Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Biophys J ; 122(15): 3133-3145, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381600

RESUMO

The coordinated (dis)engagement of the membrane-bound T cell receptor (TCR)-CD3-CD4 complex from the peptide-major histocompatibility complex (pMHC) is fundamental to TCR signal transduction and T cell effector function. As such, an atomic-scale understanding would not only enhance our basic understanding of the adaptive immune response but would also accelerate the rational design of TCRs for immunotherapy. In this study, we explore the impact of the CD4 coreceptor on the TCR-pMHC (dis)engagement by constructing a molecular-level biomimetic model of the CD3-TCR-pMHC and CD4-CD3-TCR-pMHC complexes within a lipid bilayer. After allowing the system complexes to equilibrate (engage), we use steered molecular dynamics to dissociate (disengage) the pMHC. We find that 1) the CD4 confines the pMHC closer to the T cell by 1.8 nm at equilibrium; 2) CD4 confinement shifts the TCR along the MHC binding groove engaging a different set of amino acids and enhancing the TCR-pMHC bond lifetime; 3) the CD4 translocates under load increasing the interaction strength between the CD4-pMHC, CD4-TCR, and CD4-CD3; and 4) upon dissociation, the CD3-TCR complex undergoes structural oscillation and increased energetic fluctuation between the CD3-TCR and CD3-lipids. These atomic-level simulations provide mechanistic insight on how the CD4 coreceptor impacts TCR-pMHC (dis)engagement. More specifically, our results provide further support (enhanced bond lifetime) for a force-dependent kinetic proofreading model and identify an alternate set of amino acids in the TCR that dominate the TCR-pMHC interaction and could thus impact the design of TCRs for immunotherapy.


Assuntos
Biomimética , Receptores de Antígenos de Linfócitos T , Complexo CD3/química , Complexo CD3/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Complexo Principal de Histocompatibilidade , Peptídeos/química , Simulação de Dinâmica Molecular , Ligação Proteica , Aminoácidos/metabolismo
2.
Cancer Immunol Immunother ; 71(1): 165-176, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34046711

RESUMO

B7H6, a stress-induced ligand which binds to the NK cell receptor NKp30, has recently emerged as a promising candidate for immunotherapy due to its tumor-specific expression on a broad array of human tumors. NKp30 can function as a chimeric antigen receptor (CAR) extracellular domain but exhibits weak binding with a fast on and off rate to B7H6 compared to the TZ47 anti-B7H6 single-chain variable fragment (scFv). Here, directed evolution using yeast display was employed to isolate novel NKp30 variants that bind to B7H6 with higher affinity compared to the native receptor but retain its fast association and dissociation profile. Two variants, CC3 and CC5, were selected for further characterization and were expressed as soluble Fc-fusion proteins and CARs containing CD28 and CD3ς intracellular domains. We observed that Fc-fusion protein forms of NKp30 and its variants were better able to bind tumor cells expressing low levels of B7H6 than TZ47, and that the novel variants generally exhibited improved in vitro tumor cell killing relative to NKp30. Interestingly, CAR T cells expressing the engineered variants produced unique cytokine signatures in response to multiple tumor types expressing B7H6 compared to both NKp30 and TZ47. These findings suggest that natural CAR receptors can be fine-tuned to produce more desirable signaling outputs while maintaining evolutionary advantages in ligand recognition relative to scFvs.


Assuntos
Antígenos B7/química , Receptor 3 Desencadeador da Citotoxicidade Natural/química , Receptores de Antígenos Quiméricos/química , Animais , Antígenos CD28/química , Complexo CD3/química , Linhagem Celular Tumoral , Separação Celular , Citocinas/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Biblioteca Gênica , Variação Genética , Células HEK293 , Humanos , Imunoterapia , Cinética , Ligantes , Camundongos , Mutação , Conformação Proteica , Anticorpos de Cadeia Única/química
3.
Pharm Res ; 38(9): 1593-1600, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34463936

