19, urine-2-propanol, and the 14C-glycocholate breath and stool test.


Assuntos
Colestenonas/metabolismo , Diarreia , Fatores de Crescimento de Fibroblastos/metabolismo , Intestino Delgado , Síndromes de Malabsorção , Ácido Taurocólico/análogos & derivados , Diarreia/diagnóstico , Diarreia/metabolismo , Diarreia/patologia , Humanos , Intestino Delgado/metabolismo , Síndromes de Malabsorção/diagnóstico , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/patologia , Ácido Taurocólico/metabolismo , Reino Unido
6.
Biotechnol Lett ; 42(12): 2589-2594, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32804273

RESUMO

OBJECTIVES: To realize a practical technology for recycling both cyclodextrin and resting-cells at the same time in phytosterol biotransformation using mycobacterial resting cells. RESULTS: In order to produce 22-hydroxy-23,24-bisnorchol-4-ene-3-one (HBC) efficiently and low-costly, a recycled phytosterols (PS) biotransformation process using mycobacterial resting cells was developed. By optimizing the ratio of hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and PS to 1:1 (w/w), most products crystallized during the biotransformation process. So, the HBC was easily separated by low-speed (900×g) centrifugation with yield of 92%. The resting cells, HP-ß-CD and the residual products and substrates left in the reaction system were reused for another bioconversion cycle after PS supplement. Three continuous cycles were achieved without the supplement of cells and HP-ß-CD. In each batch, 80 g L-1 of PS was transformed to HBC with the space-time yield of HBC of 8.9-12.8 g L-1 day-1. CONCLUSIONS: This strategy reduced the cost of HBC production and simplified the purification process.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/metabolismo , Biotransformação , Colestenonas/metabolismo , Fitosteróis/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/química , Proteínas de Bactérias , Colestenonas/química , Mycobacterium/efeitos dos fármacos , Mycobacterium/crescimento & desenvolvimento , Fitosteróis/química , Fase de Repouso do Ciclo Celular/genética
7.
EBioMedicine ; 55: 102766, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32408110

RESUMO

BACKGROUND: The composition of the bile acid (BA) pool is closely associated with obesity and is modified by gut microbiota. Perturbations of gut microbiota shape the BA composition, which, in turn, may alter important BA signaling and affect host metabolism. METHODS: We investigated BA composition of high BMI subjects from a human cohort study and a high fat diet (HFD) obesity prone (HF-OP) / HFD obesity resistant (HF-OR) mice model. Gut microbiota was analysed by metagenomics sequencing. GLP-1 secretion and gene regulation studies involved ELISA, qPCR, Western blot, Immunohistochemistry, and Immunofluorescence staining. FINDINGS: We found that the proportion of non-12-OH BAs was significantly decreased in the unhealthy high BMI subjects. The HF-OR mice had an enhanced level of non-12-OH BAs. Non-12-OH BAs including ursodeoxycholate (UDCA), chenodeoxycholate (CDCA), and lithocholate (LCA) were decreased in the HF-OP mice and associated with altered gut microbiota. Clostridium scindens was decreased in HF-OP mice and had a positive correlation with UDCA and LCA. Gavage of Clostridium scindens in mice increased the levels of hepatic non-12-OH BAs, accompanied by elevated serum 7α-hydroxy-4-cholesten-3-one (C4) levels. In HF-OP mice, altered BA composition was associated with significantly downregulated expression of GLP-1 in ileum and PGC1α, UCP1 in brown adipose tissue. In addition, we identified that UDCA attenuated the high fat diet-induced obesity via enhancing levels of non-12-OH BAs. INTERPRETATION: Our study highlights that dysregulated BA signaling mediated by gut microbiota contributes to obesity susceptibility, suggesting modulation of BAs could be a promising strategy for obesity therapy.


