Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 168: 834-845, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33242551

RESUMO

Chitosan is a potent biopolymer having promising antimicrobial properties against phytopathogens. Recently, engineered nanomaterials (ENMs) have gained much attention due to their potential application in the plant disease management. In this study, we reported the green synthesis of chitosan-magnesium (CS-Mg) nanocomposite and its antimicrobial activity against two rice pathogens namely Acidovorax oryzae and Rhizoctonia solani for the first time. The green MgO nanoparticles synthesized by using a native Bacillus sp. strain RNT3, were used to fabricate CS-Mg nanocomposite utilizing one-pot synthesis method. The synthesis of CS-Mg nanocomposite was further confirmed by using UV-vis spectroscopy, whereas, FTIR and XRD analysis showed the capping of CS-Mg nanocomposites by different functional groups together with their crystalline structure, respectively. Besides, SEM and TEM images revealed the spherical shape along with the particles size ranging from 29 to 60 nm. Moreover, EDS analysis confirmed the elemental purity of nanocomposite. The CS-Mg nanocomposite showed remarkable antimicrobial activity against A. oryzae and R. solani and significantly inhibited the growth as compared to non-treated control. The ultrastructure studies showed damaged structure of cell wall and internal cellular organelles after treatment with 100 µg mL-1 CS-Mg nanocomposite. The results of this study indicated that CS-Mg nanocomposite-based antimicrobial agents could be considered as promising nanopesticides against phytopathogens in plant disease management.


Assuntos
Anti-Infecciosos/farmacologia , Quitosana/farmacologia , Comamonadaceae/crescimento & desenvolvimento , Magnésio/química , Oryza/crescimento & desenvolvimento , Rhizoctonia/crescimento & desenvolvimento , Anti-Infecciosos/química , Parede Celular/efeitos dos fármacos , Quitosana/química , Comamonadaceae/efeitos dos fármacos , Resistência à Doença , Química Verde , Nanopartículas de Magnetita , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nanocompostos , Oryza/microbiologia , Rhizoctonia/efeitos dos fármacos , Difração de Raios X
2.
Food Microbiol ; 92: 103569, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950154

RESUMO

This study investigated the antimicrobial activities of organic acid vapors against a phytopathogen (Acidovorax citrulli) and foodborne pathogens (Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes) on the surface of Cucurbitaceae seeds. Germination percentages of cucumber, honeydew melon and watermelon seeds treated with acetic and propionic acid vapors (100 mg/L) at 50 °C and 43% or 85% relative humidity (RH) for up to 2 h did not significantly (P > 0.05) decrease. Treatment with formic acid significantly (P ≤ 0.05) decreased the germination percentage. The antimicrobial activities of acetic and propionic acid vapors (100 mg/L; 50 °C; 43% or 85% RH) were determined. A. citrulli was inactivated within 1 h on cucumber and watermelon seeds, regardless of type of organic acid or RH. The phytopathogen was reduced to levels below the detection limit (-0.5 log CFU/g) for enrichment on honeydew melon seeds treated with acetic acid vapor. S. enterica and L. monocytogenes were inactivated within 2 h at 85% RH on honeydew melon and watermelon seeds treated with acetic acid and propionic acid vapors. E. coli O157: H7 was inactivated by treatment with acetic acid vapor at 85% RH. This study provides useful information for developing a method to decontaminate Curcurbitaceae seeds using organic acid vapors as lethal agents.


Assuntos
Ácidos/farmacologia , Antibacterianos/farmacologia , Cucurbitaceae/microbiologia , Escherichia coli O157/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Ácido Acético/química , Ácido Acético/farmacologia , Ácidos/química , Antibacterianos/química , Comamonadaceae/efeitos dos fármacos , Comamonadaceae/crescimento & desenvolvimento , Cucurbitaceae/crescimento & desenvolvimento , Escherichia coli O157/crescimento & desenvolvimento , Formiatos/química , Formiatos/farmacologia , Germinação , Listeria monocytogenes/crescimento & desenvolvimento , Propionatos/química , Propionatos/farmacologia , Salmonella enterica/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/microbiologia
3.
Plant J ; 101(5): 1103-1117, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31630460

