Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Biol Chem ; 405(2): 91-104, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36942505

RESUMO

Glycoprotein (GP) Ib-IX-V is the second most abundant platelet receptor for thrombin and other ligands crucial for hemostasis and thrombosis. Its activity is involved in platelet adhesion to vascular injury sites and thrombin-induced platelet aggregation. GPIb-IX-V is a heteromeric complex composed of four subunits, GPIbα, GPIbß, GPV and GPIX, in a stoichiometric ratio that has been wildly debated. Despite its important physiological roles, the overall structure and molecular arrangement of GPIb-IX-V are not yet fully understood. Here, we purify stable and functional human GPIb-IX-V complex from reconstituted EXPi293F cells in high homogeneity, and perform biochemical and structural characterization of this complex. Single-particle cryo-electron microscopy structure of GPIb-IX-V is determined at ∼11 Å resolution, which unveils the architecture of GPIb-IX-V and its subunit organization. Size-exclusion chromatography-multi-angle static light scattering analysis reveals that GPIb-IX-V contains GPIb-IX and GPV at a 1:1 stoichiometric ratio and surface plasmon resonance assays show that association of GPV leads to slow kinetics of thrombin binding to GPIb-IX-V. Taken together, our results provide the first three-dimensional architecture of the intact GPIb-IX-V complex, which extends our understanding of the structure and functional mechanism of this complex in hemostasis and thrombosis.


Assuntos
Complexo Glicoproteico GPIb-IX de Plaquetas , Trombose , Humanos , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Trombina/metabolismo , Microscopia Crioeletrônica , Plaquetas/metabolismo , Trombose/metabolismo
2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(5): 876-885, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37879916

RESUMO

In resting platelets, the 17 th domain of filamin a (FLNa17) constitutively binds to the platelet membrane glycoprotein Ibα (GPIbα) at its cytoplasmic tail (GPIbα-CT) and inhibits the downstream signal activation, while the binding of ligand and blood shear force can activate platelets. To imitate the pull force transmitted from the extracellular ligand of GPIbα and the lateral tension from platelet cytoskeleton deformation, two pulling modes were applied on the GPIbα-CT/FLNa17 complex, and the molecular dynamics simulation method was used to explore the mechanical regulation on the affinity and mechanical stability of the complex. In this study, at first, nine pairs of key hydrogen bonds on the interface between GPIbα-CT and FLNa17 were identified, which was the basis for maintaining the complex structural stability. Secondly, it was found that these hydrogen bonding networks would be broken down and lead to the dissociation of FLNa17 from GPIbα-CT only under the axial pull force; but, under the lateral tension, the secondary structures at both terminals of FLNa17 would unfold to protect the interface of the GPIbα-CT/FLNa17 complex from mechanical damage. In the range of 0~40 pN, the increase of pull force promoted outward-rotation of the nitrogen atom of the 563 rd phenylalanine (PHE 563-N) at GPIbα-CT and the dissociation of the complex. This study for the first time revealed that the extracellular ligand-transmitted axial force could more effectively relieve the inhibition of FLNa17 on the downstream signal of GPIbα than pure mechanical tension at the atomic level, and would be useful for further understanding the platelet intracellular force-regulated signal pathway.


Assuntos
Simulação de Dinâmica Molecular , Complexo Glicoproteico GPIb-IX de Plaquetas , Filaminas/análise , Filaminas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/análise , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligantes , Ligação Proteica , Plaquetas/química , Plaquetas/metabolismo , Fator de von Willebrand/análise , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo
3.
J Thromb Haemost ; 21(4): 995-1009, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740532

