Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 610(7933): 761-767, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261523

RESUMO

Stimulator of interferon genes (STING) functions downstream of cyclic GMP-AMP synthase in DNA sensing or as a direct receptor for bacterial cyclic dinucleotides and small molecules to activate immunity during infection, cancer and immunotherapy1-10. Precise regulation of STING is essential to ensure balanced immune responses and prevent detrimental autoinflammation11-16. After activation, STING, a transmembrane protein, traffics from the endoplasmic reticulum to the Golgi, where its phosphorylation by the protein kinase TBK1 enables signal transduction17-20. The mechanism that ends STING signalling at the Golgi remains unknown. Here we show that adaptor protein complex 1 (AP-1) controls the termination of STING-dependent immune activation. We find that AP-1 sorts phosphorylated STING into clathrin-coated transport vesicles for delivery to the endolysosomal system, where STING is degraded21. We identify a highly conserved dileucine motif in the cytosolic C-terminal tail (CTT) of STING that, together with TBK1-dependent CTT phosphorylation, dictates the AP-1 engagement of STING. A cryo-electron microscopy structure of AP-1 in complex with phosphorylated STING explains the enhanced recognition of TBK1-activated STING. We show that suppression of AP-1 exacerbates STING-induced immune responses. Our results reveal a structural mechanism of negative regulation of STING and establish that the initiation of signalling is inextricably associated with its termination to enable transient activation of immunity.


Assuntos
Complexo 1 de Proteínas Adaptadoras , Clatrina , Complexo 1 de Proteínas Adaptadoras/química , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 1 de Proteínas Adaptadoras/ultraestrutura , Clatrina/metabolismo , Microscopia Crioeletrônica , DNA/metabolismo , Imunidade Inata , Proteínas Serina-Treonina Quinases , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Motivos de Aminoácidos , Endossomos/metabolismo , Lisossomos/metabolismo , Fosforilação
2.
Traffic ; 20(10): 741-751, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31313456

RESUMO

Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4-phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5-bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane-associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Sítio Alostérico , Complexo 1 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/química , Regulação Alostérica , Animais , Clatrina/química , Clatrina/metabolismo , Humanos
3.
J Biol Chem ; 294(4): 1410-1419, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30523155

RESUMO

Cellular membrane trafficking mediated by the clathrin adaptor protein complex-1 (AP-1) is important for the proper composition and function of organelles of the endolysosomal system. Normal AP-1 function requires proteins of the HEAT repeat-containing 5 (HEATR5) family. Although HEATR5 proteins were first identified based on their ability to interact with AP-1, the functional significance of this interaction was unknown. We used bioinformatics-based phenotypic profiling and information from genome-wide fluorescence microscopy studies in the budding yeast Saccharomyces cerevisiae to identify a protein, Laa2, that mediates the interaction between AP-1 and the yeast HEATR5 protein Laa1. Further characterization of Laa2 revealed that it binds to both Laa1 and AP-1. Laa2 contains a motif similar to the characterized γ-ear-binding sites found in other AP-1-binding proteins. This motif in Laa2 is essential for the Laa1-AP-1 interaction. Moreover, mutation of this motif disrupted AP-1 localization and function and caused effects similar to mutations that remove the γ-ear of AP-1. These results indicate that Laa2 mediates the interaction between Laa1 and AP-1 and reveal that this interaction promotes the stable association of AP-1 with membranes in yeast.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo 1 de Proteínas Adaptadoras/química , Proteínas Adaptadoras de Transdução de Sinal/química , Biologia Computacional , Proteínas de Ligação a DNA/química , Microscopia de Fluorescência , Fenótipo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química
4.
J Biol Chem ; 293(40): 15678-15690, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30135209