RESUMO

Phytoalexins play a pivotal role in plant-pathogen interactions. Whereas leaves of rice (Oryza sativa) cultivar Nipponbare predominantly accumulated the phytoalexin sakuranetin after jasmonic acid induction, only very low amounts accumulated in the Kasalath cultivar. Sakuranetin is synthesized from naringenin by naringenin 7-O-methyltransferase (NOMT). Analysis of chromosome segment substitution lines and backcrossed inbred lines suggested that NOMT is the underlying cause of differential phytoalexin accumulation between Nipponbare and Kasalath. Indeed, both NOMT expression and NOMT enzymatic activity are lower in Kasalath than in Nipponbare. We identified a proline to threonine substitution in Kasalath relative to Nipponbare NOMT as the main cause of the lower enzymatic activity. Expanding this analysis to rice cultivars with varying amounts of sakuranetin collected from around the world showed that NOMT induction is correlated with sakuranetin accumulation. In bioassays with Pyricularia oryzae, Gibberella fujikuroi, Bipolaris oryzae, Burkholderia glumae, Xanthomonas oryzae, Erwinia chrysanthemi, Pseudomonas syringae, and Acidovorax avenae, naringenin was more effective against bacterial pathogens and sakuranetin was more effective against fungal pathogens. Therefore, the relative amounts of naringenin and sakuranetin may provide protection against specific pathogen profiles in different rice-growing environments. In a dendrogram of NOMT genes, those from low-sakuranetin-accumulating cultivars formed at least two clusters, only one of which involves the proline to threonine mutation, suggesting that the low sakuranetin chemotype was acquired more than once in cultivated rice. Strains of the wild rice species Oryza rufipogon also exhibited differential sakuranetin accumulation, indicating that this metabolic diversity predates rice domestication.


Assuntos
Antifúngicos/farmacologia , Ciclopentanos/metabolismo , Flavonoides/metabolismo , Metiltransferases/genética , Oryza/enzimologia , Oxilipinas/metabolismo , Doenças das Plantas/imunologia , Ascomicetos/efeitos dos fármacos , Burkholderia/efeitos dos fármacos , Comamonadaceae/efeitos dos fármacos , Flavanonas/metabolismo , Fusarium/efeitos dos fármacos , Variação Genética , Metiltransferases/metabolismo , Oryza/genética , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/efeitos dos fármacos
4.
Insect Biochem Mol Biol ; 113: 103215, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31449847

RESUMO

In this study, two novel antibacterial peptide genes, termed lugensin A and B were identified and characterized from a rice sap-sucking hemipteran insect pest, the brown planthopper, Nilaparvata lugens. Lugensin gene expression was significantly induced by Gram-negative and Gram-positive bacterial stains under the regulation of a signal receptor, the long peptidoglycan recognition protein (PGRP-LC) in the IMD pathway. Knockdown of PGRP-LC by RNAi eliminated bacterium induced Lugensin gene expression. Lugensins had the apparent antibacterial activities against Escherichia coli K12, Bacillus subtilis and the rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) strain RS-1. Lugensins inhibited bacterial proliferation by disrupting the integrity of the bacterial membranes. Scanning electron microscopy revealed abnormal membrane morphology of the recombinant Lugensin-treated bacteria. Lugensins induced complete cell disruption of E. coli K12 and B. subtilis strains while formed the holes on the cell surface of Aaa RS-1 strain. Immunofluorescence showed that Lugensins localized in the cell membrane of E. coli K12 while accumulated in the cytosol of B. subtilis. Differently, Lugensins remained in both the cell membrane and the cytosol of Aaa RS-1 strain, suggesting different action modes of Lugensins to different microbes. This is the first report of the novel antibacterial peptides found in the rice sap-sucking hemipteran insect species.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Regulação da Expressão Gênica , Hemípteros/genética , Proteínas de Insetos/genética , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Comamonadaceae/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Feminino , Hemípteros/crescimento & desenvolvimento , Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/farmacologia , Masculino , Ninfa/genética , Ninfa/metabolismo , Oócitos/metabolismo , Interferência de RNA
5.
J Sci Food Agric ; 99(13): 5734-5739, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31163092