RESUMO

BACKGROUND: Platelet glycoprotein (GP) Ibα is the major ligand-binding subunit of the GPIb-IX-V complex that binds von Willebrand factor. GPIbα is heavily glycosylated, and its glycans have been proposed to play key roles in platelet clearance, von Willebrand factor binding, and as target antigens in immune thrombocytopenia syndromes. Despite its importance in platelet biology, the glycosylation profile of GPIbα is not well characterized. OBJECTIVES: The aim of this study was to comprehensively analyze GPIbα amino acid sites of glycosylation (glycosites) and glycan structures. METHODS: GPIbα ectodomain that was recombinantly expressed or that was purified from human platelets was analyzed by Western blot, mass spectrometry glycomics, and mass spectrometry glycopeptide analysis to define glycosites and the structures of the attached glycans. RESULTS: We identified a diverse repertoire of N- and O-glycans, including sialoglycans, Tn antigen, T antigen, and ABO(H) blood group antigens. In the analysis of the recombinant protein, we identified 62 unique O-glycosites. In the analysis of the endogenous protein purified from platelets, we identified 48 unique O-glycosites and 1 N-glycosite. The GPIbα mucin domain is densely O-glycosylated. Glycosites are also located within the macroglycopeptide domain and mechanosensory domain. CONCLUSIONS: This comprehensive analysis of GPIbα glycosylation lays the foundation for further studies to determine the functional and structural roles of GPIbα glycans.


Assuntos
Complexo Glicoproteico GPIb-IX de Plaquetas , Fator de von Willebrand , Humanos , Glicosilação , Fator de von Willebrand/metabolismo , Estrutura Terciária de Proteína , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Plaquetas/metabolismo , Proteínas Recombinantes/metabolismo , Ligação Proteica
4.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216161

RESUMO

The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.


Assuntos
Plaquetas/fisiologia , Peptídeos/química , Agregação Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Fator de von Willebrand/química , Animais , Sítios de Ligação , Plaquetas/metabolismo , Células Cultivadas , Cavalos , Humanos , Microfluídica , Peptídeos/metabolismo , Ligação Proteica , Estresse Mecânico , Fator de von Willebrand/metabolismo
5.
Sci Rep ; 11(1): 11663, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083615

RESUMO

The interaction of platelet GPIbα with von Willebrand factor (VWF) is essential to initiate platelet adhesion and thrombosis, particularly under high shear stress conditions. However, no drug targeting GPIbα has been developed for clinical practice. Here we characterized anfibatide, a GPIbα antagonist purified from snake (Deinagkistrodon acutus) venom, and evaluated its interaction with GPIbα by surface plasmon resonance and in silico modeling. We demonstrated that anfibatide interferds with both VWF and thrombin binding, inhibited ristocetin/botrocetin- and low-dose thrombin-induced human platelet aggregation, and decreased thrombus volume and stability in blood flowing over collagen. In a single-center, randomized, and open-label phase I clinical trial, anfibatide was administered intravenously to 94 healthy volunteers either as a single dose bolus, or a bolus followed by a constant rate infusion of anfibatide for 24 h. Anfibatide inhibited VWF-mediated platelet aggregation without significantly altering bleeding time or coagulation. The inhibitory effects disappeared within 8 h after drug withdrawal. No thrombocytopenia or anti-anfibatide antibodies were detected, and no serious adverse events or allergic reactions were observed during the studies. Therefore, anfibatide was well-tolerated among healthy subjects. Interestingly, anfibatide exhibited pharmacologic effects in vivo at concentrations thousand-fold lower than in vitro, a phenomenon which deserves further investigation.Trial registration: Clinicaltrials.gov NCT01588132.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Venenos de Crotalídeos/uso terapêutico , Fibrinolíticos/uso terapêutico , Lectinas Tipo C/uso terapêutico , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Venenos de Serpentes/uso terapêutico , Animais , Coagulação Sanguínea/efeitos dos fármacos , Venenos de Crotalídeos/química , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacocinética , Crotalinae , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/farmacocinética , Voluntários Saudáveis , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/isolamento & purificação , Modelos Moleculares , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Contagem de Plaquetas , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Ligação Proteica , Conformação Proteica , Ristocetina/farmacologia , Venenos de Serpentes/química , Venenos de Serpentes/isolamento & purificação , Venenos de Serpentes/farmacocinética , Relação Estrutura-Atividade , Trombina/farmacologia , Trombose/prevenção & controle , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo
6.
Proteins ; 89(6): 731-741, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33550613

