Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Microbiol Res ; 284: 127732, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677265

RESUMO

The HOG MAPK pathway mediates diverse cellular and physiological processes, including osmoregulation and fungicide sensitivity, in phytopathogenic fungi. However, the molecular mechanisms underlying HOG MAPK pathway-associated stress homeostasis and pathophysiological developmental events are poorly understood. Here, we demonstrated that the oxalate decarboxylase CsOxdC3 in Colletotrichum siamense interacts with the protein kinase kinase CsPbs2, a component of the HOG MAPK pathway. The expression of the CsOxdC3 gene was significantly suppressed in response to phenylpyrrole and tebuconazole fungicide treatments, while that of CsPbs2 was upregulated by phenylpyrrole and not affected by tebuconazole. We showed that targeted gene deletion of CsOxdC3 suppressed mycelial growth, reduced conidial length, and triggered a marginal reduction in the sporulation characteristics of the ΔCsOxdC3 strains. Interestingly, the ΔCsOxdC3 strain was significantly sensitive to fungicides, including phenylpyrrole and tebuconazole, while the CsPbs2-defective strain was sensitive to tebuconazole but resistant to phenylpyrrole. Additionally, infection assessment revealed a significant reduction in the virulence of the ΔCsOxdC3 strains when inoculated on the leaves of rubber tree (Hevea brasiliensis). From these observations, we inferred that CsOxdC3 crucially modulates HOG MAPK pathway-dependent processes, including morphogenesis, stress homeostasis, fungicide resistance, and virulence, in C. siamense by facilitating direct physical interactions with CsPbs2. This study provides insights into the molecular regulators of the HOG MAPK pathway and underscores the potential of deploying OxdCs as potent targets for developing fungicides.


Assuntos
Carboxiliases , Colletotrichum , Farmacorresistência Fúngica , Proteínas Fúngicas , Fungicidas Industriais , Doenças das Plantas , Colletotrichum/genética , Colletotrichum/efeitos dos fármacos , Colletotrichum/patogenicidade , Colletotrichum/enzimologia , Colletotrichum/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica/genética , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Regulação Fúngica da Expressão Gênica , Sistema de Sinalização das MAP Quinases
2.
Molecules ; 27(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35209032

RESUMO

In Mexico, the mango crop is affected by anthracnose caused by Colletotrichum species. In the search for environmentally friendly fungicides, chitosan has shown antifungal activity. Therefore, fungal isolates were obtained from plant tissue with anthracnose symptoms from the state of Guerrero in Mexico and identified with the ITS and ß-Tub2 genetic markers. Isolates of the Colletotrichum gloeosporioides complex were again identified with the markers ITS, Act, ß-Tub2, GADPH, CHS-1, CaM, and ApMat. Commercial chitosan (Aldrich, lot # STBF3282V) was characterized, and its antifungal activity was evaluated on the radial growth of the fungal isolates. The isolated anthracnose-causing species were C. chrysophilum, C. fructicola, C. siamense, and C. musae. Other fungi found were Alternaria sp., Alternaria tenuissima, Fusarium sp., Pestalotiopsis sp., Curvularia lunata, Diaporthe pseudomangiferae, and Epicoccum nigrum. Chitosan showed 78% deacetylation degree and a molecular weight of 32 kDa. Most of the Colletotrichum species and the other identified fungi were susceptible to 1 g L-1 chitosan. However, two C. fructicola isolates were less susceptible to chitosan. Although chitosan has antifungal activity, the interactions between species of the Colletotrichum gloeosporioides complex and their effect on chitosan susceptibility should be studied based on genomic changes with molecular evidence.


Assuntos
Antifúngicos/farmacologia , Quitosana/farmacologia , Colletotrichum , Mangifera/microbiologia , Colletotrichum/classificação , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/isolamento & purificação
3.
PLoS One ; 17(1): e0263084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35077506