RESUMO

BACKGROUND: Acidovorax citrulli is a plant pathogen causing bacterial fruit blotch in Cucurbitaceae family. Applying high concentration of disinfectants to seeds containing plant pathogen may substantially decrease the germination rate of seeds. Therefore, it is necessary to develop a hurdle technology which can inactivate plant pathogens without decreasing seed viability. This study was conducted to develop a decontamination method to inactivate the plant pathogen Acidovorax citrulli on Cucurbitaceae seeds by sequential treatments with aqueous chlorine dioxide (ClO2 ), drying, and dry heat. RESULTS: The maximum ClO2 concentration that did not lower germination rates of cucumber, honeydew melon, and watermelon seeds was ca. 100 µg mL-1 of ClO2 for 5 min. Optimal incubation conditions for drying seeds that had been treated with aqueous ClO2 were determined as 25 °C and 43% relative humidity (RH) for 48 h. The maximum dry-heat temperature that did not reduce germination rates of seeds, which had been treated with ClO2 and dried at 25 °C, was 60 °C at 43% RH for 24 h. When seeds containing A. citrulli (6.4-7.0 log CFU g-1 ) were treated with aqueous ClO2 (50 µg mL-1 , 5 min), dried (25 °C, 43% RH, 24 h), and dry heated (60 °C, 43% RH, 24 h), the pathogen was inactivated to below the detection limit from all three seed types (<-0.5 log CFU g-1 ). CONCLUSION: The decontamination conditions to inactivate A. citrullii from Cucurbitaceae seeds without decreasing the seed viability were determined (sequential treatment with ClO2 [50 µg mL-1 , 5 min], dried [25 °C, 43% RH, 24 h], and dry heated [60 °C, 43% RH, 24 h]). The results of this study may also be applicable to other plant pathogens on other types of seeds. © 2019 Society of Chemical Industry.


Assuntos
Comamonadaceae/efeitos dos fármacos , Cucurbitaceae/microbiologia , Descontaminação/métodos , Sementes/crescimento & desenvolvimento , Compostos Clorados/farmacologia , Comamonadaceae/crescimento & desenvolvimento , Cucurbitaceae/crescimento & desenvolvimento , Descontaminação/instrumentação , Dessecação , Desinfetantes/farmacologia , Germinação , Óxidos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Sementes/microbiologia
6.
Artif Cells Nanomed Biotechnol ; 47(1): 2230-2239, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31161806

RESUMO

Bacterial brown stripe (BBS) is one of the most economically important diseases of rice caused by Acidovorax oryzae (Ao). In order to ensure food security and safe consumption, the use of non-chemical approach is necessary. In this study, MgO and MnO2 were synthesized using chamomile flower extract. The synthesized MgO and MnO2 nanoparticles were characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission/scanning electron microscopy. The sizes were 18.2 and 16.5 nm for MgO and MnO2 nanoparticles, respectively. The MgO and MnO2 nanoparticles reduced the growth of Ao strain RS-2 by 62.9 and 71.3%, respectively. Also, the biofilm formation and swimming motility were significantly reduced compared to the control. The antibacterial mechanisms of MgO and MnO2 nanoparticles against RS-2 reveals that MgO and MnO2 nanoparticles penetrated the cells and destroyed the cell membrane leading to leakage of cytoplasmic content. Also, the flow cytometry observation reveals that the apoptotic cell ratio of RS-2 increased from 0.97% to 99.52 and 99.94% when treated with MgO and MnO2 nanoparticles, respectively. Altogether, the results suggest that the synthesized MgO and MnO2 nanoparticles could serve as an alternative approach method for the management of BBS.


Assuntos
Comamonadaceae/efeitos dos fármacos , Óxido de Magnésio/síntese química , Óxido de Magnésio/farmacologia , Compostos de Manganês/síntese química , Compostos de Manganês/farmacologia , Matricaria/química , Nanopartículas/química , Óxidos/síntese química , Óxidos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Química Verde , Óxido de Magnésio/química , Compostos de Manganês/química , Testes de Sensibilidade Microbiana , Nanotecnologia , Óxidos/química , Extratos Vegetais/química
7.
Microb Pathog ; 126: 343-350, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30468852

RESUMO

Type IV secretion system (T4SS) is a specialized nanomachine that is utilized for the pathogenicity of gram-negative bacteria. However, the role of T4SS genes in virulence of rice bacterial brown stripe pathogen Acidovorax oryzae (Ao) strain RS-2 is not clear, which contains T4SS gene cluster based on genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type strain RS-2 and nine T4SS mutants, which were constructed in this study. Results indicated that mutation of pilT, pilM, pilQ, or pilZ3 genes not only significantly reduced bacterial virulence, but also caused a reduction of 20.4-62.0% in biofilm formation and 37.7-47.7% reduction in motility, but had no effect on exopolysaccharide (EPS) production or extracellular enzymatic activities when compared to the wild type. The four T4SS genes had a differential effect on bacterial growth after 24 h post-incubation. The complemented strains of the four T4SS mutants restored similar virulence symptom as the wild type. In addition, no change was observed in bacterial virulence by mutation of the other five T4SS genes. Totally, these results demonstrated that T4SS played vital roles in bacterial virulence, motility and biofilm formation in plant pathogen Ao strain RS-2.