Assuntos
Ácido Quenodesoxicólico/metabolismo , Microbioma Gastrointestinal , Íleo/microbiologia , Ácido Litocólico/metabolismo , Obesidade/microbiologia , Ácido Ursodesoxicólico/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Índice de Massa Corporal , Colestenonas/metabolismo , Clostridiales/metabolismo , Clostridiales/patogenicidade , Estudos de Coortes , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Íleo/metabolismo , Masculino , Metagenômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
8.
Sci Rep ; 9(1): 18139, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792343

RESUMO

Protostane triterpenes, which are found in Alisma orientale, are tetracyclic triterpenes with distinctive pharmacological activities. The natural distribution of protostane triterpenes is limited mainly to members of the botanical family Alismataceae. Squalene epoxidase (SE) is the key rate-limiting enzyme in triterpene biosynthesis. In this study, we report the characterization of two SEs from A. orientale. AoSE1 and AoSE2 were expressed as fusion proteins in E. coli, and the purified proteins were used in functional research. In vitro enzyme assays showed that AoSE1 and AoSE2 catalyze the formation of oxidosqualene from squalene. Immunoassays revealed that the tubers contain the highest levels of AoSE1 and AoSE2. After MeJA induction, which is the main elicitor of triterpene biosynthesis, the contents of 2,3-oxidosqualene and alisol B 23-acetate increased by 1.96- and 2.53-fold, respectively. In addition, the expression of both AoSE proteins was significantly increased at four days after MeJA treatment. The contents of 2,3-oxidosqualene and alisol B 23-acetate were also positively correlated with AoSEs expression at different times after MeJA treatment. These results suggest that AoSE1 and AoSE2 are the key regulatory points in protostane triterpenes biosynthesis, and that MeJA regulates the biosynthesis of these compounds by increasing the expression of AoSE1 and AoSE2.


Assuntos
Acetatos/farmacologia , Alisma/metabolismo , Colestenonas/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Acetatos/metabolismo , Alisma/efeitos dos fármacos , Alisma/genética , Alisma/crescimento & desenvolvimento , Animais , Anticorpos , Clonagem Molecular , Ciclopentanos/metabolismo , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Esqualeno/análogos & derivados , Esqualeno/metabolismo , Esqualeno Mono-Oxigenase/imunologia , Triterpenos/metabolismo
9.
Sci Rep ; 9(1): 12310, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444376

RESUMO

Alisma orientale (Sam.) Juzep (A. orientale) is an important medicinal plant in traditional Chinese medicine. In this study, de novo RNA-seq of A. orientale was performed based on the cDNA libraries from four different tissues, roots, leaves, scapes and inflorescences. A total of 41,685 unigenes were assembled, 25,024 unigene functional annotations were obtained by searching against the five public sequence databases, and 3,411 simple sequence repeats in A. orientale were reported for the first time. 15,402 differentially expressed genes were analysed. The morphological characteristics showed that compared to the other tissues, the leaves had more chlorophyll, the scapes had more vascular bundles, and the inflorescences contained more starch granules and protein. In addition, the metabolic profiles of eight kinds of alisols metabolite profiling, which were measured by ultra-Performance liquid chromatography-triple quadrupole-mass spectrometry showed that alisol B 23-acetate and alisol B were the major components of the four tissues at amounts of 0.068~0.350 mg/g and 0.046~0.587 mg/g, respectively. In addition, qRT-PCR validated that farnesyl pyrophosphate synthase and 3-hydroxy-3-methylglutaryl-CoA reductase should be considered the critical candidate genes involved in alisol biosynthesis. These transcriptome and metabolic profiles of A. orientale may help clarify the molecular mechanisms underlying the medicinal characteristics of A. orientale.


Assuntos
Alisma/genética , Alisma/metabolismo , Inflorescência/crescimento & desenvolvimento , Metabolômica , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Transcriptoma/genética , Colestenonas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Modelos Lineares , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Reprodutibilidade dos Testes , Triterpenos/metabolismo
10.
Steroids ; 151: 108449, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31302111

RESUMO

7α-Hydroxy-cholest-4-en-3-one is a biomarker for bile acid loss, irritable bowel syndrome, and other diseases associated with defective bile acid biosynthesis. Furthermore, 7α-hydroxy-cholest-4-en-3-one is the physiological substrate for cytochrome P450 8B1 (P450 8B1 or CYP8B1), the oxysterol 12α-hydroxylase enzyme implicated in obesity and cardiovascular health. We report the chemical synthesis of this physiologically important oxysterol beginning with cholesterol. The key feature of this synthesis involves a regioselective C3-allylic oxidation of a 3-desoxy-Δ4-7α-formate steroid precursor to form 7α-formyloxy-cholest-4-en-3-one, which was saponified to yield 7α-hydroxy-cholest-4-en-3-one.