RESUMO

Protein trafficking in the endosomal system involves the recognition of specific signals within the cytoplasmic domains (CDs) of transmembrane proteins by clathrin adaptors. One such signal is the phosphoserine acidic cluster (PSAC), the prototype of which is in the endoprotease furin. How PSACs are recognized by clathrin adaptors has been controversial. We reported previously that HIV-1 Vpu, which modulates cellular immunoreceptors, contains a PSAC that binds to the µ subunits of clathrin adaptor protein (AP) complexes. Here, we show that the CD of furin binds the µ subunits of AP-1 and AP-2 in a phosphorylation-dependent manner. Moreover, we identify a potential PSAC in a cytoplasmic loop of the cellular transmembrane Serinc3, an inhibitor of the infectivity of retroviruses. The two serines within the PSAC of Serinc3 are phosphorylated by casein kinase II and mediate interaction with the µ subunits in vitro The sites of these serines vary among mammals in a manner suggesting host-pathogen conflict, yet the Serinc3 PSAC seems dispensable for anti-HIV activity and for counteraction by HIV-1 Nef. The CDs of Vpu and furin and the PSAC-containing loop of Serinc3 each bind the µ subunit of AP-2 (µ2) with similar affinities, but they appear to utilize different basic regions on µ2. The Serinc3 loop requires a region previously reported to bind the acidic plasma membrane lipid phosphatidylinositol 4,5-bisphosphate. These data suggest that the PSACs within different proteins recognize different basic regions on the µ surface, providing the potential to inhibit the activity of viral proteins without necessarily affecting cellular protein trafficking.


Assuntos
Complexo 1 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/química , Furina/química , HIV-1/genética , Proteínas de Neoplasias/química , Fosfosserina/química , Receptores de Superfície Celular/química , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Furina/genética , Furina/metabolismo , Expressão Gênica , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Células Jurkat/metabolismo , Células Jurkat/virologia , Cinética , Mamíferos , Glicoproteínas de Membrana , Modelos Moleculares , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfosserina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Vírion/genética , Vírion/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
5.
J Cell Biol ; 216(9): 2927-2943, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28743825

RESUMO

Acidic clusters act as sorting signals for packaging cargo into clathrin-coated vesicles (CCVs), and also facilitate down-regulation of MHC-I by HIV-1 Nef. To find acidic cluster sorting machinery, we performed a gene-trap screen and identified the medium subunit (µ1) of the clathrin adaptor AP-1 as a top hit. In µ1 knockout cells, intracellular CCVs still form, but acidic cluster proteins are depleted, although several other CCV components were either unaffected or increased, indicating that cells can compensate for long-term loss of AP-1. In vitro experiments showed that the basic patch on µ1 that interacts with the Nef acidic cluster also contributes to the binding of endogenous acidic cluster proteins. Surprisingly, µ1 mutant proteins lacking the basic patch and/or the tyrosine-based motif binding pocket could rescue the µ1 knockout phenotype completely. In contrast, these mutants failed to rescue Nef-induced down-regulation of MHC class I, suggesting a possible mechanism for attacking the virus while sparing the host cell.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , HIV-1/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Complexo 1 de Proteínas Adaptadoras/química , Complexo 1 de Proteínas Adaptadoras/genética , Subunidades mu do Complexo de Proteínas Adaptadoras/química , Subunidades mu do Complexo de Proteínas Adaptadoras/genética , Sistemas CRISPR-Cas , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Genótipo , Células HEK293 , HIV-1/genética , Células HeLa , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Mutação , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
6.
J Biol Chem ; 292(16): 6703-6714, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28235798

RESUMO

L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of µ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-µ1A and the GST-µ1A C-terminal domain, but not the GST-µ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans-Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues (356RR357, 359KK360, and 362KK363) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues (369DD370) in the membrane-distal end of the L-selectin tail involved in µ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of µ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-µ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of µ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo Molecular docking of the L-selectin tail to µ1A was used to identify the µ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates µ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans-Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin.


Assuntos
Complexo 1 de Proteínas Adaptadoras/química , Subunidades mu do Complexo de Proteínas Adaptadoras/química , Selectina L/química , Motivos de Aminoácidos , Animais , Ácido Aspártico/química , Cristalografia por Raios X , Citoplasma/metabolismo , Endotélio Vascular/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Monócitos/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Proteômica , Células RAW 264.7 , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serina/química , Rede trans-Golgi/metabolismo
7.
J Biol Chem ; 291(29): 14963-72, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226616