Assuntos
Comamonadaceae/genética , Comamonadaceae/patogenicidade , Genes Bacterianos/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Sistemas de Secreção Tipo IV/genética , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Comamonadaceae/efeitos dos fármacos , Comamonadaceae/crescimento & desenvolvimento , DNA Bacteriano/genética , Tolerância a Medicamentos , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Peróxido de Hidrogênio/farmacologia , Família Multigênica , Mutação , Sistemas de Secreção Tipo IV/metabolismo , Virulência/genética
8.
Bull Exp Biol Med ; 164(4): 459-461, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29504100

RESUMO

Studies of the effects of Trichoderma harzianum Rifai F-180 culture fluid concentrate containing L-lysine-α-oxidase antitumor enzyme produced by the fungus and the homogenous enzyme, on ultrahazardous bacterium Acidovorax citrulli demonstrated the antibacterial activity of the concentrate. Trichoderma harzianum Rifai F-180 producing L-lysine-α-oxidase was cultured in a technological device at G. K. Skryabin Institute of Biochemistry and. Physiology of Microorganisms, Russian Academy of Sciences. Activity of L-lysine-α-oxidase in the resulted culture fluid concentrate was 0.54 U/ml, activity of the homogenous enzyme was 50 U/mg.


Assuntos
Aminoácido Oxirredutases/farmacologia , Comamonadaceae/efeitos dos fármacos , Proteínas Fúngicas/farmacologia , Fungicidas Industriais/farmacologia , Trichoderma/química , Aminoácido Oxirredutases/isolamento & purificação , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Comamonadaceae/crescimento & desenvolvimento , Comamonadaceae/isolamento & purificação , Comamonadaceae/patogenicidade , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Reposicionamento de Medicamentos , Proteínas Fúngicas/isolamento & purificação , Fungicidas Industriais/isolamento & purificação , Plantas/microbiologia , Trichoderma/crescimento & desenvolvimento
9.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180363

RESUMO

A simple method for the synthesis of nanoparticles (NPs) of silver (Ag) in a matrix of bovine submaxillary mucin (BSM) was reported previously by some of the authors of this study. Based on mucin characteristics such as long-lasting stability, water solubility, and surfactant and adhesive characteristics, we hypothesized that these compounds, named BSM-Ag NPs, may possess favorable properties as potent antimicrobial agents. The goal of this study was to assess whether BSM-Ag NPs possess antibacterial activity, focusing on important plant-pathogenic bacterial strains representing both Gram-negative (Acidovorax and Xanthomonas) and Gram-positive (Clavibacter) genera. Growth inhibition and bactericidal assays, as well as electron microscopic observations, demonstrate that BSM-Ag NPs, at relatively low concentrations of silver, exert strong antimicrobial effects. Moreover, we show that treatment of melon seeds with BSM-Ag NPs effectively prevents seed-to-seedling transmission of Acidovorax citrulli, one of the most threatening pathogens of cucurbit production worldwide. Overall, our findings demonstrate strong antimicrobial activity of BSM-Ag NPs and their potential application for reducing the spread and establishment of devastating bacterial plant diseases in agriculture.IMPORTANCE Bacterial plant diseases challenge agricultural production, and the means available to manage them are limited. Importantly, many plant-pathogenic bacteria have the ability to colonize seeds, and seed-to-seedling transmission is a critical route by which bacterial plant diseases spread to new regions and countries. The significance of our study resides in the following aspects: (i) the simplicity of the method of BSM-Ag NP synthesis, (ii) the advantageous chemical properties of BSM-Ag NPs, (iii) the strong antibacterial activity of BSM-Ag NPs at relatively low concentrations of silver, and (iv) the fact that, in contrast to most studies on the effects of metal NPs on plant pathogens, the proof of concept for the novel compound is supported by in planta assays. Application of this technology is not limited to agriculture; BSM-Ag NPs potentially could be exploited as a potent antimicrobial agent in a wide range of industrial areas, including medicine, veterinary medicine, cosmetics, textiles, and household products.