RESUMO

Ovate-leaf atractylodes (OLA) (Atractylodes ovata) is a well-known medicinal plant in Korea; its dried rhizome and root extracts are used in herbal medicine. However, anthracnose is a great challenge to the OLA cultivation in South Korea. Colletotrichum spp. is a major group of plant pathogens responsible for anthracnose on a range of economically important hosts. Its occurrence on OLA remains unresolved. To investigate the diversity, morphology, phylogeny, and biology of Colletotrichum spp., 32 fungal isolates were obtained from 30 OLA-affected leaves collected from five different farms, in two regions in South Korea, Mungyeong and Sangju. The phylogenetic analysis with four or five gene loci (ITS, TUB2, ACT, GAPDH, and CHS-1) along with morphology of 26 representative isolates delineated six previously known Colletotrichum species including C. fructicola, C. gloeosporioides sensu stricto (s.s), C. cigarro, C. plurivorum, C. siamense and C. sojae, and one new species, described here as C. ovataense. Amongst these species, C. gloeosporioides s.s. and C. plurivorum were the most prevalent species. A pathogenicity test on the detached leaves revealed that different Colletotrichum species presented a distinct degree of virulence, confirming Koch's postulates. In this study, C. fructicola, C. cigarro, C. plurivorum, C. siamense, and C. sojae were reported from A. ovata for the first time, as the causal agent of ovate-leaf atractylodes anthracnose. Understanding the diversity and biology of the Colletotrichum species population will help in managing this disease.


Assuntos
Atractylodes/microbiologia , Colletotrichum , Genes Fúngicos , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Colletotrichum/classificação , Colletotrichum/genética , Colletotrichum/crescimento & desenvolvimento , República da Coreia
4.
J Sci Food Agric ; 102(2): 696-706, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34173241

RESUMO

BACKGROUND: Microorganism for biological control of fruit diseases is an eco-friendly alternative to the use of chemical fungicides. RESULTS: This is the first study evaluating the electrospraying process to encapsulate the biocontrol yeast Meyerozyma caribbica. The effect of encapsulating material [Wey protein concentrate (WPC), Fibersol® and Trehalose], its concentration and storage temperature on the cell viability of M. caribbica, and in vitro and in vivo control of Colletotrichum gloeosporioides was evaluated. The processing with commercial resistant maltodextrin (Fibersol®) 30% (w/v) as encapsulating material showed the highest initial cell viability (95.97 ± 1.01%). The storage at 4 ± 1 °C showed lower losses of viability compared to 25 ± 1 °C. Finally, the encapsulated yeast with Fibersol 30% w/v showed inhibitory activity against anthracnose in the in vitro and in vivo tests, similar to yeast fresh cells. CONCLUSION: Electrospraying was a highly efficient process due to the high cell viability, and consequently, a low quantity of capsules is required for the postharvest treatment of fruits. Additionally, the yeast retained its antagonistic power during storage. © 2021 Society of Chemical Industry.


Assuntos
Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia , Carica/microbiologia , Colletotrichum/efeitos dos fármacos , Composição de Medicamentos/métodos , Mangifera/microbiologia , Saccharomycetales/química , Antibiose , Colletotrichum/crescimento & desenvolvimento , Composição de Medicamentos/instrumentação , Frutas/microbiologia , Viabilidade Microbiana , Saccharomycetales/fisiologia
5.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830343

RESUMO

Colletotrichum is a plant pathogenic fungus which is able to infect virtually every economically important plant species. Up to now no common infection mechanism has been identified comparing different plant and Colletotrichum species. Plant hormones play a crucial role in plant-pathogen interactions regardless whether they are symbiotic or pathogenic. In this review we analyze the role of ethylene, abscisic acid, jasmonic acid, auxin and salicylic acid during Colletotrichum infections. Different Colletotrichum strains are capable of auxin production and this might contribute to virulence. In this review the role of different plant hormones in plant-Colletotrichum interactions will be discussed and thereby auxin biosynthetic pathways in Colletotrichum spp. will be proposed.


Assuntos
Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Etilenos/biossíntese , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Ácido Abscísico/farmacologia , Colletotrichum/genética , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/patogenicidade , Produtos Agrícolas/microbiologia , Ciclopentanos/farmacologia , Resistência à Doença/genética , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Humanos , Ácidos Indolacéticos/farmacologia , Redes e Vias Metabólicas/genética , Oxilipinas/farmacologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/biossíntese , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Plantas/microbiologia , Ácido Salicílico/farmacologia
6.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638782