Assuntos
Absorção Fisico-Química , Ácidos e Sais Biliares/metabolismo , Colestenonas/síntese química , Síndrome do Intestino Irritável/metabolismo , Técnicas de Química Sintética , Colestenonas/química , Colestenonas/metabolismo , Modelos Moleculares , Conformação Molecular
11.
J Basic Microbiol ; 59(9): 924-935, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31347189

RESUMO

Some species of mycobacteria have been modified to transform sterols to valuable steroid synthons. The unique cell wall of mycobacteria has been recognized as an important organelle to absorb sterols. Some cell wall inhibitors (e.g., vancomycin and glycine) have been validated to enhance sterol conversion by interfering with transpeptidation in peptidoglycan biosynthesis. Therefore, two transpeptidase genes, pbpA and pbpB, were selected to rationally modify the cell wall to simulate the enhancement effect of vancomycin and glycine on sterol conversion in a 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) producing strain (WIII). Unexpectedly, the pbpA or pbpB gene augmentation was conducive to the utilization of sterols. The pbpB augmentation strain WIII-pbpB was further investigated for its better performance. Compared to WIII, the morphology of WIII-pbpB was markedly changed from oval to spindle, indicating alterations of the cell wall. Biochemical analysis indicated that the altered cell wall properties of WIII-pbpB might contribute to the positive effect on sterol utilization. The productivity of 4-HBC was enhanced by 28% in the WIII-pbpB strain compared to that of WIII. These results demonstrated that the modification of peptidoglycan synthesis can improve the conversion of sterols to steroid synthons in mycobacteria.


Assuntos
Colestenonas/metabolismo , Mycobacterium/metabolismo , Peptidil Transferases/genética , Esteróis/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Expressão Gênica , Mycobacterium/genética , Mycobacterium/crescimento & desenvolvimento , Peptidoglicano/genética , Peptidoglicano/metabolismo
12.
J Nat Med ; 73(1): 131-145, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30327993

RESUMO

A search for cytotoxic cholestane glycosides from Ornithogalum saundersiae bulbs resulted in the isolation of three new OSW-1 analogues (1-3), a new cholestane bisdesmoside (4), a 5ß-cholestane diglycoside (5), and four new 24(23 → 22)-abeo-cholestane glycosides (6-9), together with 11 known cholestane glycosides (10-20), including OSW-1 (11). The structures of 1-9 were determined based on conventional spectroscopic analysis and chemical evidence. As expected, based on previous data, 1-3 exhibited potent cytotoxic activity against HL-60 human promyelocytic leukemia cells and A549 human lung adenocarcinoma cells. Furthermore, the ability of OSW-1 to induce apoptosis in HL-60 cells was examined. Aggregation of nuclear chromatin, accumulation of the sub-G1 cells, DNA fragmentation, and caspase-3 activation were assessed in HL-60 cells treated with OSW-1, providing evidence for OSW-1-induced apoptosis in HL-60 cells. No mitochondrial membrane potential or release of cytochrome c into the cytoplasm were observed in the OSW-1-treated apoptotic HL-60 cells, indicating that a mitochondria-independent signaling pathway is involved in apoptotic cell death.