RESUMO

Nearly all members of the inwardly rectifying potassium (Kir) channel family share a cytoplasmic domain structure that serves as an unusual AP-1 clathrin adaptor-dependent Golgi export signal in one Kir channel, Kir2.1 (KCNJ2), raising the question whether Kir channels share a common Golgi export mechanism. Here we explore this idea, focusing on two structurally and functionally divergent Kir family members, Kir2.3 (KCNJ4) and Kir4.1/5.1 (KCNJ10/16), which have ∼50% amino identity. We found that Golgi export of both channels is blocked upon siRNA-mediated knockdown of the AP-1 γ subunit, as predicted for the common AP-1-dependent trafficking process. A comprehensive mutagenic analysis, guided by homology mapping in atomic resolution models of Kir2.1, Kir2.3, and Kir4.1/5.1, identified a common structure that serves as a recognition site for AP-1 binding and governs Golgi export. Larger than realized from previous studies with Kir2.1, the signal is created by a patch of residues distributed at the confluence of cytoplasmic N and C termini. The signal involves a stretch of hydrophobic residues from the C-terminal region that form a hydrophobic cleft, an adjacent cluster of basic residues within the N terminus, and a potential network of salt bridges that join the N- and C-terminal poles together. Because patch formation and AP-1 binding are dependent on proper folding of the cytoplasmic domains, the signal provides a common quality control mechanism at the Golgi for Kir channels. These findings identify a new proteostatic mechanism that couples protein folding of channels to forward trafficking in the secretory pathway.


Assuntos
Complexo de Golgi/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Fator de Transcrição AP-1/metabolismo , Complexo 1 de Proteínas Adaptadoras/química , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Canais de Potássio Corretores do Fluxo de Internalização/genética , Conformação Proteica , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Fator de Transcrição AP-1/química , Fator de Transcrição AP-1/genética
8.
Science ; 350(6259): aac5137, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26494761

RESUMO

The lentiviruses HIV and simian immunodeficiency virus (SIV) subvert intracellular membrane traffic as part of their replication cycle. The lentiviral Nef protein helps viruses evade innate and adaptive immune defenses by hijacking the adaptor protein 1 (AP-1) and AP-2 clathrin adaptors. We found that HIV-1 Nef and the guanosine triphosphatase Arf1 induced trimerization and activation of AP-1. Here we report the cryo-electron microscopy structures of the Nef- and Arf1-bound AP-1 trimer in the active and inactive states. A central nucleus of three Arf1 molecules organizes the trimers. We combined the open trimer with a known dimer structure and thus predicted a hexagonal assembly with inner and outer faces that bind the membranes and clathrin, respectively. Hexagons were directly visualized and the model validated by reconstituting clathrin cage assembly. Arf1 and Nef thus play interconnected roles in allosteric activation, cargo recruitment, and coat assembly, revealing an unexpectedly intricate organization of the inner AP-1 layer of the clathrin coat.


Assuntos
Fator 1 de Ribosilação do ADP/química , Complexo 1 de Proteínas Adaptadoras/química , Antígenos CD/química , Vesículas Revestidas por Clatrina/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Clatrina/química , Clatrina/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Proteínas Ligadas por GPI/química , Humanos , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Produtos do Gene nef do Vírus da Imunodeficiência Humana/ultraestrutura , Rede trans-Golgi/metabolismo
9.
Mol Biol Cell ; 26(9): 1728-42, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25739457

RESUMO

In spite of the many key cellular functions of chloride channels, the mechanisms that mediate their subcellular localization are largely unknown. ClC-2 is a ubiquitous chloride channel usually localized to the basolateral domain of epithelia that regulates cell volume, ion transport, and acid-base balance; mice knocked out for ClC-2 are blind and sterile. Previous work suggested that CLC-2 is sorted basolaterally by TIFS(812)LL, a dileucine motif in CLC-2's C-terminal domain. However, our in silico modeling of ClC-2 suggested that this motif was buried within the channel's dimerization interface and identified two cytoplasmically exposed dileucine motifs, ESMI(623)LL and QVVA(635)LL, as candidate sorting signals. Alanine mutagenesis and trafficking assays support a scenario in which ESMI(623)LL acts as the authentic basolateral signal of ClC-2. Silencing experiments and yeast three-hybrid assays demonstrated that both ubiquitous (AP-1A) and epithelium-specific (AP-1B) forms of the tetrameric clathrin adaptor AP-1 are capable of carrying out basolateral sorting of ClC-2 through interactions of ESMI(623)LL with a highly conserved pocket in their γ1-σ1A hemicomplex.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Canais de Cloreto/metabolismo , Complexo 1 de Proteínas Adaptadoras/química , Motivos de Aminoácidos , Animais , Canais de Cloro CLC-2 , Canais de Cloreto/química , Cães , Células Madin Darby de Rim Canino , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
10.
Mol Biol Cell ; 26(2): 218-28, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25378584