RESUMO

PURPOSE: Nano-drug delivery systems are designed to contain surface ligands including antibodies for "active targeting". The number of ligands on each nanoparticle, known as the valency, is considered a critical determinant of the "targeting" property. We sought to understand the correlation between valency and binding properties using antibody conjugated liposomes, i.e. immunoliposomes (ILs), as the model. METHODS: Anti-CD3 Fab containing a terminal cysteine residue were conjugated to DSPE-PEG-maleimide and incubated with preformed liposomes at 60°C. The un-incorporated antibodies were removed and the obtained ILs were characterized to contain in average 2-22 copies of anti-CD3 Fabs per liposome. The Biolayer Interferometry (BLI) probe surface was coated with various densities of CD3 epsilon&delta heterodimer (CD3D/E) to imitate different CD3 expression levels on target cells. The inference wavelength shifts upon anti-CD3 liposome binding were monitored and analyzed. RESULTS: The data indicated ILs may bind either monovalently or multivalently, determined mainly by the surface ligand density rather than the ILs antibody valency. The ILs valency indeed correlated with the dissociation rate constant (Koff), but not with the association rate constant (Kon). Their binding capabilities also did not necessarily increase with the surface anti-CD3 valency. CONCLUSION: We proposed a model for understanding the binding properties of ILs with different ligand valencies. The binding mode may change when the targeted surfaces had different antigen densities. The model should be important for the designing and optimization of active targeting drug delivery systems to fit different applications.


Assuntos
Imunoconjugados/química , Lipossomos/química , Animais , Anticorpos Monoclonais/química , Complexo CD3/química , Células CHO , Cricetulus , Sistemas de Liberação de Medicamentos/métodos , Ligantes , Maleimidas/química , Nanopartículas/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química
4.
J Mater Chem B ; 9(6): 1661-1675, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33481966

RESUMO

CD3ε is expressed on T lymphocytes as a part of the T cell receptor (TCR)-CD3 complex. Together with other CD3 molecules, CD3ε is responsible for the activation of T cells via transducing the event of antigen recognition by the TCR into intracellular signaling cascades. The present study first aims to identify a novel peptide ligand that binds to human CD3ε in a specific manner and to perform an initial evaluation of its biological efficacy on the human T cell line, Jurkat cells. We screened a phage-display peptide library against human CD3ε using a subtractive biopanning process, from which we identified 13 phage clones displaying unique peptide sequences. One dominant phage clone displaying the 7 amino acid sequence of WSLGYTG, which occupied 90% of tested plaques (18 out of 20) after the 5th round of biopanning, demonstrated a superior binding behavior to other clones in the binding assays against recombinant CD3ε on microbeads or Jurkat cells. The synthesized peptide also showed specific binding to Jurkat cells in a dose-dependent manner but not to B cell lymphoma line, 2PK3 cells. Molecular modeling and docking simulation confirmed that the selected peptide ligand in an energetically stable conformation binds to a pocket of CD3ε that is not hidden by either CD3γ or CD3δ. Lastly, magnetic microbeads conjugated with the synthesized peptide ligands showed a weak but specific association with Jurkat cells and induced the calcium flux, a hallmark indication of proximal T cell receptor signaling, which gave rise to an enhancement of IL-2 section and cell proliferation. The novel peptide ligand and its various multivalent forms have a great potential in applications related to T cell biology and T cell immunotherapy.


Assuntos
Complexo CD3/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Peptídeos/farmacologia , Animais , Complexo CD3/química , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Humanos , Células Jurkat , Ligantes , Camundongos , Tamanho da Partícula , Peptídeos/química , Propriedades de Superfície
5.
Molecules ; 25(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182593

RESUMO

Multivalent interactions frequently occur in biological systems and typically provide higher binding affinity and selectivity in target recognition than when only monovalent interactions are operative. Thus, taking inspiration by nature, bivalent or multivalent nucleic acid aptamers recognizing a specific biological target have been extensively studied in the last decades. Indeed, oligonucleotide-based aptamers are suitable building blocks for the development of highly efficient multivalent systems since they can be easily modified and assembled exploiting proper connecting linkers of different nature. Thus, substantial research efforts have been put in the construction of dimeric/multimeric versions of effective aptamers with various degrees of success in target binding affinity or therapeutic activity enhancement. The present review summarizes recent advances in the design and development of dimeric and multimeric DNA-based aptamers, including those forming G-quadruplex (G4) structures, recognizing different key proteins in relevant pathological processes. Most of the designed constructs have shown improved performance in terms of binding affinity or therapeutic activity as anti-inflammatory, antiviral, anticoagulant, and anticancer agents and their number is certainly bound to grow in the next future.