Assuntos
Colestanos/química , Colestenonas/metabolismo , Glicosídeos/química , Células HL-60/metabolismo , Mitocôndrias/metabolismo , Ornithogalum/química , Saponinas/metabolismo , Apoptose , Humanos , Transdução de Sinais
13.
Bioorg Chem ; 80: 347-360, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29986183

RESUMO

Studies on the lipid-regulating effects of alisol compounds are reported that include alisol B, alisol A 24-acetate (24A), alisol A and an alisol B - 24A - alisol A mixture (content ratio = 1:1:1). The effects on the activity of lipoprotein lipase (LPL), a key lipid-modulating enzyme, were studied to investigate the molecular mechanism of lipid-regulating activity of alisols. The effects of alisols on regulating blood lipids and the activities of LPL were determined using a reagent kit method. The structure of LPL was obtained by homology modeling and the interactive mechanism of alisol monomers and the mixture with LPL was investigated by molecular simulation. The alisol monomer and mixture were shown to regulate blood lipids, suggesting that alisols may decrease the level of triglyceride (TG) by improving the activity of LPL. The order of intensity was: mixture > alisol A > alisol B > 24A, indicating that alisols of alismatis rhizoma feature a synergistic effect on LPL. The N- and C-terminus of LPL both represented the catalytic active domains of this lipid-regulating effect. Cys306, Gln129 and Ser166 were the key amino acid residues resulting in the lipid-regulating effect of the alisol monomer while Ser166 and Arg18 were found to be responsible for the lipid-regulating effect of the mixture. The C-terminus of LPL was indirectly involved in the enzymatic process. A folded side chain of alisols or the parent ring was found to bind somewhat weaker to LPL than an open side chain or parent ring. The hydroxyl groups on the C14-, C22-, C28-, C30- and C31-terminus in the side chain, the ring ether structure in C23-position, and the acetyl group in C29-position represented the key sites for the lipid-regulating action of alisols. Meanwhile, the C30-site hydroxyl group played an important role in the synergistic effect of the alisol mixture.


Assuntos
Colestenonas/metabolismo , Lipase Lipoproteica/metabolismo , Animais , Sítios de Ligação , Colestenonas/química , Colestenonas/uso terapêutico , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Hiperlipidemias/veterinária , Lipídeos/sangue , Lipase Lipoproteica/química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Dinâmica Molecular , Eletricidade Estática
14.
Clin Biochem ; 52: 106-111, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29051033

RESUMO

BACKGROUND: Imbalance of bile acids (BA) homeostasis in the gastrointestinal tract can lead to chronic diarrhea or constipation when BA in the colon are in excess or low, respectively. Since both disturbances of bowel function can result from other etiologies, identifying BA imbalance is important to tailor treatment strategies. Serum concentrations of 7-alpha-hydroxy-4-cholesten-3-one (7aC4), a precursor in bile acid synthesis, reflect BA homeostasis. Here we describe a method to accurately measure serum 7aC4 and evaluate the clinical utility in patients with diarrhea or constipation phenotypes. METHODS: Serum 7aC4 is measured after acetonitrile protein precipitation using C18 liquid chromatography, tandem mass spectrometry, and deuterium-labeled 7aC4 internal standard. Assay performance including linearity, precision, and accuracy was assessed using waste serum samples. The reference interval was established in healthy individuals without BA-altering conditions or medications. Clinical performance was assessed in patients with irritable bowel syndrome. RESULTS: The method precisely and accurately measured 7aC4 in human serum from 1.4-338ng/mL with no ion suppression or interference from related 7-keto-cholesterol. Central 95th percentile reference interval was 2.5-63.2ng/mL. Lower serum 7aC4 was found in patients with constipation with sensitivity/specificity of 79%/55% compared to healthy controls. Higher 7aC4 was found in patients with bile acid diarrhea (BAD) compared to those without BAD with sensitivity/specificity of 82%/53%. CONCLUSIONS: We have developed a sensitive and precise assay for measuring the concentration of 7aC4 in serum. The assay can be used to screen for diarrhea caused by bile acid malabsorption.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colestenonas/análise , Espectrometria de Massas/métodos , Ácidos e Sais Biliares/análise , Colestenonas/sangue , Colestenonas/metabolismo , Cromatografia Líquida/métodos , Constipação Intestinal , Diarreia/metabolismo , Fezes/química , Humanos , Sensibilidade e Especificidade , Soro , Esteatorreia/metabolismo , Espectrometria de Massas em Tandem/métodos
15.
Microb Cell Fact ; 16(1): 89, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28532497