RESUMO

Walnut anthracnose caused by Colletotrichum gloeosporioides is a deleterious disease that severely affects the production of walnut (Juglans regia L.). The aim of this study was to assess the antifungal and growth promotion activities of Bacillus velezensis CE 100 as an alternative to chemical use in walnut production. The crude enzyme from B. velezensis CE 100 exhibited chitinase, protease, and ß-l,3-glucanase activity and degraded the cell wall of C. gloeosporioides, causing the inhibition of spore germination and mycelial growth by 99.3% and 33.6% at 100 µL/mL, respectively. The field application of B. velezensis CE 100 culture broth resulted in a 1.3-fold and 6.9-fold decrease in anthracnose disease severity compared to the conventional and control groups, respectively. Moreover, B. velezensis CE 100 produced indole-3-acetic acid (up to 1.4 µg/mL) and exhibited the potential for ammonium production and phosphate solubilization to enhance the availability of essential nutrients. Thus, field inoculation of B. velezensis CE 100 improved walnut root development, increased nutrient uptake, enhanced chlorophyll content, and consequently improved total biomass by 1.5-fold and 2.0-fold compared to the conventional and control groups, respectively. These results demonstrate that B. velezensis CE 100 is an effective biocontrol agent against anthracnose disease and a potential plant growth-promoting bacteria in walnut tree production.


Assuntos
Antifúngicos , Bacillus/química , Colletotrichum/crescimento & desenvolvimento , Misturas Complexas , Juglans , Doenças das Plantas/microbiologia , Raízes de Plantas , Antifúngicos/química , Antifúngicos/farmacologia , Misturas Complexas/química , Misturas Complexas/farmacologia , Juglans/crescimento & desenvolvimento , Juglans/microbiologia , Controle Biológico de Vetores , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
7.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361552

RESUMO

Postharvest pathogens such as C. gloeosporioides (MA), C.oxysporum (ME) and P. steckii (MF) are the causal agents of disease in mangoes. This paper presents an in vitro investigation into the antifungal effect of a chitosan (CTS)/nano-titanium dioxide (TiO2) composite coating against MA, ME and MF. The results indicated that, the rates of MA, ME and MF mortality following the single chitosan treatment were 63.3%, 84.8% and 43.5%, respectively, while the rates of mycelial inhibition were 84.0%, 100% and 25.8%, respectively. However, following the addition of 0.5% nano-TiO2 into the CTS, both the mortality and mycelial inhibition rates for MA and ME reached 100%, and the mortality and mycelial inhibition rate for MF also increased significantly, reaching 75.4% and 57.3%, respectively. In the MA, the dry weight of mycelia after the CTS/0.5% nano-TiO2 treatment decreased by 36.3% in comparison with the untreated group, while the conductivity value was about 1.7 times that of the untreated group, and the protein dissolution rate and extravasation degree of nucleic acids also increased significantly. Thus, this research revealed the potential of CTS/nano-TiO2 composite coatings in the development of new antimicrobial materials.


Assuntos
Antifúngicos , Quitosana , Colletotrichum/crescimento & desenvolvimento , Nanocompostos , Titânio , Antifúngicos/química , Antifúngicos/farmacologia , Quitosana/química , Quitosana/farmacologia , Mangifera/microbiologia , Nanocompostos/química , Nanocompostos/uso terapêutico , Doenças das Plantas/microbiologia , Titânio/química , Titânio/farmacologia
8.
mBio ; 12(4): e0162021, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34425710

RESUMO

Colletotrichum scovillei, an ascomycete phytopathogenic fungus, is the main causal agent of serious yield losses of economic crops worldwide. The fungus causes anthracnose disease on several fruits, including peppers. However, little is known regarding the underlying molecular mechanisms involved in the development of anthracnose caused by this fungus. In an initial step toward understanding the development of anthracnose on pepper fruits, we retrieved 624 transcription factors (TFs) from the whole genome of C. scovillei and comparatively analyzed the entire repertoire of TFs among phytopathogenic fungi. Evolution and proliferation of members of the homeobox-like superfamily, including homeobox (HOX) TFs that regulate the development of eukaryotic organisms, were demonstrated in the genus Colletotrichum. C. scovillei was found to contain 10 HOX TF genes (CsHOX1 to CsHOX10), which were functionally characterized using deletion mutants of each CsHOX gene. Notably, CsHOX1 was identified as a pathogenicity factor required for the suppression of host defense mechanisms, which represents a new role for HOX TFs in pathogenic fungi. CsHOX2 and CsHOX7 were found to play essential roles in conidiation and appressorium development, respectively, in a stage-specific manner in C. scovillei. Our study provides a molecular basis for understanding the mechanisms associated with the development of anthracnose on fruits caused by C. scovillei, which will aid in the development of novel approaches for disease management. IMPORTANCE The ascomycete phytopathogenic fungus, Colletotrichum scovillei, causes serious yield loss on peppers. However, little is known about molecular mechanisms involved in the development of anthracnose caused by this fungus. We analyzed whole-genome sequences of C. scovillei and isolated 624 putative TFs, revealing the existence of 10 homeobox (HOX) transcription factor (TF) genes. We found that CsHOX1 is a pathogenicity factor required for the suppression of host defense mechanism, which represents a new role for HOX TFs in pathogenic fungi. We also found that CsHOX2 and CsHOX7 play essential roles in conidiation and appressorium development, respectively, in a stage-specific manner in C. scovillei. Our study contributes to understanding the mechanisms associated with the development of anthracnose on fruits caused by C. scovillei, which will aid for initiating novel approaches for disease management.