RESUMO

The blood protein von Willebrand factor (VWF) is a key link between inflammation and pathological thrombus formation. In particular, oxidation of methionine residues in specific domains of VWF due to the release of oxidants in inflammatory conditions has been linked to an increased platelet-binding activity. However, the atomistic details of how methionine oxidation activates VWF have not been elucidated to date. Yet understanding the activation mechanism of VWF under oxidizing conditions can lead to the development of novel therapeutics that target VWF selectively under inflammatory conditions in order to reduce its thrombotic activity while maintaining its haemostatic function. In this manuscript, we used a combination of a dynamic flow assay and molecular dynamics (MD) simulations to investigate how methionine oxidation removes an auto-inhibitory mechanism of VWF. Results from the dynamic flow assay revealed that oxidation does not directly activate the A1 domain, which is the domain in VWF that contains the binding site to the platelet surface receptor glycoprotein Ibα (GpIbα), but rather removes the inhibitory function of the neighboring A2 and A3 domains. Furthermore, the MD simulations combined with free energy perturbation calculations suggested that methionine oxidation may destabilize the binding interface between the A1 and A2 domains leading to unmasking of the GpIbα-binding site in the A1 domain.


Assuntos
Plaquetas/química , Metionina/química , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Fator de von Willebrand/química , Animais , Sítios de Ligação , Plaquetas/metabolismo , Células CHO , Cricetulus , Expressão Gênica , Hemostasia/genética , Humanos , Inflamação , Cinética , Metionina/metabolismo , Simulação de Dinâmica Molecular , Oxirredução , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Reologia , Termodinâmica , Trombose/genética , Trombose/metabolismo , Trombose/patologia , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
7.
Biochimie ; 184: 1-7, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33548391

RESUMO

Glycoprotein (GP)Ib that binds von Willebrand factor (vWF) and glycoprotein (GP)VI, that binds collagen play a significant role in platelet activation and aggregation, and are potential targets for antithrombotic treatment. They are targeted by snake venom proteinases. The effect of a such proteinase, mutalysin-II, on platelet aggregation was examined using washed human platelets and platelet-rich plasma. Its proteolytic activity on vWF, on its binding partner GPIbα, and on GPVI was analyzed by SDS-PAGE, and immunodetection with the corresponding antibodies after blotting. Dose- and time-dependently, mutalysin-II inhibits aggregation of washed platelets induced by vWF plus ristocetin and by convulxin, but with no significant effect on platelet-rich-plasma. Furthermore, mutalysin-II cleaves vWF into low molecular mass multimers of vWF and a rvWF-A1 domain to realease a ∼27-kDa fragment detectable by SDS-PAGE and blotting with mouse anti-rvWF-A1-domain IgG. Moreover, GPVI was cut by mutalysin-II into a soluble ∼55-kDa ectodomain and a fragment of ∼35-kDa. Thus, mutalysin-II inhibits vWF-induced platelet aggregation via cleavage of bound vWF-A1, and its receptor GPIbα. The additional cleavage of, GPVI, blocks collagen-induced platelets. Our data highlight mutalysin-II as an interesting platelet-directed tool targeting vWF-GPIbα binding and particularly GPVI. Thus, it might be suited for antithrombotic therapy as its combined inactivation of two receptors does not significantly compromise hemostasis, but shows high efficacy and safety. Studies are needed to further develop and demonstrate its potential benefits.