RESUMO

Neurons are highly polarized cells having distinct somatodendritic and axonal domains. Here we report that polarized sorting of the Cu(2+) transporter ATP7B and the vesicle-SNARE VAMP4 to the somatodendritic domain of rat hippocampal neurons is mediated by recognition of dileucine-based signals in the cytosolic domains of the proteins by the σ1 subunit of the clathrin adaptor AP-1. Under basal Cu(2+) conditions, ATP7B was localized to the trans-Golgi network (TGN) and the plasma membrane of the soma and dendrites but not the axon. Mutation of a dileucine-based signal in ATP7B or overexpression of a dominant-negative σ1 mutant resulted in nonpolarized distribution of ATP7B between the somatodendritic and axonal domains. Furthermore, addition of high Cu(2+) concentrations, previously shown to reduce ATP7B incorporation into AP-1-containing clathrin-coated vesicles, caused loss of TGN localization and somatodendritic polarity of ATP7B. These findings support the notion of AP-1 as an effector of polarized sorting in neurons and suggest that altered polarity of ATP7B in polarized cell types might contribute to abnormal copper metabolism in the MEDNIK syndrome, a neurocutaneous disorder caused by mutations in the σ1A subunit isoform of AP-1.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Leucina/metabolismo , Neurônios/metabolismo , Complexo 1 de Proteínas Adaptadoras/química , Complexo 1 de Proteínas Adaptadoras/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/química , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Polaridade Celular , Células Cultivadas , Cobre/metabolismo , Cobre/farmacologia , ATPases Transportadoras de Cobre , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Leucina/química , Leucina/genética , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Neurônios/efeitos dos fármacos , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas R-SNARE/química , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Ratos , Rede trans-Golgi/metabolismo
11.
Biochem Biophys Res Commun ; 455(3-4): 184-9, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25449265

RESUMO

Ancient conserved domain protein/cyclin M (CNNM) 4 is an evolutionarily conserved Mg(2+) transporter that localizes at the basolateral membrane of the intestinal epithelia. Here, we show the complementary importance of clathrin adaptor protein (AP) complexes AP-1A and AP-1B in basolateral sorting of CNNM4. We first confirmed the basolateral localization of both endogenous and ectopically expressed CNNM4 in Madin-Darby Canine Kidney cells, which form highly polarized epithelia in culture. Single knockdown of µ1B, a cargo-recognition subunit of AP-1B, did not affect basolateral localization, but simultaneous knockdown of the µ1A subunit of AP-1A abrogated localization. Mutational analyses showed the importance of three conserved dileucine motifs in CNNM4 for both basolateral sorting and interaction with µ1A and µ1B. These results imply that CNNM4 is sorted to the basolateral membrane by the complementary function of AP-1A and AP-1B.


Assuntos
Complexo 1 de Proteínas Adaptadoras/fisiologia , Subunidades beta do Complexo de Proteínas Adaptadoras/fisiologia , Subunidades mu do Complexo de Proteínas Adaptadoras/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica , Magnésio/química , Complexo 1 de Proteínas Adaptadoras/química , Subunidades beta do Complexo de Proteínas Adaptadoras/química , Subunidades mu do Complexo de Proteínas Adaptadoras/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biotinilação , Células COS , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , DNA Complementar/metabolismo , Cães , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Transporte Proteico , Interferência de RNA
12.
Am J Hum Genet ; 94(5): 790-7, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24791904

RESUMO

Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis.