Assuntos
Capsicum/microbiologia , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/genética , Genes Homeobox , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Fatores de Transcrição/genética , Colletotrichum/patogenicidade , Mecanismos de Defesa , Genoma Fúngico , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento
9.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919762

RESUMO

The hemibiotrophic ascomycete fungus Colletotrichum gloeosporioides is the causal agent of anthracnose on numerous plants, and it causes considerable economic losses worldwide. Endocytosis is an essential cellular process in eukaryotic cells, but its roles in C. gloeosporioides remain unknown. In our study, we identified an endocytosis-related protein, CgEnd3, and knocked it out via polyethylene glycol (PEG)-mediated protoplast transformation. The lack of CgEnd3 resulted in severe defects in endocytosis. C. gloeosporioides infects its host through a specialized structure called appressorium, and ΔCgEnd3 showed deficient appressorium formation, melanization, turgor pressure accumulation, penetration ability of appressorium, cellophane membrane penetration, and pathogenicity. CgEnd3 also affected oxidant adaptation and the expression of core effectors during the early stage of infection. CgEnd3 contains one EF hand domain and four calcium ion-binding sites, and it is involved in calcium signaling. A lack of CgEnd3 changed the responses to cell-wall integrity agents and fungicide fludioxonil. However, CgEnd3 regulated appressorium formation and endocytosis in a calcium signaling-independent manner. Taken together, these results demonstrate that CgEnd3 plays pleiotropic roles in endocytosis, calcium signaling, cell-wall integrity, appressorium formation, penetration, and pathogenicity in C. gloeosporioides, and it suggests that CgEnd3 or endocytosis-related genes function as promising antifungal targets.


Assuntos
Colletotrichum/patogenicidade , Endocitose , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Populus/microbiologia , Adaptação Fisiológica/efeitos dos fármacos , Antifúngicos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Celofane , Colletotrichum/efeitos dos fármacos , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/metabolismo , Dioxóis/farmacologia , Endocitose/efeitos dos fármacos , Deleção de Genes , Hifas/efeitos dos fármacos , Melaninas/metabolismo , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/microbiologia , Pressão , Pirróis/farmacologia , Virulência/efeitos dos fármacos
10.
Microbiol Res ; 248: 126748, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33752111

RESUMO

The hemibiotrophic pathogen Colletotrichum gloeosporioides is the causal agent of poplar anthracnose and causes considerable economic losses. This fungus infects its host through a specialized structure called an appressorium. In a previous study, we demonstrated that the mitogen-activated protein kinase (MAPK) CgMk1 plays a critical role in appressorium formation and pathogenicity. In this study, we identified three upstream components of CgMk1, the putative adaptor protein CgSte50, MAPKKK CgSte11, and MAPKK CgSte7, and showed that CgSte50, CgSte11, and CgSte7 positively regulate the phosphorylation of CgMk1. Deletion of CgSte50, CgSte11, and CgSte7 resulted in the loss of appressorium formation, penetration of the cellophane membrane, invasive growth and pathogenicity, similar to the defects observed in the CgMk1 mutant. CgSte50, CgSte11, CgSte7 and CgMk1 were also required for polarity during conidial germination. At the initial stage of appressorium formation, the accumulation of reactive oxygen species (ROS) was altered in the CgSte50, CgSte11, CgSte7 and CgMk1 deletion mutants compared with that in wild type (WT). Furthermore, the CgSte50, CgSte11, CgSte7 and CgMk1 deletion mutants manifested pleiotropic defects during vegetative growth; all mutants exhibited albino colonies, and the aerial hyphae had reduced hydrophobicity. In the mutants, autolysis was detected at the colony edge, and septum formation in the hyphae was elevated compared with that in the WT hyphae. Moreover, deletion of CgSte50, CgSte11, CgSte7 and CgMk1 affected vegetative growth under nitrogen-limiting and osmotic stress conditions. CgSte50, CgSte11, and CgSte7 but not CgMk1 were required for the oxidative stress response. Taken together, these results indicate that the CgMk1 MAPK cascade plays vital roles in various important functions in C. gloeosporioides.