Assuntos
Plaquetas/química , Metaloendopeptidases/química , Inibidores da Agregação Plaquetária/química , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Glicoproteínas da Membrana de Plaquetas/química , Venenos de Serpentes/química , Animais , Plaquetas/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo
8.
Blood ; 137(6): 844-847, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33181828

RESUMO

Agkisacucetin, a snake C-type lectin-like protein isolated from the venom of Deinagkistrodon acutus (formerly Agkistrodon acutus), is a novel antithrombotic drug candidate in phase 2 clinical trials. Agkisacucetin specifically recognizes the platelet surface receptor glycoprotein Ib α chain (GPIbα) to block GPIb and von Willebrand factor (VWF). In this study, we solved the crystal structure of the GPIbα N-terminal domain (residues 1-305) in complex with agkisacucetin to understand their molecular recognition mechanism. The crystal structure showed that agkisacucetin primarily contacts GPIbα at the C-terminal part of the conserved leucine-rich repeat (LRR) domain (LRR-6 to LRR-8) and the previously described "ß-switch" region through the ß chain. In addition, we found that agkisacucetin α chain contacts part of the GPIbα C-terminal peptide after the LRR domain through complementary charge interactions. This C-terminal peptide plays a key role in GPIbα and thrombin recognition. Therefore, our structure revealed that agkisacucetin can sterically block the interaction between the GPIb receptor and VWF and thrombin proteins to inhibit platelet function. Our structural work provides key molecular insights into how an antithrombotic drug candidate recognizes the GPIb receptor to modulate platelet function to inhibit thrombosis.


Assuntos
Venenos de Crotalídeos/metabolismo , Fibrinolíticos/metabolismo , Lectinas Tipo C/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Cristalografia por Raios X , Humanos , Imunoprecipitação , Modelos Moleculares , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Trombina/metabolismo , Fator de von Willebrand/metabolismo
9.
Basic Clin Pharmacol Toxicol ; 126 Suppl 6: 5-16, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30859707

RESUMO

While a wide range of G protein-coupled receptors (GPCR) have emerged as prime targets for pharmacological intervention long ago, a distinct group of GPCR has only recently been identified and become a research subject to fundamental and clinical scientists. Adhesion-type GPCR (aGPCR) are exceptional members of the GPCR superfamily in many aspects: structurally, they appear as chimeric surface molecules that possess signature domains of heptahelical (7TM) and adhesion proteins, many aGPCR are autoproteolytically processed, and several homologues have lately been shown to operate as mechanosensors. Bound together by the recent discovery of tethered agonism in aGPCR, these molecular and functional features have entered first models on how aGPCR are activated. Here, I briefly review recent discoveries pertaining to the role of aGPCR as metabotropic mechanosensors that control a large variety of processes in all major tissue types.


Assuntos
Complexo Glicoproteico GPIb-IX de Plaquetas/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Desenvolvimento de Medicamentos , Humanos , Mecanotransdução Celular , Ligação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
10.
J Thromb Haemost ; 17(12): 2022-2034, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31448872

RESUMO

BACKGROUND: Mutations in the ß-switch of GPIbα cause gain-of-function in the platelet-type von Willebrand disease. Structures of free and A1-bound GPIbα suggest that the ß-switch undergoes a conformational change from a coil to a ß-hairpin. OBJECTIVES: Platelet-type von Willebrand disease (VWD) mutations have been proposed to stabilize the ß-switch by shifting the equilibrium in favor of the ß-hairpin, a hypothesis predicated on the assumption that the complex crystal structure between A1 and GPIbα is the high-affinity state. METHODS: Hydrogen-deuterium exchange mass spectrometry is employed to test this hypothesis using G233V, M239V, G233V/M239V, W230L, and D235Y disease variants of GPIbα. If true, the expectation is a decrease in hydrogen-deuterium exchange within the ß-switch as a result of newly formed hydrogen bonds between the ß-strands of the ß-hairpin. RESULTS: Hydrogen-exchange is enhanced, indicating that the ß-switch favors the disordered loop conformation. Hydrogen-exchange is corroborated by differential scanning calorimetry, which confirms that these mutations destabilize GPIbα by allowing the ß-switch to dissociate from the leucine-rich-repeat (LRR) domain. The stability of GPIbα and its A1 binding affinity, determined by surface plasmon resonance, are correlated to the extent of hydrogen exchange in the ß-switch. CONCLUSION: These studies demonstrate that GPIbα with a disordered loop is binding-competent and support a mechanism in which local disorder in the ß-switch exposes the LRR-domain of GPIbα enabling high-affinity interactions with the A1 domain.