Assuntos
Aptâmeros de Nucleotídeos/química , Quadruplex G , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Anti-Inflamatórios/química , Anticoagulantes/química , Antineoplásicos/química , Antivirais/química , Complexo CD3/química , Moléculas de Adesão Celular/química , DNA/química , Dimerização , Humanos , Imunoglobulina M/química , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-met/química , Pirrolidinas/química , Receptores Proteína Tirosina Quinases/química , Receptores de Antígenos de Linfócitos T/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vitronectina/química , Nucleolina
6.
Front Immunol ; 11: 1519, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765524

RESUMO

CD28 plays a critical role in regulating immune responses both by enhancing effector T cell activation and differentiation and controlling the development and function of regulatory T cells. CD28 is expressed at the cell surface as a disulfide linked homodimer that is thought to bind ligand monovalently. How ligand binding triggers CD28 to induce intracellular signaling as well as the proximal signaling pathways that are induced are not well-understood. In addition, recent data suggest inside-out signaling initiated by the T cell antigen receptor can enhance CD28 ligand binding, possibly by inducing a rearrangement of the CD28 dimer interface to allow for bivalent binding. To understand how possible conformational changes during ligand-induced receptor triggering and inside-out signaling are mediated, we examined the CD28 transmembrane domain. We identified an evolutionarily conserved YxxxxT motif that is shared with CTLA-4 and resembles the transmembrane dimerization motif within CD3ζ. We show that the CD28 transmembrane domain can drive protein dimerization in a bacterial expression system at levels equivalent to the well-known glycophorin A transmembrane dimerization motif. In addition, ectopic expression of the CD28 transmembrane domain into monomeric human CD25 can drive dimerization in murine T cells as detected by an increase in FRET by flow cytometry. Mutation of the polar YxxxxT motif to hydrophobic leucine residues (Y145L/T150L) attenuated CD28 transmembrane mediated dimerization in both the bacterial and mammalian assays. Introduction of the Y145L/T150L mutation of the CD28 transmembrane dimerization motif into the endogenous CD28 locus by CRISPR resulted in a dramatic loss in CD28 cell surface expression. These data suggest that under physiological conditions the YxxxxT dimerization motif within the CD28 transmembrane domain plays a critical role in the assembly and/or expression of stable CD28 dimers at the cell surface.


Assuntos
Motivos de Aminoácidos , Antígenos CD28/química , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Sequência de Aminoácidos , Animais , Antígenos CD28/genética , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Complexo CD3/química , Complexo CD3/imunologia , Complexo CD3/metabolismo , Membrana Celular/metabolismo , Sequência Conservada , Expressão Ectópica do Gene , Humanos , Camundongos , Camundongos Transgênicos , Matrizes de Pontuação de Posição Específica , Transdução de Sinais
7.
Front Immunol ; 11: 1046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636832

RESUMO

Chimeric antigen receptor modified T cells (CAR-T) have yielded impressive clinical outcomes in treating hematopoietic malignancies. However, relapses have occurred in a substantial number of patients and limited the development of CAR-T therapy. Most underlying reasons for these relapses can be attributed to poor persistence and rapid exhaustion of CAR-T cells in vivo. Despite multiple strategies having been developed, how to improve CAR-T persistence or resist exhaustion while maintaining sufficient cytotoxic functions is still a great challenge. Here we discuss engineering cytoplasmic signaling as an important strategy for CAR optimization. This review summarizes recent advances showing that the anti-tumor function of CAR-T cells can be improved by optimizing the CD3ζ domain or downstream signaling of CD28ζ CAR.