Assuntos
Colletotrichum/enzimologia , Colletotrichum/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Doenças das Plantas/microbiologia , Populus/microbiologia , Colletotrichum/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hifas/enzimologia , Hifas/genética , Hifas/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/genética , Morfogênese , Espécies Reativas de Oxigênio/metabolismo , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
11.
Cells ; 10(2)2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672559

RESUMO

(1) Background: This study was aimed at identifying the Colletotrichum species associated with twig and shoot dieback of citrus, a new syndrome occurring in the Mediterranean region and also reported as emerging in California. (2) Methods: Overall, 119 Colletotrichum isolates were characterized. They were recovered from symptomatic trees of sweet orange, mandarin and mandarin-like fruits during a survey of citrus groves in Albania and Sicily (southern Italy). (3) Results: The isolates were grouped into two distinct morphotypes. The grouping of isolates was supported by phylogenetic sequence analysis of two genetic markers, the internal transcribed spacer regions of rDNA (ITS) and ß-tubulin (TUB2). The groups were identified as Colletotrichum gloeosporioides and C. karstii, respectively. The former accounted for more than 91% of isolates, while the latter was retrieved only occasionally in Sicily. Both species induced symptoms on artificially wound inoculated twigs. C. gloeosporioides was more aggressive than of C. karstii. Winds and prolonged drought were the factor predisposing to Colletotrichum twig and shoot dieback. (4) Conclusions: This is the first report of C. gloeosporioides and C. karstii as causal agents of twig and shoot dieback disease in the Mediterranean region and the first report of C. gloeosporioides as a citrus pathogen in Albania.


Assuntos
Citrus/microbiologia , Colletotrichum/fisiologia , Doenças das Plantas/microbiologia , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/isolamento & purificação , DNA Intergênico/genética , Micélio/fisiologia , Necrose , Filogenia , Folhas de Planta/microbiologia
12.
ACS Appl Mater Interfaces ; 13(7): 9143-9155, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33567821

RESUMO

Pesticide leaching and soil contamination are major issues in the present agriculture formulations. Hence, here 2D graphene oxide in combination with cationic, anionic, or nonionic polymers were tested for runoff resistance and targeted release behavior. Cationic polymer supplemented the binding of rGO on leaf surface by 30% more than control and reduced off-target leaching in soil by 45% more than control. Further, to enhance the fruit rot control caused by Colletotrichum capsici in chili crop, the rGO was decorated with Cu2-xSe nanocrystals, which provided combined disease control with captan. The chitosan coating in the nanocomposite added targeted pH-responsive fungal inhibition behavior and could reduce the C. capsici growth by ∼1/2 times compared to captan control.


Assuntos
Captana/farmacologia , Quitosana/farmacologia , Colletotrichum/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Grafite/farmacologia , Doenças das Plantas/prevenção & controle , Captana/química , Quitosana/química , Colletotrichum/crescimento & desenvolvimento , Frutas/química , Fungicidas Industriais/química , Grafite/química , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Nanocompostos/química , Tamanho da Partícula , Propriedades de Superfície
13.
Protein Pept Lett ; 28(8): 929-937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33511939