Assuntos
Plaquetas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Doenças de von Willebrand/metabolismo , Fator de von Willebrand/metabolismo , Células HEK293 , Humanos , Mutação , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Ligação Proteica , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Doenças de von Willebrand/sangue , Doenças de von Willebrand/genética
11.
J Cell Biochem ; 120(10): 17847-17857, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31135071

RESUMO

Glycoprotein Ibα (GpIbα) binding ability of A1 domain of von Willebrand factor (vWF) facilitates platelet adhesion that plays a crucial role in maintaining hemostasis and thrombosis at the site of vascular damage. There are both "loss as well as gain of function" mutations observed in this domain. Naturally occurring "gain of function" mutations leave self-activating impacts on the A1 domain which turns the normal binding to characteristic constitutive binding with GPIbα. These "gain of function" mutations are associated with the von Willebrand disease type 2B. In recent years, studies focused on understanding the mechanism and conformational patterns attached to these phenomena have been conducted, but the conformational pathways leading to such binding patterns are poorly understood as of now. To obtain a microscopic picture of such events for the better understanding of pathways, we used molecular dynamics (MD) simulations along with principal component analysis and normal mode analysis to study the effects of Pro1266Leu (Pro503Leu in structural context) mutation on the structure and function of A1 domain of vWF. MD simulations have provided atomic-level details of intermolecular motions as a function of time to understand the dynamic behavior of A1 domain of vWF. Comparative analysis of the trajectories obtained from MD simulations of both the wild type and Pro503Leu mutant suggesting appreciable conformational changes in the structure of mutant which might provide a basis for assuming the "gain of function" effects of these mutations on the A1 domain of vWF, resulting in the constitutive binding with GpIbα.


Assuntos
Mutação/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Fator de von Willebrand/química , Fator de von Willebrand/genética , Leucina/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Análise de Componente Principal , Prolina/genética , Ligação Proteica , Domínios Proteicos , Mapas de Interação de Proteínas , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Fator de von Willebrand/metabolismo
12.
Blood Adv ; 3(9): 1450-1459, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31053572

RESUMO

Cell-surface receptor interactions between leukocyte integrin macrophage-1 antigen (Mac-1, also known as CR3, αMß2, CD11b/CD18) and platelet glycoprotein Ibα (GPIbα) are critical to vascular inflammation. To define the key residues at the binding interface, we used nuclear magnetic resonance (NMR) to assign the spectra of the mouse Mac-1 I-domain and mapped the residues contacting the mouse GPIbα N-terminal domain (GPIbαN) to the locality of the integrin metal ion-dependant adhesion site (MIDAS) surface. We next determined the crystal structures of the mouse GPIbαN and Mac-1 I-domain to 2 Å and 2.5 Å resolution, respectively. The mouse Mac-1 I-domain crystal structure reveals an active conformation that is stabilized by a crystal contact from the α7-helix with a glutamate side chain completing the octahedral coordination sphere of the MIDAS Mg2+ ion. The amino acid sequence of the α7-helix and disposition of the glutamic acid matches the C-terminal capping region α-helix of GPIbα effectively acting as a ligand mimetic. Using these crystal structures in combination with NMR measurements and docking analysis, we developed a model whereby an acidic residue from the GPIbα leucine-rich repeat (LRR) capping α-helix coordinates directly to the Mac-1 MIDAS Mg2+ ion. The Mac-1:GPIbαN complex involves additional interactions consolidated by an elongated pocket flanking the GPIbαN LRR capping α-helix. The GPIbαN α-helix has an HxxxE motif, which is equivalent by homology to RxxxD from the human GPIbαN. Subsequent mutagenesis of residues at this interface, coupled with surface plasmon resonance studies, confirmed the importance of GPIbαN residues H218, E222, and the Mac-1 MIDAS residue T209 to formation of the complex.