Assuntos
Antibacterianos/farmacologia , Comamonadaceae/efeitos dos fármacos , Nanopartículas Metálicas/química , Mucinas/farmacologia , Plântula/efeitos dos fármacos , Prata/farmacologia , Animais , Bovinos , Comamonadaceae/patogenicidade , Testes de Sensibilidade Microbiana , Mucinas/química , Estudo de Prova de Conceito , Plântula/microbiologia , Sementes/microbiologia , Prata/química
10.
Int J Mol Sci ; 18(10)2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934168

RESUMO

The Type VI secretion system (T6SS) is a class of macromolecular machine that is required for the virulence of gram-negative bacteria. However, it is still not clear what the role of T6SS in the virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) is. The aim of the current study was to investigate the contribution of T6SS in Aaa strain RS2 virulence using insertional deletion mutation and complementation approaches. This strain produced weak virulence but contains a complete T6SS gene cluster based on a genome-wide analysis. Here we compared the virulence-related phenotypes between the wild-type (RS-2) and 25 T6SS mutants, which were constructed using homologous recombination methods. The mutation of 15 T6SS genes significantly reduced bacterial virulence and the secretion of Hcp protein. Additionally, the complemented 7 mutations ΔpppA, ΔclpB, Δhcp, ΔdotU, ΔicmF, ΔimpJ, and ΔimpM caused similar virulence characteristics as RS-2. Moreover, the mutant ΔpppA, ΔclpB, ΔicmF, ΔimpJ and ΔimpM genes caused by a 38.3~56.4% reduction in biofilm formation while the mutants ΔpppA, ΔclpB, ΔicmF and Δhcp resulted in a 37.5~44.6% reduction in motility. All together, these results demonstrate that T6SS play vital roles in the virulence of strain RS-2, which may be partially attributed to the reductions in Hcp secretion, biofilm formation and motility. However, differences in virulence between strain RS-1 and RS-2 suggest that other factors may also be involved in the virulence of Aaa.


Assuntos
Biofilmes/crescimento & desenvolvimento , Comamonadaceae/genética , Comamonadaceae/patogenicidade , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Sistemas de Secreção Tipo VI/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Comamonadaceae/efeitos dos fármacos , Comamonadaceae/crescimento & desenvolvimento , Teste de Complementação Genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Família Multigênica , Mutagênese Insercional , Oryza/microbiologia , Doenças das Plantas/microbiologia , Sistemas de Secreção Tipo VI/metabolismo , Virulência
11.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455333

RESUMO

N-Acylhomoserine lactone acylase (AHL acylase) is a well-known enzyme responsible for disrupting cell-cell communication (quorum sensing) in bacteria. Here, we isolated and characterized a novel and unique AHL acylase (designated MacQ) from a multidrug-resistant bacterium, Acidovorax sp. strain MR-S7. The purified MacQ protein heterologously expressed in Escherichia coli degraded a wide variety of AHLs, ranging from C6 to C14 side chains with or without 3-oxo substitutions. We also observed that AHL-mediated virulence factor production in a plant pathogen, Pectobacterium carotovorum, was dramatically attenuated by coculture with MacQ-overexpressing Escherichia coli, whereas E. coli with an empty vector was unable to quench the pathogenicity, which strongly indicates that MacQ can act in vivo as a quorum-quenching enzyme and interfere with the quorum-sensing system in the pathogen. In addition, this enzyme was found to be capable of degrading a wide spectrum of ß-lactams (penicillin G, ampicillin, amoxicillin, carbenicillin, cephalexin, and cefadroxil) by deacylation, clearly indicating that MacQ is a bifunctional enzyme that confers both quorum quenching and antibiotic resistance on strain MR-S7. MacQ has relatively low amino acid sequence identity to any of the known acylases (<39%) and has among the broadest substrate range. Our findings provide the possibility that AHL acylase genes can be an alternative source of antibiotic resistance genes posing a threat to human health if they migrate and transfer to pathogenic bacteria.IMPORTANCEN-Acylhomoserine lactones (AHLs) are well-known signal molecules for bacterial cell-cell communication (quorum sensing), and AHL acylase, which is able to degrade AHLs, has been recognized as a major target for quorum-sensing interference (quorum quenching) in pathogens. In this work, we succeeded in isolating a novel AHL acylase (MacQ) from a multidrug-resistant bacterium and demonstrated that the MacQ enzyme could confer multidrug resistance as well as quorum quenching on the host organism. Indeed, the purified MacQ protein was found to be bifunctional and capable of degrading not only various AHL derivatives but also multiple ß-lactam antibiotics by deacylation activities. Although quorum quenching and antibiotic resistance have been recognized to be distinct biological functions, our findings clearly link the two functions by discovering the novel bifunctional enzyme and further providing the possibility that a hitherto-overlooked antibiotic resistance mechanism mediated by the quorum-quenching enzyme may exist in natural environments and perhaps in clinical settings.