RESUMO

BACKGROUND: The strategy of modifying the sterol catabolism pathway in mycobacteria has been adopted to produce steroidal pharmaceutical intermediates, such as 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), which is used to synthesize various steroids in the industry. However, the productivity is not desirable due to some inherent problems, including the unsatisfactory uptake rate and the low metabolic efficiency of sterols. The compact cell envelope of mycobacteria is a main barrier for the uptake of sterols. In this study, a combined strategy of improving the cell envelope permeability as well as the intracellular sterol metabolism efficiency was investigated to increase the productivity of 4-HBC. RESULTS: MmpL3, encoding a transmembrane transporter of trehalose monomycolate, is an important gene influencing the assembly of mycobacterial cell envelope. The disruption of mmpL3 in Mycobacterium neoaurum ATCC 25795 significantly enhanced the cell permeability by 23.4% and the consumption capacity of sterols by 15.6%. Therefore, the inactivation of mmpL3 was performed in a 4-HBC-producing strain derived from the wild type M. neoaurum and the 4-HBC production in the engineered strain was increased by 24.7%. Subsequently, to enhance the metabolic efficiency of sterols, four key genes, choM1, choM2, cyp125, and fadA5, involved in the sterol conversion pathway were individually overexpressed in the engineered mmpL3-deficient strain. The production of 4-HBC displayed the increases of 18.5, 8.9, 14.5, and 12.1%, respectively. Then, the more efficient genes (choM1, cyp125, and fadA5) were co-overexpressed in the engineered mmpL3-deficient strain, and the productivity of 4-HBC was ultimately increased by 20.3% (0.0633 g/L/h, 7.59 g/L 4-HBC from 20 g/L phytosterol) compared with its original productivity (0.0526 g/L/h, 6.31 g/L 4-HBC from 20 g/L phytosterol) in an industrial resting cell bio-transformation system. CONCLUSIONS: Increasing cell permeability combined with the co-overexpression of the key genes (cyp125, choM1, and fadA5) involved in the conversion pathway of sterol to 4-HBC was effective to enhance the productivity of 4-HBC. The strategy might also be useful for the conversion of sterol to other steroidal intermediates by mycobacteria.


Assuntos
Colestenonas/metabolismo , Genes Bacterianos , Mycobacterium/genética , Mycobacterium/metabolismo , Esteróis/química , Esteróis/metabolismo , Permeabilidade da Membrana Celular , Redes e Vias Metabólicas
16.
Colloids Surf B Biointerfaces ; 155: 466-476, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472750

RESUMO

Mineralization of the skeleton starts within cell-derived matrix vesicles (MVs); then, minerals propagate to the extracellular collagenous matrix. Tissue-nonspecific alkaline phosphatase (TNAP) degrades inorganic pyrophosphate (PPi), a potent inhibitor of mineralization, and contributes Pi (Phosphate) from ATP to initiate mineralization. Compared to the plasma membrane, MVs are rich in Cholesterol (Chol) (∼32%) and TNAP, but how Chol influences TNAP activity remains unclear. We have reconstituted TNAP in liposomes of dipalmitoylphosphatidylcholine (DPPC) or dioleoylphosphatidylcholine (DOPC) combined with Chol or its derivatives Cholestenone (Achol) and Ergosterol (Ergo). DPPC plus 36% sterols in liposome increased the catalytic activity of TNAP toward ATP. The presence of Chol also increased the propagation of minerals by 3.4-fold. The catalytic efficiency of TNAP toward ATP was fourfold lower in DOPC proteoliposomes as compared to DPPC proteoliposomes. DOPC proteoliposomes also increased biomineralization by 2.8-fold as compared to DPPC proteoliposomes. TNAP catalyzed the hydrolysis of ATP more efficiently in the case of the proteoliposome consisting of DOPC with 36% Chol. The same behavior emerged with Achol and Ergo. The organization of the lipid and the structure of the sterol influenced the surface tension (γ), the TNAP phosphohydrolytic activity in the monolayer, and the TNAP catalytic efficiency in the bilayers. Membranes in the Lα phase (Achol) provided better kinetic parameters as compared to membranes in the Lo phase (Chol and Ergo). In conclusion, the physical properties and the lateral organization of lipids in proteoliposomes are crucial to control mineral propagation mediated by TNAP activity during mineralization.