Assuntos
Antígeno de Macrófago 1/química , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Leucócitos/metabolismo , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Magnésio/química , Camundongos , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
13.
Biophys J ; 116(10): 1960-1969, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31030883

RESUMO

In platelets, the glycoprotein (GP) Ib-IX receptor complex senses blood shear flow and transmits the mechanical signals into platelets. Recently, we have discovered a juxtamembrane mechanosensory domain (MSD) within the GPIbα subunit of GPIb-IX. Mechanical unfolding of the MSD activates GPIb-IX signaling into platelets, leading to their activation and clearance. Using optical tweezer-based single-molecule force measurement, we herein report a systematic biomechanical characterization of the MSD in its native, full-length receptor complex and a recombinant, unglycosylated MSD in isolation. The native MSD unfolds at a resting rate of 9 × 10-3 s-1. Upon exposure to pulling forces, MSD unfolding accelerates exponentially over a force scale of 2.0 pN. Importantly, the unfolded MSD can refold with or without applied forces. The unstressed refolding rate of MSD is ∼17 s-1 and slows exponentially over a force scale of 3.7 pN. Our measurements confirm that the MSD is relatively unstable, with a folding free energy of 7.5 kBT. Because MSD refolding may turn off GPIb-IX's mechanosensory signals, our results provide a mechanism for the requirement of a continuous pulling force of >15 pN to fully activate GPIb-IX.


Assuntos
Fenômenos Mecânicos , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Redobramento de Proteína , Fenômenos Biomecânicos , Modelos Moleculares , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Domínios Proteicos , Termodinâmica
14.
Transfusion ; 59(5): 1799-1808, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30737804

RESUMO

BACKGROUND: Cryopreservation in dimethyl sulfoxide and storage at -80 °C extends the shelf life of platelets to at least 2 years, allowing greater availability in rural and military areas. While cryopreserved platelets (CPPs) have been extensively characterized for coagulation and thrombin generation, reports on the mechanism of adverse reactions to CPPs transfusion are scarce. Here, we tested the hypothesis that CPPs facilitate phagocytosis by Kupffer cells and subsequently promote the inflammatory response in Kupffer cells. STUDY DESIGN AND METHODS: P-selectin expression, glycoprotein Ibα clustering and phosphatidylserine (PS) surface exposure on platelets stored at 22 °C, 4 °C and - 80 °C for 3 days were examined by flow cytometry. The phagocytosis of mepacrine-labeled platelets coincubated with THP-1 cells was examined by flow cytometry and confocal microscopy, and the release of cytokines from THP-1 cells was measured by enzyme-linked immunosorbent assay. RESULTS: CPPs showed a marked enhancement of exposed PS but dramatically reduced glycoprotein Ibα expression and clustering compared with platelets stored at 4 °C. Activation of THP-1 cells was stronger by CPPs than by platelets stored at 22 °C and 4 °C. CPP interference tests using annexin V and anti-P-selectin showed that CPPs induced increases in PS- and P-selectin-mediated phagocytosis, as well as secretion of the proinflammatory cytokine tumor necrosis factor-α, and interleukins IL-1ß and IL-6, but a decrease in transforming growth factor-ß production in THP-1 cells. Surface-exposed PS was more effective than P-selectin for the activation of THP-1 cells. CONCLUSION: CPPs triggered PS and P-selectin-mediated phagocytosis by macrophages and stimulated the inflammatory response of macrophages.


Assuntos
Plaquetas/citologia , Plaquetas/metabolismo , Criopreservação/métodos , Inflamação/metabolismo , Selectina-P/metabolismo , Fosfatidilserinas/metabolismo , Linhagem Celular , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Fagocitose/fisiologia , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Quinacrina
15.
J Mol Biol ; 431(7): 1380-1396, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30797858