Assuntos
Amidoidrolases/metabolismo , Comamonadaceae/enzimologia , Farmacorresistência Bacteriana , Acil-Butirolactonas/metabolismo , Amidoidrolases/genética , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comamonadaceae/efeitos dos fármacos , Comamonadaceae/genética , Comamonadaceae/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia
12.
Appl Microbiol Biotechnol ; 101(11): 4815-4825, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28235988

RESUMO

On-farm biopurification systems (BPSs) represent an efficient technology for treating pesticide-contaminated wastewater. Biodegradation by genetically adapted bacteria has been suggested to perform a major contribution to the removal of pesticides in BPSs. Recently, several studies pointed to the role of IncP-1 plasmids in the degradation of pesticides in BPSs but this was never linked with catabolic markers. Therefore, a microcosm experiment was conducted in order to examine whether changes in mobile genetic element (MGE) abundances in response to the application of phenylurea herbicide linuron are linked with changes in catabolic genes. Denaturing gradient gel electrophoresis (DGGE) fingerprints of 16S ribosomal RNA gene fragments amplified from total community (TC)-DNA suggested significant shifts in the bacterial community composition. PCR-Southern blot-based detection of genes involved in linuron hydrolysis (libA and hylA) or degradation of its metabolite 3,4-dichloroaniline (dcaQ I , dcaQ II , and ccdC) in TC-DNA showed that the abundance of the hylA gene was increased faster and stronger in response to linuron application than that of the libA gene, and that the dcaQ II gene was more abundant than the isofunctional gene dcaQ I 20 and 60 days after linuron addition. Furthermore, a significant increase in the relative abundance of the IncP-1-specific korB gene in response to linuron was recorded. Our data suggest that different bacterial populations bearing isofunctional genes coding for enzymes degrading linuron seemed to be enriched in BPSs in response to linuron and that IncP-1 plasmids might be involved in their dissemination.


Assuntos
Linurona/metabolismo , Consórcios Microbianos/genética , Praguicidas/metabolismo , Microbiologia do Solo , Agricultura , Biodegradação Ambiental , Comamonadaceae/efeitos dos fármacos , Comamonadaceae/genética , DNA Bacteriano , Eletroforese em Gel de Gradiente Desnaturante , Hidrólise , Sequências Repetitivas Dispersas , Linurona/farmacologia , Consórcios Microbianos/efeitos dos fármacos , Plasmídeos , Reação em Cadeia da Polimerase , RNA Ribossômico 16S , Águas Residuárias
13.
Molecules ; 21(8)2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27472315

RESUMO

Camptothecin (CPT) has anticancer, antiviral, and antifungal properties. However, there is a dearth of information about antibacterial activity of CPT. Therefore, in this study, we investigated the inhibitory effect of CPT on Acidovorax avenae subsp. avenae strain RS-2, the pathogen of rice bacterial brown stripe, by measuring cell growth, DNA damage, cell membrane integrity, the expression of secretion systems, and topoisomerase-related genes, as well as the secretion of effector protein Hcp. Results indicated that CPT solutions at 0.05, 0.25, and 0.50 mg/mL inhibited the growth of strain RS-2 in vitro, while the inhibitory efficiency increased with an increase in CPT concentration, pH, and incubation time. Furthermore, CPT treatment affected bacterial growth and replication by causing membrane damage, which was evidenced by transmission electron microscopic observation and live/dead cell staining. In addition, quantitative real-time PCR analysis indicated that CPT treatment caused differential expression of eight secretion system-related genes and one topoisomerase-related gene, while the up-regulated expression of hcp could be justified by the increased secretion of Hcp based on the ELISA test. Overall, this study indicated that CPT has the potential to control the bacterial brown stripe pathogen of rice.


Assuntos
Antibacterianos/farmacologia , Camptotecina/farmacologia , Comamonadaceae/crescimento & desenvolvimento , Oryza/microbiologia , Doenças das Plantas/prevenção & controle , Proteínas de Bactérias/genética , Membrana Celular/efeitos dos fármacos , Comamonadaceae/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia
14.
J Hazard Mater ; 317: 127-134, 2016 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-27262280