Assuntos
Fosfatase Alcalina/metabolismo , Calcificação Fisiológica , Microambiente Celular , Colesterol/química , Minerais/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Colestenonas/química , Colestenonas/metabolismo , Colesterol/metabolismo , Difosfatos/química , Difosfatos/metabolismo , Ergosterol/química , Ergosterol/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Masculino , Osteoblastos/citologia , Osteoblastos/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Ratos Wistar , Propriedades de Superfície
17.
Aliment Pharmacol Ther ; 45(11): 1433-1442, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28378364

RESUMO

BACKGROUND: Bile acid diarrhoea is underdiagnosed and better diagnostic tests are needed. Fasting serum fibroblast growth factor-19 (FGF19) has insufficient diagnostic value, but this may be improved by stimulation. AIM: To explore if an impaired FGF19 response identifies primary bile acid diarrhoea. METHODS: Eight patients with primary bile acid diarrhoea and eight healthy volunteers ingested (i) a meal plus 1250 mg chenodeoxycholic acid (CDCA), (ii) 1250 mg CDCA or (iii) the meal. Blood was sampled at fasting and repeatedly after stimulation. We analysed FGF19 by enzyme-linked immunosorbent assay and bile acids including 7α-hydroxy-4-cholesten-3-one by liquid chromatography-tandem mass spectrometry. RESULTS: Stimulation with the meal plus CDCA increased median FGF19 in healthy volunteers from fasting 62 pg/mL [interquartile range (IQR): 41-138] to 99 pg/mL (IQR: 67-147; P = 0.012) after 90 min and peaked after 150 min at 313 pg/mL (IQR: 54-512). This response was impaired in primary bile acid diarrhoea patients [fasting 56 pg/mL (IQR: 42-79); 90 min: 48 pg/mL [IQR: 37-63); 150 min: 57 pg/mL (48-198)]. Receiver operating characteristics (ROCAUC ) for fasting FGF19 was 0.55 (P = 0.75) and at 90 min 0.84 (P = 0.02). The difference in FGF19 from fasting to 90 min after the meal plus CDCA separated the groups (ROCAUC 1.0; P = 0.001). 7α-hydroxy-4-cholesten-3-one was elevated in primary bile acid diarrhoea (P = 0.038) and not significantly affected by stimulation. CONCLUSIONS: The FGF19 response following chenodeoxycholic acid plus meal is impaired in primary bile acid diarrhoea. This may provide a biochemical diagnostic test.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ácido Quenodesoxicólico/administração & dosagem , Diarreia/diagnóstico , Fatores de Crescimento de Fibroblastos/sangue , Adulto , Estudos de Casos e Controles , Colestenonas/metabolismo , Ensaio de Imunoadsorção Enzimática , Jejum , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos
18.
Org Biomol Chem ; 15(17): 3568-3570, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28345721

RESUMO

The structural basis for the intracellular delivery of OSW-1 is investigated using fluorescent derivatives of OSW-1 and its closely related congeners. Despite the large differences in activity, all the fluorescent probes are found to translocate across the plasma membrane to the ER and Golgi apparatus. This observation suggests that the glycosylated cholestane moiety plays an important role in the cell internalization and intracellular localization property of OSW-1.


Assuntos
Colestenonas/química , Colestenonas/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Espaço Intracelular/metabolismo , Saponinas/química , Saponinas/metabolismo , Transporte Biológico , Células HeLa , Humanos
19.
J Biol Chem ; 292(12): 4913-4924, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28190002