Assuntos
Antígenos CD28/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Antígenos CD28/química , Complexo CD3/química , Complexo CD3/imunologia , Engenharia Celular/métodos , Humanos , Ativação Linfocitária , Modelos Imunológicos , Neoplasias/imunologia , Domínios Proteicos , Receptores de Antígenos Quiméricos/química , Transdução de Sinais/imunologia , Linfócitos T/imunologia
8.
Cell ; 182(4): 855-871.e23, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32730808

RESUMO

A T cell receptor (TCR) mediates antigen-induced signaling through its associated CD3ε, δ, γ, and ζ, but the contributions of different CD3 chains remain elusive. Using quantitative mass spectrometry, we simultaneously quantitated the phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of all CD3 chains upon TCR stimulation. A subpopulation of CD3ε ITAMs was mono-phosphorylated, owing to Lck kinase selectivity, and specifically recruited the inhibitory Csk kinase to attenuate TCR signaling, suggesting that TCR is a self-restrained signaling machinery containing both activating and inhibitory motifs. Moreover, we found that incorporation of the CD3ε cytoplasmic domain into a second-generation chimeric antigen receptor (CAR) improved antitumor activity of CAR-T cells. Mechanistically, the Csk-recruiting ITAM of CD3ε reduced CAR-T cytokine production whereas the basic residue rich sequence (BRS) of CD3ε promoted CAR-T persistence via p85 recruitment. Collectively, CD3ε is a built-in multifunctional signal tuner, and increasing CD3 diversity represents a strategy to design next-generation CAR.


Assuntos
Complexo CD3/metabolismo , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Animais , Complexo CD3/química , Proteína Tirosina Quinase CSK/metabolismo , Linhagem Celular , Citocinas/metabolismo , Humanos , Ativação Linfocitária/efeitos dos fármacos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/terapia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Sobrevida , Vanadatos/farmacologia
9.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271166

RESUMO

Systemic cytokine release and on-target/off-tumor toxicity to normal tissues are the main adverse effects limiting the clinical utility of T cell-redirecting therapies. This study was designed to determine how binding affinity for CD3 and tumor target HER2 impact the efficacy and nonclinical safety of anti-HER2/CD3 T cell-dependent antibodies (TDBs). Affinity was found to be a major determinant for the overall tolerability. Higher affinity for CD3 associated with rapidly elevated peripheral cytokine concentrations, weight loss in mice, and poor tolerability in cynomolgus monkeys. A TDB with lower CD3 affinity was better tolerated in cynomolgus monkeys compared with a higher CD3-affinity TDB. In contrast to tolerability, T cell binding affinity had only limited impact on in vitro and in vivo antitumor activity. High affinity for HER2 was critical for the tumor-killing activity of anti-HER2/CD3 TDBs, but higher HER2 affinity also associated with a more severe toxicity profile, including cytokine release and damage to HER2-expressing tissues. The tolerability of the anti-HER2/CD3 was improved by implementing a dose-fractionation strategy. Fine-tuning the affinities for both the tumor target and CD3 is likely a valuable strategy for achieving maximal therapeutic index of CD3 bispecific antibodies.


Assuntos
Anticorpos Biespecíficos/imunologia , Afinidade de Anticorpos , Antineoplásicos Imunológicos/imunologia , Receptor ErbB-2/imunologia , Animais , Anticorpos Biespecíficos/química , Antineoplásicos Imunológicos/química , Complexo CD3/química , Células CHO , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Humanos , Macaca fascicularis , Receptor ErbB-2/química
10.
Sci Rep ; 10(1): 4913, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188928

RESUMO

Designing non-natural antibody formats is a practical method for developing highly functional next-generation antibody drugs, particularly for improving the therapeutic efficacy of cancer treatments. One approach is constructing bispecific antibodies (bsAbs). We previously reported a functional humanized bispecific diabody (bsDb) that targeted epidermal growth factor receptor and CD3 (hEx3-Db). We enhanced its cytotoxicity by constructing an Fc fusion protein and rearranging order of the V domain. In this study, we created an additional functional bsAb, by integrating the molecular formats of bsAb and high-affinity mutants previously isolated by phage display in the form of Fv. Introducing the high-affinity mutations into bsDbs successfully increased their affinities and enhanced their cytotoxicity in vitro and in vivo. However, there were some limitations to affinity maturation of bsDb by integrating high-affinity Fv mutants, particularly in Fc-fused bsDb with intrinsic high affinity, because of their bivalency. The tetramers fractionated from the bsDb mutant exhibited the highest in vitro growth inhibition among the small bsAbs and was comparable to the in vivo anti-tumor effects of Fc-fused bsDbs. This molecule shows cost-efficient bacterial production and high therapeutic potential.