RESUMO

The former uranium mine Königstein (Saxony, Germany) is currently in the process of remediation by means of controlled underground flooding. Nevertheless, the flooding water has to be cleaned up by a conventional wastewater treatment plant. In this study, the uranium(VI) removal and tolerance mechanisms of the gram-negative betaproteobacterium Acidovorax facilis were investigated by a multidisciplinary approach combining wet chemistry, flow cytometry, and microscopy. The kinetics of uranium removal and the corresponding mechanisms were investigated. The results showed a biphasic process of uranium removal characterized by a first phase where 95% of uranium was removed within the first 8h followed by a second phase that reached equilibrium after 24h. The bacterial cells displayed a total uranium removal capacity of 130mgU/g dry biomass. The removal of uranium was also temperature-dependent, indicating that metabolic activity heavily influenced bacterial interactions with uranium. TEM analyses showed biosorption on the cell surface and intracellular accumulation of uranium. Uranium tolerance tests showed that A. facilis was able to withstand concentrations up to 0.1mM. This work demonstrates that A. facilis is a suitable candidate for in situ bioremediation of flooding water in Königstein as well as for other contaminated waste waters.


Assuntos
Comamonadaceae/crescimento & desenvolvimento , Compostos de Urânio/análise , Poluentes Radioativos da Água/análise , Adsorção , Biodegradação Ambiental , Biomassa , Comamonadaceae/efeitos dos fármacos , Citometria de Fluxo , Alemanha , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mineração , Águas Residuárias/química
15.
Appl Biochem Biotechnol ; 180(5): 852-871, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27230570

RESUMO

Recently, poly(3-hydroxybutyrate) (PHB) has been found in a few thermophilic strains where several advantages can be gained from running fermentation at high temperatures. Caldimonas manganoxidans, a thermophilic gram-negative bacterium, was investigated for the feasibility as a PHB-producing strain. It is suggested that the best fermentation strategy for achieving the highest PHB concentration of 5.4 ± 1.1 g/L (from 20 g/L glucose) in 24 h is to use the fermentation conditions that are favored for the bacterial growth, yet temperature and pH should be chosen at conditions that are favored for the PHB content. Besides, the above fermentation conditions produce PHB that has a high molecular weight of 1274 kDa with a low polydispersity index (PDI) of 1.45, where the highest Mw of PHB of 1399 kDa (PDI of 1.32) is obtained in this study. To the best knowledge of authors, C. manganoxidans has the best PHB productivity among the thermophiles and is comparable to those common PHB-producing mesophiles.


Assuntos
Comamonadaceae/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Temperatura , Biomassa , Carbono/farmacologia , Comamonadaceae/efeitos dos fármacos , Comamonadaceae/crescimento & desenvolvimento , Estudos de Viabilidade , Glucose/farmacologia , Concentração de Íons de Hidrogênio , Peso Molecular , Nitrogênio/farmacologia , Oxigênio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
16.
Sci Rep ; 6: 22241, 2016 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-26915352

RESUMO

Recent research has shown that pathogen virulence can be altered by exposure to antibiotics, even when the growth rate is unaffected. Investigating this phenomenon provides new insights into understanding the virulence mechanisms of bacterial pathogens. This study investigates the phenotypic and transcriptomic responses of the rice pathogenic bacterium Acidovorax avenae subsp. avenae (Aaa) strain RS-1 to ß-lactam antibiotics especially Ampicillin (Amp). Our results indicate that exposure to Amp does not influence bacterial growth and biofilm formation, but alters the virulence, colonization capacity, composition of extracellular polymeric substances and secretion of Type VI secretion system (T6SS) effector Hcp. This attenuation in virulence is linked to unique or differential expression of known virulence-associated genes based on genome-wide transcriptomic analysis. The reliability of expression data generated by RNA-Seq was verified with quantitative real-time PCR of 21 selected T6SS genes, where significant down-regulation in expression of hcp gene, corresponding to the reduction in secretion of Hcp, was observed under exposure to Amp. Hcp is highlighted as a potential target for Amp, with similar changes observed in virulence-associated phenotypes between exposure to Amp and mutation of hcp gene. In addition, Hcp secretion is reduced in knockout mutants of 4 differentially expressed T6SS genes.