Assuntos
Complexo 1 de Proteínas Adaptadoras/genética , Psoríase/genética , Psoríase/metabolismo , Receptor 3 Toll-Like/metabolismo , Complexo 1 de Proteínas Adaptadoras/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Dados de Sequência Molecular , Conformação Proteica , Transporte Proteico/genética
13.
Plant Cell Physiol ; 54(6): 838-47, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23543752

RESUMO

Formation of clathrin-coated vesicles (CCVs) requires the scaffolding adaptor protein (AP) complexes, which are conserved across all eukaryotes. The Arabidopsis genome encodes five AP complexes (AP-1 to AP-5), and each complex consists of four subunits. In this study, we characterized the poorly defined AP-1 complex by using genetics, proteomics and live cell imaging. We showed that the AP-1 µ adaptin subunit (AP1M2) was localized to the trans-Golgi network (TGN) and interacted physically with the AP-1 subunits in Arabidopsis. During treatment with brefeldin A (BFA), the functional fluorophore-tagged AP1M2 relocated to the BFA compartment. The AP1M2 loss-of-function mutant ap1m2 displayed deleterious growth defects, which were particularly evident in the compromised cytokinesis that was revealed by the presence of cell wall stubs in multinucleate cells. Immunolocalization of the cytokinesis-specific syntaxin KNOLLE (KN) in ap1m2 showed that KN was mislocalized and aggregated around the division plane, while a secretory marker targeting to the cell plate remained unaffected. Taken together, we propose that the AP-1 complex is required for cell plate-targeted trafficking of KN in dividing plant cells, and that it has a common role in mediating plant and yeast/animal cytokinesis systems which are fundamentally different.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Citocinese , Proteínas Qa-SNARE/metabolismo , Complexo 1 de Proteínas Adaptadoras/química , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Brefeldina A/farmacologia , Citocinese/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Endocitose/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Macrolídeos/farmacologia , Espectrometria de Massas , Mutação , Desenvolvimento Vegetal/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/ultraestrutura , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
14.
Arch Insect Biochem Physiol ; 82(2): 84-95, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23300124

RESUMO

To investigate the function of adaptor protein complex-1 (AP-1) in the silkworm, we characterized AP-1 in the silkworm by RNAi technique and co-localization methods. As a result, AP-1 was found to exist as cytosolic form and membrane-bound form distinguished by phosphate status, showing molecular mass difference. There was relatively more cytosolic form of AP-1 than its membrane-bound counterpart in the silkworm. However, AP-1 distributed predominantly as cytosolic form in BmN cells. Interruption of AP-1 expression via DsRNA was more efficient in BmN cells than in the insect larval, which led to a tendency to dissociation between subcellular organelles like the Golgi apparatus and the mitochondria. Environmental condition changes like relatively higher temperature and treatment with dimethyl sulfoxide can lead to expression variance of AP-1 both in mRNA and protein level. In BmN cells, both the heavy chain γ and light chain σ could clearly co-localize with AP-1 ß, mostly forming pits in cytoplasm. Two isoforms of AP-1 σ corresponded to distinct subcellular distribution pattern, possibly due to C-terminal amino acids difference.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Complexo 1 de Proteínas Adaptadoras/química , Complexo 1 de Proteínas Adaptadoras/genética , Animais , Western Blotting , Bombyx/química , Bombyx/citologia , Bombyx/genética , Dimetil Sulfóxido/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Temperatura Alta , Proteínas de Insetos/química , Proteínas de Insetos/genética , Larva/química , Larva/citologia , Larva/metabolismo , Microscopia Eletrônica , Especificidade de Órgãos , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
15.
Biochem J ; 450(1): 73-83, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23190214

RESUMO

The assembly of clathrin/AP (adaptor protein)-1-coated vesicles on the trans-Golgi network and endosomes is much less studied than that of clathrin/AP-2 vesicles at the plasma membrane for endocytosis. In vitro, the association of AP-1 with protein-free liposomes had been shown to require phosphoinositides, Arf1 (ADP-ribosylation factor 1)-GTP and additional cytosolic factor(s). We have purified an active fraction from brain cytosol and found it to contain amphiphysin 1 and 2 and endophilin A1, three proteins known to be involved in the formation of AP-2/clathrin coats at the plasma membrane. Assays with bacterially expressed and purified proteins showed that AP-1 stabilization on liposomes depends on amphiphysin 2 or the amphiphysin 1/2 heterodimer. Activity is independent of the SH3 (Src homology 3) domain, but requires interaction of the WDLW motif with γ-adaptin. Endogenous amphiphysin in neurons and transfected protein in cell lines co-localize perinuclearly with AP-1 at the trans-Golgi network. This localization depends on interaction of clathrin and the adaptor sequence in the amphiphysins and is sensitive to brefeldin A, which inhibits Arf1-dependent AP-1 recruitment. Interaction between AP-1 and amphiphysin 1/2 in vivo was demonstrated by co-immunoprecipitation after cross-linking. These results suggest an involvement of amphiphysins not only with AP-2 at the plasma membrane, but also in AP-1/clathrin coat formation at the trans-Golgi network.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Complexo 1 de Proteínas Adaptadoras/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Bovinos , Chlorocebus aethiops , Citosol/metabolismo , Humanos , Lipossomos , Camundongos , Células NIH 3T3 , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Rede trans-Golgi/metabolismo
16.
Proc Natl Acad Sci U S A ; 109(10): 3820-5, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22343291