RESUMO

BACKGROUND: Resistance Gene Analogues (RGAs) are an important source of disease resistance in crop plants and have been extensively studied for their identification, tagging and mapping of Quantitative Trait Loci (QTLs). Tracking these RGAs in sugarcane can be of great help for the selection and screening of disease resistant clones. OBJECTIVE: In the present study expression of different Resistance Gene Analogues (RGAs) was assessed in indigenous elite sugarcane genotypes which include resistant, highly resistant, susceptible and highly susceptible to disease infestation. METHODS: Total cellular DNA and RNA were isolated from fourteen indigenous elite sugarcane genotypes. PCR, semi-quantitative RT PCR and real time qPCR analyses were performed. The resultant amplicons were sequence characterized, chromosomal localization and phylogenetic analysis were performed. RESULTS: All of the 15 RGA primers resulted in amplification of single or multiple fragments from genomic DNA whereas only five RGA primers resulted in amplification from cDNA. Sequence characterization of amplified fragments revealed 86-99% similarity with disease resistance proteins indicating their potential role in disease resistance response. Phylogenetic analysis also validated these findings. Further, expression of RGA-012, RGA-087, RGA-118, RGA-533 and RGA-542 appeared to be upregulated and down regulated in disease resistant and susceptible genotypes, respectively, after inoculation with Colletotrichum falcatum. CONCLUSION: RGAs are present in most of our indigenous genotypes. Anyhow, differential expression of five RGAs indicated that they have some critical role in disease resistance. So, the retrieved results can not only be employed to devise molecular markers for the screening of disease resistant genotypes but can also be used to develop disease resistant plants through transgenic technology.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Doenças das Plantas/genética , Locos de Características Quantitativas , Saccharum/genética , Colletotrichum/crescimento & desenvolvimento , DNA de Plantas/genética , DNA de Plantas/metabolismo , Doenças das Plantas/microbiologia , RNA de Plantas/biossíntese , RNA de Plantas/genética , Saccharum/microbiologia
14.
Protein Pept Lett ; 28(2): 149-163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32552632

RESUMO

BACKGROUND: Antimicrobial peptides (AMPs) are found in the defense system in virtually all life forms, being present in many, if not all, plant species. OBJECTIVE: The present work evaluated the antimicrobial, enzymatic activity and mechanism of action of the PEF2 fraction from Capsicum chinense Jack. seeds against phytopathogenic fungi. METHODS: Peptides were extracted from C. chinense seeds and subjected to reverse-phase chromatography on an HPLC system using a C18 column coupled to a C8 guard column, then the obtained PEF2 fraction was rechromatographed using a C2/C18 column. Two fractions, named PEF2A and PEF2B, were obtained. The fractions were tested for antimicrobial activity on Colletotrichum gloeosporioides, Colletotrichum lindemuthianum, Fusarium oxysporum and Fusarium solani. Trypsin inhibition assays, reverse zymographic detection of protease inhibition and α-amylase activity assays were also performed. The mechanism of action by which PEF2 acts on filamentous fungi was studied through analysis of membrane permeability and production of reactive oxygen species (ROS). Additionally, we investigated mitochondrial functionality and caspase activation in fungal cells. RESULTS: It is possible to observe that PEF2 significantly inhibited trypsin activity and T. molitor larval α-amylase activity. The PEF2 fraction was able to inhibit the growth of C. gloeosporioides, C. lindemuthianum and F. oxysporum. PEF2A inhibited the growth of C. lindemuthianum (75%) and F. solani (43%). PEF2B inhibited C. lindemuthianum growth (66%) and F. solani (94%). PEF2 permeabilized F. solani cell membranes and induced ROS in F. oxysporum and F. solani. PEF2 could dissipate mitochondrial membrane potential but did not cause the activation of caspases in all studied fungi. CONCLUSION: The results may contribute to the biotechnological application of these AMPs in the control of pathogenic microorganisms in plants of agronomic importance.


Assuntos
Antifúngicos/farmacologia , Capsicum/química , Colletotrichum/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Inibidores de Proteases/farmacologia , Sementes/química , Sequência de Aminoácidos , Permeabilidade da Membrana Celular , Colletotrichum/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
15.
Braz. arch. biol. technol ; 64(spe): e21200816, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1285566