Assuntos
Comamonadaceae/efeitos dos fármacos , Oryza/microbiologia , Doenças das Plantas/microbiologia , beta-Lactamas/farmacologia , Ampicilina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Western Blotting , Análise por Conglomerados , Comamonadaceae/genética , Comamonadaceae/patogenicidade , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência/efeitos dos fármacos , Virulência/genética
17.
FEMS Microbiol Ecol ; 92(2)2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26705572

RESUMO

On-farm biopurification systems (BPSs) treat pesticide-contaminated wastewater at farms through biodegradation and sorption processes. However, information on the microbiota involved in pesticide removal in BPSs is scarce. Here we report on the response of BPS bacterial communities to the herbicide linuron (BPS(+)) compared with the control (BPS(-)) in a microcosm experiment. Both denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of 16S rRNA gene fragments amplified from community DNA indicated shifts in the bacterial community after linuron application. Responding populations belonged to taxa that were previously reported from linuron degrading consortia cultivated from soil (Hyphomicrobiaceae, Comamonadaceae, Micrococcaceae). In addition, numerous taxa with increased relative abundance were identified that were previously not associated with linuron degradation. The relative abundance of IncP-1 korB copies increased in response to linuron application. Amplicon pyrosequencing of IncP-1 trfA genes revealed a high IncP-1 plasmid diversity and suggested that populations carrying IncP-1ß plasmids increased in relative abundance. Transferable mercury resistance plasmids were exogenously captured from BPS(+)/BPS(-), and in three transconjugants from BPS(+) the gene hylA was detected. Our data suggest the existence of a multispecies linuron degrading bacterial food web and an involvement of IncP-1 plasmids in the adaptation of bacterial communities to pesticide pollution in BPSs.


Assuntos
Comamonadaceae/genética , Comamonadaceae/metabolismo , Herbicidas/metabolismo , Herbicidas/farmacologia , Linurona/metabolismo , Linurona/farmacologia , Biodegradação Ambiental , Comamonadaceae/efeitos dos fármacos , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Plasmídeos/genética , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Águas Residuárias/microbiologia
18.
Environ Pollut ; 202: 196-204, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25839943

RESUMO

In the present study, we conducted a 2 week microcosm experiment with a natural freshwater bacterial community to assess the effects of titanium dioxide nanoparticles (TiO2-NPs) at various concentrations (0, 1, 10 and 100 mg/L) on planktonic and sessile bacteria under dark conditions. Results showed an increase of planktonic bacterial abundance at the highest TiO2-NP concentration, concomitant with a decrease from that of sessile bacteria. Bacterial assemblages were most affected by the 100 mg/L TiO2-NP exposure and overall diversity was found to be lower for planktonic bacteria and higher for sessile bacteria at this concentration. In both compartments, a 100 mg/L TiO2-NPs exposure induced a decrease in the ratio between the Betaproteobacteria and Bacteroidetes. For planktonic communities, a decrease of Comamonadaceae was observed concomitant with an increase of Oxalobacteraceae and Cytophagaceae (especially Emticicia). For sessile communities, results showed a strong decrease of Betaproteobacteria and particularly of Comamonadaceae.


Assuntos
Monitoramento Ambiental/métodos , Nanopartículas , Plâncton/efeitos dos fármacos , Rios , Titânio/toxicidade , Microbiologia da Água , Betaproteobacteria/efeitos dos fármacos , Comamonadaceae/efeitos dos fármacos , França , Consórcios Microbianos/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Rios/química , Rios/microbiologia
20.
Carbohydr Res ; 391: 48-54, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24785387

RESUMO

Inhibitory effect and mode of action of chitosan solution against rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) strain RS-1 was examined in this study. Result from this study indicated that chitosan solutions at 0.10, 0.20, and 0.40mg/mL inhibited the in vitro growth of Aaa strain RS-1, and in general the inhibitory efficiency increased with the increase of both chitosan concentration and the incubation time. Antibacterial activity of chitosan in this study may be mainly due to the damage of cell membrane, which was evidenced by both the cell lysis observed by transmission electron microscopy, and the increased release of cell materials based on the measurement of cell membrane integrity. Furthermore, chitosan solutions at concentrations of 0.1, 0.2, and 0.4mg/mL markedly inhibited bacterial biofilm formation compared to the control, and the inhibitory effect increased with the increase of chitosan concentration. In addition, quantitative real-time PCR of the 10 secretion system related genes revealed the differential expression of genes in particular ompA/motB, emphasizing the importance of this gene in the response of Aaa strain RS-1 to chitosan stress. These results indicated that the antibacterial mode of action of chitosan may be mainly due to membrane disruption and lysis, reduction of biofilm formation, and gene expression change. Overall, the results clearly indicated that chitosan had the potential to control bacterial brown stripe of rice.


Assuntos
Antibacterianos/farmacologia , Quitosana/farmacologia , Comamonadaceae/efeitos dos fármacos , Oryza/microbiologia , Antibacterianos/química , Quitosana/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Soluções , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...