Assuntos
Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Complexo CD3/antagonistas & inibidores , Mutação , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Antineoplásicos Imunológicos/química , Complexo CD3/química , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes de Fusão , Relação Estrutura-Atividade
11.
Cell Mol Immunol ; 17(3): 193-202, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32047259

RESUMO

The T cell receptor (TCR) is one of the most complicated receptors in mammalian cells, and its triggering mechanism remains mysterious. As an octamer complex, TCR comprises an antigen-binding subunit (TCRαß) and three CD3 signaling subunits (CD3ζζ, CD3δε, and CD3γε). Engagement of TCRαß with an antigen peptide presented on the MHC leads to tyrosine phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) in CD3 cytoplasmic domains (CDs), thus translating extracellular binding kinetics to intracellular signaling events. Whether conformational change plays an important role in the transmembrane signal transduction of TCR is under debate. Attracted by the complexity and functional importance of TCR, many groups have been studying TCR structure and triggering for decades using diverse biochemical and biophysical tools. Here, we synthesize these structural studies and discuss the relevance of the conformational change model in TCR triggering.


Assuntos
Complexo CD3 , Receptores de Antígenos de Linfócitos T alfa-beta , Transdução de Sinais/imunologia , Motivos de Aminoácidos , Animais , Complexo CD3/química , Complexo CD3/imunologia , Membrana Celular/química , Membrana Celular/imunologia , Humanos , Domínios Proteicos , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Relação Estrutura-Atividade
12.
J Leukoc Biol ; 107(6): 1045-1055, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31994778

RESUMO

There are 2 populations of T lymphocytes, αß T and γδ T cells, that can be distinguished by the expression of either an αß TCR or a γδ TCR, respectively. Pairing of the Ag binding heterodimer, which consists of TCR-α/TCR-ß (TCRαß) or TCR-γ/TCR-δ (TCRγδ), with proteins of the CD3 complex forms the complete αß or γδ TCR. Despite some similarities in the structure of TCRαß and TCRγδ and the shared subunits of the CD3 complex, the 2 receptors differ in important aspects. These include the assembly geometry of the complex, the glycosylation pattern, the plasma membrane organization, as well as the accessibility of signaling motifs in the CD3 intracellular tails. These differences are reflected in the different demands and outcomes of ligand-induced signaling. It was shown that exposure of the proline-rich sequence (PRS) in CD3ε occurs with all activating αß TCR ligands and is required to induce αß TCR signaling. In sharp contrast, CD3ε PRS exposure was not induced by binding of those ligands to the γδ TCR that have been studied. Further, signaling by the γδ TCR occurs independently of CD3ε PRS exposure. Interestingly, it can be enhanced by anti-CD3ε Ab-induced enforcement of CD3ε PRS exposure. This review contrasts these two similar, but different immune receptors.


Assuntos
Complexo CD3/imunologia , Linhagem da Célula/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Anticorpos/farmacologia , Complexo CD3/antagonistas & inibidores , Complexo CD3/química , Complexo CD3/genética , Diferenciação Celular , Linhagem da Célula/genética , Expressão Gênica , Glicosilação , Humanos , Ligantes , Camundongos , Ligação Proteica/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/química , Receptores de Antígenos de Linfócitos T gama-delta/genética , Transdução de Sinais , Linfócitos T/classificação , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Timo/citologia , Timo/imunologia
13.
Mol Ther ; 28(3): 889-900, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31981494