RESUMO

Cytochrome P450 27A1 (CYP27A1 or sterol 27-hydroxylase) is a ubiquitous, multifunctional enzyme catalyzing regio- and stereospecific hydroxylation of different sterols. In humans, complete CYP27A1 deficiency leads to cerebrotendinous xanthomatosis or nodule formation in tendons and brain (preferentially in the cerebellum) rich in cholesterol and cholestanol, the 5α-saturated analog of cholesterol. In Cyp27a1-/- mice, xanthomas are not formed, despite a significant cholestanol increase in the brain and cerebellum. The mechanism behind cholestanol production has been clarified, yet little is known about its metabolism, except that CYP27A1 might metabolize cholestanol. It also is unclear why CYP27A1 deficiency results in preferential cholestanol accumulation in the cerebellum. We hypothesized that cholestanol might be metabolized by CYP46A1, the principal cholesterol 24-hydroxylase in the brain. We quantified sterols along with CYP27A1 and CYP46A1 in mouse models (Cyp27a1-/-, Cyp46a1-/-, Cyp27a1-/-Cyp46a1-/-, and two wild type strains) and human brain specimens. In vitro experiments with purified P450s were conducted as well. We demonstrate that CYP46A1 is involved in cholestanol removal from the brain and that several factors contribute to the preferential increase in cholestanol in the cerebellum arising from CYP27A1 deficiency. These factors include (i) low cerebellar abundance of CYP46A1 and high cerebellar abundance of CYP27A1, the lack of which probably selectively increases the cerebellar cholestanol production; (ii) spatial separation in the cerebellum of cholesterol/cholestanol-metabolizing P450s from a pool of metabolically available cholestanol; and (iii) weak cerebellar regulation of cholesterol biosynthesis. We identified a new physiological role of CYP46A1, an important brain enzyme and cytochrome P450 that could be activated pharmacologically.


Assuntos
Encéfalo/metabolismo , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colestanol/metabolismo , Colesterol/metabolismo , Animais , Cerebelo/metabolismo , Colestanotriol 26-Mono-Oxigenase/genética , Colestenonas/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
PLoS One ; 11(5): e0155143, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27163928

RESUMO

OBJECTIVE: Severe acute malnutrition (SAM) is a major cause of mortality in children under 5 years and is associated with hepatic steatosis. Bile acids are synthesized in the liver and participate in dietary fat digestion, regulation of energy expenditure, and immune responses. The aim of this work was to investigate whether SAM is associated with clinically relevant changes in bile acid homeostasis. DESIGN: An initial discovery cohort with 5 healthy controls and 22 SAM-patients was used to identify altered bile acid homeostasis. A follow up cohort of 40 SAM-patients were then studied on admission and 3 days after clinical stabilization to assess recovery in bile acid metabolism. Recruited children were 6-60 months old and admitted for SAM in Malawi. Clinical characteristics, feces and blood were collected on admission and prior to discharge. Bile acids, 7α-hydroxy-4-cholesten-3-one (C4) and FGF-19 were quantified. RESULTS: On admission, total serum bile acids were higher in children with SAM than in healthy controls and glycine-conjugates accounted for most of this accumulation with median and interquartile range (IQR) of 24.6 µmol/L [8.6-47.7] compared to 1.9 µmol/L [1.7-3.3] (p = 0.01) in controls. Total serum bile acid concentrations did not decrease prior to discharge. On admission, fecal conjugated bile acids were lower and secondary bile acids higher at admission compared to pre- discharge, suggesting increased bacterial conversion. FGF19 (Fibroblast growth factor 19), a marker of intestinal bile acid signaling, was higher on admission and was associated with decreased C4 concentrations as a marker of bile acid synthesis. Upon recovery, fecal calprotectin, a marker of intestinal inflammation, was lower. CONCLUSION: SAM is associated with increased serum bile acid levels despite reduced synthesis rates. In SAM, there tends to be increased deconjugation of bile acids and conversion from primary to secondary bile acids, which may contribute to the development of liver disease.


Assuntos
Ácidos e Sais Biliares/sangue , Colestenonas/metabolismo , Gorduras na Dieta/uso terapêutico , Fígado Gorduroso/prevenção & controle , Fatores de Crescimento de Fibroblastos/metabolismo , Desnutrição Aguda Grave/dietoterapia , Estudos de Casos e Controles , Pré-Escolar , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fezes/química , Feminino , Homeostase/efeitos dos fármacos , Humanos , Lactente , Complexo Antígeno L1 Leucocitário/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Desnutrição Aguda Grave/metabolismo , Desnutrição Aguda Grave/patologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...