RESUMO

The coxsackie and adenovirus receptor (CAR) plays key roles in epithelial barrier function at the tight junction, a localization guided in part by a tyrosine-based basolateral sorting signal, (318)YNQV(321). Sorting motifs of this type are known to route surface receptors into clathrin-mediated endocytosis through interaction with the medium subunit (µ2) of the clathrin adaptor AP-2, but how they guide new and recycling membrane proteins basolaterally is unknown. Here, we show that YNQV functions as a canonical YxxΦ motif, with both Y318 and V321 required for the correct basolateral localization and biosynthetic sorting of CAR, and for interaction with a highly conserved pocket in the medium subunits (µ1A and µ1B) of the clathrin adaptors AP-1A and AP-1B. Knock-down experiments demonstrate that AP-1A plays a role in the biosynthetic sorting of CAR, complementary to the role of AP-1B in basolateral recycling of this receptor. Our study illustrates how two clathrin adaptors direct basolateral trafficking of a plasma membrane protein through interaction with a canonical YxxΦ motif.


Assuntos
Complexo 1 de Proteínas Adaptadoras/química , Receptores Virais/química , Complexo 2 de Proteínas Adaptadoras/química , Motivos de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Clatrina/química , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Cães , Endocitose , Endossomos/metabolismo , Células Epiteliais/citologia , Exocitose , Peixes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mutação , Conformação Proteica , Transporte Proteico , Ranidae
17.
Nucleic Acids Res ; 37(Web Server issue): W369-75, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19417070

RESUMO

As an increasing number of reliable protein-protein interactions (PPIs) become available and high-throughput experimental methods provide systematic identification of PPIs, there is a growing need for fast and accurate methods for discovering homologous PPIs of a newly determined PPI. PPISearch is a web server that rapidly identifies homologous PPIs (called PPI family) and infers transferability of interacting domains and functions of a query protein pair. This server first identifies two homologous families of the query, respectively, by using BLASTP to scan an annotated PPIs database (290 137 PPIs in 576 species), which is a collection of five public databases. We determined homologous PPIs from protein pairs of homologous families when these protein pairs were in the annotated database and have significant joint sequence similarity (E < or = 10(-40)) with the query. Using these homologous PPIs across multiple species, this sever infers the conserved domain-domain pairs (Pfam and InterPro domains) and function pairs (Gene Ontology annotations). Our results demonstrate that the transferability of conserved domain-domain pairs between homologous PPIs and query pairs is 88% using 103 762 PPI queries, and the transferability of conserved function pairs is 69% based on 106 997 PPI queries. The PPISearch server should be useful for searching homologous PPIs and PPI families across multiple species. The PPISearch server is available through the website at http://gemdock.life.nctu.edu.tw/ppisearch/.


Assuntos
Mapeamento de Interação de Proteínas , Software , Complexo 1 de Proteínas Adaptadoras/química , Animais , Proteínas de Caenorhabditis elegans/química , Bases de Dados de Proteínas , Internet , Camundongos , Domínios e Motivos de Interação entre Proteínas , Homologia de Sequência de Aminoácidos , Interface Usuário-Computador
18.
J Mol Biol ; 386(4): 903-12, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19167404