RESUMO

FLT3 (FMS-like tyrosine kinase 3), expressed on the surface of acute myeloid leukemia (AML) blasts, is a promising AML target, given its role in the development and progression of leukemia, and its limited expression in tissues outside the hematopoietic system. Small molecule FLT3 kinase inhibitors have been developed, but despite having clinical efficacy, they are effective only on a subset of patients and associated with high risk of relapse. A durable therapy that can target a wider population of AML patients is needed. Here, we developed an anti-FLT3-CD3 immunoglobulin G (IgG)-based bispecific antibody (7370) with a high affinity for FLT3 and a long half-life, to target FLT3-expressing AML blasts, irrespective of FLT3 mutational status. We demonstrated that 7370 has picomolar potency against AML cell lines in vitro and in vivo. 7370 was also capable of activating T cells from AML patients, redirecting their cytotoxic activity against autologous blasts at low effector-to-target (E:T) ratio. Additionally, under our dosing regimen, 7370 was well tolerated and exhibited potent efficacy in cynomolgus monkeys by inducing complete but reversible depletion of peripheral FLT3+ dendritic cells (DCs) and bone marrow FLT3+ stem cells and progenitors. Overall, our results support further clinical development of 7370 to broadly target AML patients.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Complexo CD3/antagonistas & inibidores , Hematopoese/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/uso terapêutico , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Complexo CD3/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Imunoglobulina G/farmacologia , Imunofenotipagem , Leucemia Mieloide Aguda , Depleção Linfocítica , Macaca fascicularis , Camundongos , Modelos Moleculares , Domínios Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/química
14.
Cell Mol Immunol ; 17(3): 203-217, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31530899

RESUMO

A major unanswered question is how a TCR discriminates between foreign and self-peptides presented on the APC surface. Here, we used in situ fluorescence resonance energy transfer (FRET) to measure the distances of single TCR-pMHC bonds and the conformations of individual TCR-CD3ζ receptors at the membranes of live primary T cells. We found that a TCR discriminates between closely related peptides by forming single TCR-pMHC bonds with different conformations, and the most potent pMHC forms the shortest bond. The bond conformation is an intrinsic property that is independent of the binding affinity and kinetics, TCR microcluster formation, and CD4 binding. The bond conformation dictates the degree of CD3ζ dissociation from the inner leaflet of the plasma membrane via a positive calcium signaling feedback loop to precisely control the accessibility of CD3ζ ITAMs for phosphorylation. Our data revealed the mechanism by which a TCR deciphers the structural differences among peptides via the TCR-pMHC bond conformation.


Assuntos
Complexo CD3/química , Antígenos CD4/química , Membrana Celular/química , Antígenos de Histocompatibilidade/química , Receptores de Antígenos de Linfócitos T/química , Linfócitos T/química , Animais , Complexo CD3/genética , Complexo CD3/imunologia , Antígenos CD4/genética , Antígenos CD4/imunologia , Membrana Celular/genética , Membrana Celular/imunologia , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia
15.
J Biol Chem ; 295(4): 914-925, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31848223

RESUMO

T cells are critical for protective immune responses to pathogens and tumors. The T-cell receptor (TCR)-CD3 complex is composed of a diverse αß TCR heterodimer noncovalently associated with the invariant CD3 dimers CD3ϵγ, CD3ϵδ, and CD3ζζ. The TCR mediates recognition of antigenic peptides bound to MHC molecules (pMHC), whereas the CD3 molecules transduce activation signals to the T cell. Whereas much is known about downstream T-cell signaling pathways, the mechanism whereby TCR engagement by pMHC is first communicated to the CD3 signaling apparatus, a process termed early T-cell activation, remains largely a mystery. In this review, we examine the molecular basis for TCR activation in light of the recently determined cryoEM structure of a complete TCR-CD3 complex. This structure provides an unprecedented opportunity to assess various signaling models that have been proposed for the TCR. We review evidence from single-molecule and structural studies for force-induced conformational changes in the TCR-CD3 complex, for dynamically-driven TCR allostery, and for pMHC-induced structural changes in the transmembrane and cytoplasmic regions of CD3 subunits. We identify major knowledge gaps that must be filled in order to arrive at a comprehensive model of TCR activation that explains, at the molecular level, how pMHC-specific information is transmitted across the T-cell membrane to initiate intracellular signaling. An in-depth understanding of this process will accelerate the rational design of immunotherapeutic agents targeting the TCR-CD3 complex.