RESUMO

Abstract The objective of this work was to evaluate the fungitoxic effect of the aqueous extracts of Baccharis trimera on the mycelial growth of Colletotrichum lindemuthianum 89 race, as well as its effect on the accumulation of phaseolin in hypocotyls of different cultivars and common bean varieties. It was obtained 20% aqueous extract from plants collected in municipalities of the Western Region of Paraná. Blocks containing C. lindemuthianum mycelium were transferred to Petri dishes containing medium with the different extracts and incubated at 25 °C. The colonies diameter was measured until the 12th day. Effects of aqueous extracts on phaseolin production was evaluated in hypocotyls of Carioca, Cnpf 8104, Soberana, Tibatã, Uirapurú cultivars, as well as Rosinha and Vermelho varieties. Each one cultivar and variety hypocotyl was transferred separately to test tubes containing 500 μL of 20% aqueous extracts. Sterile water, Bion®, and UV was used as controls. The phaseolin production was measured in spectrophotometer [280 nm]. Results of the evaluation of the antifungal activity of aqueous extracts of Baccharis sp. specimens collected indicate that approximately 50% of the samples presented capacity to reduce between 74 and 92% of C. lindemuthianum growth. Cultivar Tibatã and Vermelho variety showed greater sensitivity over the applied treatments. Results of fungal filtrates and vegetal aqueous extracts presented a low capacity to induce the production of phaseolin in hypocotyls.


Assuntos
Controle Biológico de Vetores , Colletotrichum/crescimento & desenvolvimento , Phaseolus , Baccharis/microbiologia , Brasil
16.
J Agric Food Chem ; 68(52): 15460-15467, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33320657

RESUMO

The anthracnose rot of postharvest mango fruit is a devastating fungal disease often resulting in tremendous quality deterioration and postharvest losses. Nitric oxide (NO), as an important signaling molecule, is involved in the responses to postharvest fruit diseases. In the present study, the effectiveness of NO donor sodium nitroprusside (SNP) to prevent anthracnose of "Tainong" mango fruit caused by Colletotrichum gloeosporioides was evaluated through in vivo and in vitro tests. Results from in vivo test showed that SNP treatment effectively inhibited the lesion diameter and disease incidence on inoculated mango fruit during storage. SNP treatment could regulate hydrogen peroxide levels by reinforcing the activities of catalase, peroxidase, superoxide dismutase, and ascorbate peroxidase. Furthermore, SNP elevated the accumulation of lignin, total phenolics, anthocyanin, and flavonoids and the activities of chitinase and ß-1,3-glucanase. In addition, in vitro tests indicated that SNP markedly suppressed mycelial growth and spore germination of C. gloeosporioides through damaging plasma membrane integrity and increasing the leakage of soluble sugar and protein. Our results suggested that SNP could suppress anthracnose decay in postharvest mango fruit, possibly by directly suppressing pathogen growth and indirectly triggering host defense responses.


Assuntos
Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Frutas/efeitos dos fármacos , Mangifera/microbiologia , Nitroprussiato/farmacologia , Colletotrichum/efeitos dos fármacos , Colletotrichum/crescimento & desenvolvimento , Conservação de Alimentos/instrumentação , Frutas/microbiologia , Fungicidas Industriais/farmacologia , Mangifera/efeitos dos fármacos , Óxido Nítrico/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
17.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228091

RESUMO

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.


Assuntos
Agentes de Controle Biológico/química , Brassica napus/microbiologia , Endófitos/genética , Genoma Bacteriano , Doenças das Plantas/prevenção & controle , Pseudomonas fluorescens/genética , Amônia/metabolismo , Amônia/farmacologia , Arabidopsis/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Agentes de Controle Biológico/metabolismo , Carbono-Carbono Liases/biossíntese , Carbono-Carbono Liases/farmacologia , Colletotrichum/efeitos dos fármacos , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/patogenicidade , Mineração de Dados/métodos , Endófitos/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/farmacologia , Pseudomonas fluorescens/classificação , Pseudomonas fluorescens/metabolismo , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/patogenicidade , Plântula/microbiologia , Sideróforos/biossíntese , Sideróforos/farmacologia , Tensoativos/metabolismo , Tensoativos/farmacologia
18.
Antonie Van Leeuwenhoek ; 113(11): 1573-1585, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32815093