RESUMO

COP-I-coated vesicles are protein and lipid carriers that mediate intra-Golgi transport and transport from the cis-Golgi complex to the endoplasmic reticulum in cells. The coatomer of the vesicles coat is comprised of seven subunits: alpha-COP, epsilon-COP, beta'-COP, beta-COP, gamma-COP, delta-COP, and zeta-COP. Here we report the solution structure of a truncated form (residues 1-149; zeta-COP149) of human zeta-COP (total 177 residues). It is the first three-dimensional structure of a "core" subunit of the COP I F-subcomplex. The structure of zeta-COP149 mainly consists of a disordered N-terminal tail, a five-stranded antiparallel beta-sheet, a two-stranded antiparallel beta-sheet, and five alpha-helices. The global folding of zeta-COP149 is very similar to the crystal structures of AP1-sigma1 and AP2-sigma2, directly demonstrating the structural similarity between the "core" subunits of the COP I F-subcomplex and adaptor protein complexes. Through structural comparison and mutagenesis study, we have also demonstrated that the heterodimers of zeta-COP149 and gamma-COP have packing interfaces and relative subunit orientations similar to those of AP2-sigma2 and AP2-alpha heterodimers. These results provide direct evidence supporting the previous proposal that the COP I F-subcomplex and adaptor protein complexes have similar tertiary and quaternary structures.


Assuntos
Vesículas Revestidas por Clatrina/química , Proteína Coatomer/química , Homologia Estrutural de Proteína , Complexo 1 de Proteínas Adaptadoras/química , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/metabolismo , Sequência de Aminoácidos , Vesículas Revestidas por Clatrina/metabolismo , Proteína Coatomer/metabolismo , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Soluções , Técnicas do Sistema de Duplo-Híbrido
19.
Proc Natl Acad Sci U S A ; 106(5): 1632-7, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19164532

RESUMO

Neurons are highly polarized cells with morphologically and molecularly distinct axonal and dendritic compartments. It is not well understood how postsynaptic receptors are selectively enriched in dendrites in vivo. We investigated the molecular mechanisms of dendritically polarized localization of a glutamate receptor, an acetylcholine receptor, and a ROR-type receptor tyrosine kinase in the interneuron RIA in C. elegans. We found that the clathrin adaptor AP-1 complex mu1 subunit UNC-101 functions cell autonomously to maintain the correct localization of these receptors in a dynamin-dependent manner. In unc-101 mutants, instead of being dendritically enriched, all 3 receptors are evenly distributed in the axonal and dendritic compartments. Surprisingly, UNC-101 predominantly localizes to the axonal compartment, suggesting a possible transcytosis model for the dendritic targeting of neurotransmitter receptors.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Axônios/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Complexo 1 de Proteínas Adaptadoras/química , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Citosol/metabolismo , Dados de Sequência Molecular , Neurônios/metabolismo , Homologia de Sequência de Aminoácidos
20.
Eukaryot Cell ; 7(8): 1256-67, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18515754

RESUMO

The adaptor protein-1 (AP-1) complex is involved in membrane transport between the Golgi apparatus and endosomes. In the protozoan parasite Leishmania mexicana mexicana, the AP-1 mu1 and sigma1 subunits are not required for growth at 27 degrees C but are essential for infectivity in the mammalian host. In this study, we have investigated the function of these AP-1 subunits in order to understand the molecular basis for this loss of virulence. The mu1 and sigma1 subunits were localized to late Golgi and endosome membranes of the major parasite stages. Parasite mutants lacking either AP-1 subunit lacked obvious defects in Golgi structure, endocytosis, or exocytic transport. However, these mutants displayed reduced rates of endosome-to-lysosome transport and accumulated fragmented, sterol-rich lysosomes. Defects in flagellum biogenesis were also evident in nondividing promastigote stages, and this phenotype was exacerbated by inhibitors of sterol and sphingolipid biosynthesis. Furthermore, both AP-1 mutants were hypersensitive to elevated temperature and perturbations in membrane lipid composition. The pleiotropic requirements for AP-1 in membrane trafficking and temperature stress responses explain the loss of virulence of these mutants in the mammalian host.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Flagelos/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Leishmania mexicana/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lisossomos/metabolismo , Adaptação Fisiológica/fisiologia , Complexo 1 de Proteínas Adaptadoras/química , Complexo 1 de Proteínas Adaptadoras/genética , Animais , Temperatura Corporal/fisiologia , Endossomos/metabolismo , Endossomos/ultraestrutura , Flagelos/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Resposta ao Choque Térmico/fisiologia , Homeostase/fisiologia , Leishmania mexicana/genética , Leishmania mexicana/ultraestrutura , Lisossomos/ultraestrutura , Mamíferos/parasitologia , Mamíferos/fisiologia , Lipídeos de Membrana/metabolismo , Mutação/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , Esteróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...