Assuntos
Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Complexo CD3/química , Complexo CD3/metabolismo , Humanos , Complexo Principal de Histocompatibilidade , Mecanotransdução Celular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
16.
Proc Natl Acad Sci U S A ; 117(1): 285-291, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871161

RESUMO

The impact of ultrasmall nanoparticles (<10-nm diameter) on the immune system is poorly understood. Recently, ultrasmall silica nanoparticles (USSN), which have gained increasing attention for therapeutic applications, were shown to stimulate T lymphocytes directly and at relatively low-exposure doses. Delineating underlying mechanisms and associated cell signaling will hasten therapeutic translation and is reported herein. Using competitive binding assays and molecular modeling, we established that the T cell receptor (TCR):CD3 complex is required for USSN-induced T cell activation, and that direct receptor complex-particle interactions are permitted both sterically and electrostatically. Activation is not limited to αß TCR-bearing T cells since those with γδ TCR showed similar responses, implying that USSN mediate their effect by binding to extracellular domains of the flanking CD3 regions of the TCR complex. We confirmed that USSN initiated the signaling pathway immediately downstream of the TCR with rapid phosphorylation of both ζ-chain-associated protein 70 and linker for activation of T cells protein. However, T cell proliferation or IL-2 secretion were only triggered by USSN when costimulatory anti-CD28 or phorbate esters were present, demonstrating that the specific impact of USSN is in initiation of the primary, nuclear factor of activated T cells-pathway signaling from the TCR complex. Hence, we have established that USSN are partial agonists for the TCR complex because of induction of the primary T cell activation signal. Their ability to bind the TCR complex rapidly, and then to dissolve into benign orthosilicic acid, makes them an appealing option for therapies targeted at transient TCR:CD3 receptor binding.


Assuntos
Ativação Linfocitária/efeitos dos fármacos , Nanopartículas/química , Complexo Receptor-CD3 de Antígeno de Linfócitos T/efeitos dos fármacos , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Antígenos CD28/metabolismo , Complexo CD3/química , Complexo CD3/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Interleucina-2/metabolismo , Modelos Moleculares , Fosforilação , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Transdução de Sinais/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
17.
Adv Immunol ; 144: 65-85, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31699220

RESUMO

Adaptive lymphocytes express a panel of immunoreceptors on the cell surface. Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids forming microdomains in the plasma membrane can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. We have shown that negatively charged acidic phospholipids can interact with positively charged juxtamembrane polybasic regions of immunoreceptors, such as TCR-CD3, CD28 and IgG-BCR, to regulate protein structure and function. Furthermore, we pay our attention to protein transmembrane domains. We show that a membrane-snorkeling Lys residue in integrin αLß2 regulates transmembrane heterodimer formation and integrin adhesion through ionic interplay with acidic phospholipids and calcium ions (Ca2+) in T cells, thus providing a new mechanism of integrin activation. Here, we review our recent progress showcasing the importance of both juxtamembrane and intramembrane ionic protein-lipid interactions.


Assuntos
Antígenos CD28/imunologia , Complexo CD3/imunologia , Membrana Celular/imunologia , Fosfolipídeos/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Antígenos CD28/química , Antígenos CD28/metabolismo , Complexo CD3/química , Complexo CD3/metabolismo , Sinalização do Cálcio/imunologia , Membrana Celular/metabolismo , Humanos , Integrinas/imunologia , Integrinas/metabolismo , Íons/imunologia , Íons/metabolismo , Ativação Linfocitária , Camundongos , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Domínios Proteicos/genética , Domínios Proteicos/imunologia , Receptores de Antígenos de Linfócitos B/química
18.
J Mol Model ; 25(9): 277, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31456056