RESUMO

Colletotrichum gloeosporioides is a main cause of rubber anthracnose, which results in a huge loss for the natural rubber industry. In this study, an actinomycete strain QY-3 was isolated and had good antagonistic activity against C. gloeosporioides with an inhibition rate of 86.6%. Strain QY-3 was identified as Streptomyces deccanensis preliminarily. Millet medium was selected as the optimal fermentation broth for antifungal metabolites production by S. deccanensis QY-3. The culture filtrate extract (CFE) from the millet broth of S. deccanensis QY-3 exhibits broad-spectrum antifungal activity against plant pathogenic fungi, and its EC50 inhibiting the mycelial growth of C. gloeosporioides is 6.3 µg/mL. The CFE has good thermal and pH stabilities, and it can break the hyphae and inhibit the conidial germination of C. gloeosporioides. 100 µg/mL of CFE had an obvious control effect on rubber anthracnose, and the control efficacy was 63.7% on 5 days after inoculation. Two compounds with inhibitory effects on C. gloeosporioides, anthranilic acid and sangivamycin, were isolated from the CFE. The MICs of both compounds against C. gloeosporioides were 29.3 and 23.0 µg/mL respectively. In conclusion, the CFE from S. deccanensis QY-3 has great potential to be a promising fungicide for rubber anthracnose.


Assuntos
Colletotrichum/efeitos dos fármacos , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Doenças das Plantas/microbiologia , Borracha , Streptomyces/química , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/fisiologia , Meios de Cultivo Condicionados/metabolismo , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Streptomyces/metabolismo
19.
Molecules ; 25(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722108

RESUMO

Loquat fruit is one of the most perishable fruits in China, and has a very limited shelf life because of mechanical injury and microbial decay. Due to an increasing concern about human health and environmental security, antagonistic microorganisms have been a potential alternative for fungicides to control postharvest diseases. In this work, the antifungal effect of volatile organic compounds (VOCs) produced by Bacillus methylotrophicus BCN2 and Bacillus thuringiensis BCN10 against five postharvest pathogens isolated from loquat fruit, Fusarium oxysporum, Botryosphaeria sp., Trichoderma atroviride, Colletotrichum gloeosporioides, and Penicillium expansum were evaluated by in vitro and in vivo experiments. As a result, the VOCs released by BCN2 and BCN10 were able to suppress the mycelial growth of all targeted pathogens according to inhibition ratio in the double petri-dish assay as well as disease incidence and disease diameter on loquat fruits. The main volatile compounds were identified by solid-phase microextraction (SPME)-gas chromatography. These VOCs produced by the two strains played complementary roles in controlling these five molds and enabled loquat fruits to keep fresh for ten days, significantly. This research will provide a theoretic foundation and technical support for exploring the functional components of VOCs applicable in loquat fruit preservation.


Assuntos
Antifúngicos/farmacologia , Bacillus thuringiensis/química , Bacillus/química , Eriobotrya/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Antifúngicos/química , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Cromatografia Gasosa , Colletotrichum/efeitos dos fármacos , Colletotrichum/crescimento & desenvolvimento , Hypocreales/efeitos dos fármacos , Hypocreales/crescimento & desenvolvimento , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/química
20.
Int J Mol Sci ; 21(12)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545883

RESUMO

We present a case study report into nutritional competition between Trichoderma spp. isolated from wild raspberries and fungal phytopathogenic isolates (Colletotrichum sp., Botrytis sp., Verticillium sp. and Phytophthora sp.), which infect soft fruit ecological plantations. The competition was evaluated on the basis of nutritional potentiates. Namely, these were consumption and growth, calculated on the basis of substrate utilization located on Biolog® Filamentous Fungi (FF) plates. The niche size, total niche overlap and Trichoderma spp. competitiveness indices along with the occurrence of a stressful metabolic situation towards substrates highlighted the unfolding step-by-step approach. Therefore, the Trichoderma spp. and pathogen niche characteristics were provided. As a result, the substrates in the presence of which Trichoderma spp. nutritionally outcompete pathogens were denoted. These were adonitol, D-arabitol, i-erythritol, glycerol, D-mannitol and D-sorbitol. These substrates may serve as additives in biopreparations of Trichoderma spp. dedicated to plantations contaminated by phytopathogens of the genera Colletotrichum sp., Botrytis sp., Verticillium sp. and Phytophthora sp.


Assuntos
Fungos Mitospóricos/fisiologia , Phytophthora/crescimento & desenvolvimento , Rubus/crescimento & desenvolvimento , Trichoderma/fisiologia , Botrytis/crescimento & desenvolvimento , Colletotrichum/crescimento & desenvolvimento , Eritritol/análise , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Glicerol/análise , Manitol/análise , Ribitol/análise , Rubus/microbiologia , Saccharomycetales/crescimento & desenvolvimento , Microbiologia do Solo , Sorbitol/análise , Álcoois Açúcares/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...