RESUMO

Immunoreceptors are TM complexes that consist of separate ligand-binding and signal-transducing modules. Mounting evidence suggests that interactions with the local environment may influence the architecture of these TM domains, which assemble via crucial sets of conserved ionisable residues, and also control the peripheral association of immunoreceptor tyrosine-based activation motifs (ITAMs) whose phosphorylation triggers cytoplasmic signalling cascades. We now report a molecular dynamics (MD) simulation study of the archetypal T cell receptor (TCR) and its cluster of differentiation 3 (CD3) signalling partners, along with the analogous DNAX-activation protein of 12 kDa (DAP12)/natural killer group 2C (NKG2C) complex. Based on > 15 µs of explicitly solvated, atomic-resolution sampling, we explore molecular aspects of immunoreceptor complex stability in different functionally relevant states. A novel alchemical approach is used to simulate the cytoplasmic CD3ε tail at different depths within lipid bilayer models, revealing that the conformation and cytoplasmic exposure of ITAMs are highly sensitive to local enrichment by different lipid species and to phosphorylation. Furthermore, simulations of the TCR and DAP12 TM domains in various states of oligomerisation suggest that, during the early stages of assembly, stable membrane insertion is facilitated by the interfacial lipid/solvent environment and/or partial ionisation of charged residues. Collectively, our results indicate that the architecture and mechanisms of signal transduction in immunoreceptor complexes are tightly regulated by interactions with the microenvironment.


Assuntos
Complexo CD3/metabolismo , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo CD3/química , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Antígenos de Linfócitos T/química
19.
J Cell Sci ; 132(4)2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30745330

RESUMO

The essential function of the T cell receptor (TCR) is to translate the engagement of peptides on the major histocompatibility complex (pMHC) into appropriate intracellular signals through the associated cluster of differentiation 3 (CD3) complex. The spatial organization of the TCR-CD3 complex in the membrane is thought to be a key regulatory element of signal transduction, raising the question of how receptor clustering impacts on TCR triggering. How signal transduction at the TCR-CD3 complex encodes the quality and quantity of pMHC molecules is not fully understood. This question can be approached by reconstituting T cell signaling in model and cell membranes and addressed by single-molecule imaging of endogenous proteins in T cells. We highlight such methods and further discuss how TCR clustering could affect pMHC rebinding rates, the local balance between kinase and phosphatase activity and/or the lipid environment to regulate the signal efficiency of the TCR-CD3 complex. We also examine whether clustering could affect the conformation of cytoplasmic CD3 tails through a biophysical mechanism. Taken together, we highlight how the spatial organization of the TCR-CD3 complex - addressed by reconstitution approaches - has emerged as a key regulatory element in signal transduction of this archetypal immune receptor.


Assuntos
Complexo CD3/imunologia , Complexo Principal de Histocompatibilidade , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Complexo CD3/química , Complexo CD3/metabolismo , Membrana Celular/imunologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Humanos , Antígenos Comuns de Leucócito/química , Antígenos Comuns de Leucócito/imunologia , Antígenos Comuns de Leucócito/metabolismo , Ativação Linfocitária , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Modelos Biológicos , Ligação Proteica , Transporte Proteico , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Imagem Individual de Molécula/métodos , Linfócitos T/metabolismo , Linfócitos T/ultraestrutura
20.
Immunity ; 49(5): 829-841.e6, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30389415

RESUMO

Initial molecular details of cellular activation following αßT cell antigen receptor (TCR) ligation by peptide-major histocompatibility complexes (pMHC) remain unexplored. We determined the nuclear magnetic resonance (NMR) structure of the TCRα subunit transmembrane (TM) domain revealing a bipartite helix whose segmentation fosters dynamic movement. Positively charged TM residues Arg251 and Lys256 project from opposite faces of the helix, with Lys256 controlling immersion depth. Their modification caused stepwise reduction in TCR associations with CD3ζζ homodimers and CD3εγ plus CD3εδ heterodimers, respectively, leading to an activated transcriptome. Optical tweezers revealed that Arg251 and Lys256 mutations altered αßTCR-pMHC bond lifetimes, while mutations within interacting TCRα connecting peptide and CD3δ CxxC motif juxtamembrane elements selectively attenuated signal transduction. Our findings suggest that mechanical forces applied during pMHC ligation initiate T cell activation via a dissociative mechanism, shifting disposition of those basic sidechains to rearrange TCR complex membrane topology and weaken TCRαß and CD3 associations.


Assuntos
Complexo CD3/metabolismo , Membrana Celular/metabolismo , Domínios Proteicos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Sequência de Aminoácidos , Biomarcadores , Complexo CD3/química , Sequência Conservada , Perfilação da Expressão Gênica , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...