RESUMO

Von Willebrand factor (VWF), a large multimeric blood protein, senses changes in shear stress during bleeding and responds by binding platelets to plug ruptures in the vessel wall. Molecular mechanisms underlying this dynamic process are difficult to uncover using standard approaches due to the challenge of applying mechanical forces while monitoring structure and activity. By combining single-molecule fluorescence imaging with high-pressure, rapidly switching microfluidics, we reveal the key role of electrostatic steering in accelerating the binding between flow-activated VWF and GPIbα, and in rapidly immobilizing platelets under flow. We measure the elongation and tension-dependent activation of individual VWF multimers under a range of ionic strengths and pH levels, and find that the association rate is enhanced by 4 orders of magnitude by electrostatic steering. Under supraphysiologic salt concentrations, strong electrostatic screening dramatically decreases platelet binding to VWF in flow, revealing the critical role of electrostatic attraction in VWF-platelet binding during bleeding.


Assuntos
Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Eletricidade Estática , Fator de von Willebrand/química , Plaquetas/metabolismo , Hemorragia , Hemostasia , Humanos , Fenômenos Mecânicos , Microfluídica/métodos , Modelos Biológicos , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Estresse Mecânico , Doenças de von Willebrand , Fator de von Willebrand/metabolismo
17.
Blood Adv ; 2(19): 2522-2532, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30287479

RESUMO

The interaction of platelet glycoprotein Ibα (GPIbα) with von Willebrand factor (VWF) initiates hemostasis after vascular injury and also contributes to pathological thrombosis. GPIbα binding to the VWF A1 domain (VWFA1) is a target for antithrombotic intervention, but attempts to develop pharmacologic inhibitors have been hindered by the lack of animal models because of the species specificity of the interaction. To address this problem, we generated a knockin mouse with Vwf exon 28-encoding domains A1 and A2 replaced by the human homolog (VWFh28). VWFh28 mice (M1HA) were crossbred with a transgenic mouse strain expressing human GPIbα on platelets (mGPIbαnull;hGPIbαTg; H1MA) to generate a new strain (H1HA) with humanized GPIbα-VWFA1 binding. Plasma VWF levels in the latter 3 strains were similar to those of wild-type mice (M1MA). Compared with the strains that had homospecific GPIbα-VWF pairing (M1MA and H1HA), M1HA mice of those with heterospecific pairing had a markedly greater prolongation of tail bleeding time and attenuation of thrombogenesis after injury to the carotid artery than H1MA mice. Measurements of GPIbα-VWFA1 binding affinity by surface plasmon resonance agreed with the extent of observed functional defects. Ristocetin-induced platelet aggregation was similar in H1HA mouse and human platelet-rich plasma, and it was comparably inhibited by monoclonal antibody NMC-4, which is known to block human GPIbα-VWFA1 binding, which also inhibited FeCl3-induced mouse carotid artery thrombosis. Thus, the H1HA mouse strain is a fully humanized model of platelet GPIbα-VWFA1 binding that provides mechanistic and pharmacologic information relevant to human hemostatic and thrombotic disorders.


Assuntos
Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Fator de von Willebrand/metabolismo , Animais , Biomarcadores , Plaquetas/metabolismo , Cruzamentos Genéticos , Éxons , Hemostasia , Humanos , Camundongos , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Trombose/etiologia , Trombose/metabolismo , Fator de von Willebrand/química , Fator de von Willebrand/genética
18.
Platelets ; 29(8): 827-833, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30332551

RESUMO

Mutations in the GP1BA gene have been associated with platelet-type von Willebrand disease and Bernard-Soulier syndrome. Here, we report a novel GP1BA mutation in a family with autosomal dominant macrothrombocytopenia and mild bleeding. We performed analyses of seven family members. Using whole-exome sequencing of germline DNA samples, we identified a heterozygous single-nucleotide change in GP1BA (exone2:c.176T>G), encoding a p.Leu59Arg substitution in the N-terminal domain, segregating with macrothrombocytopenia. This variant has not been previously reported. We also analysed the structure of the detected sequence variant in silico. In particular, we used the crystal structure of the human platelet receptor GP Ibα N-terminal domain. Replacement of aliphatic amino-acid Leu 59 with charged, polar and larger arginine probably disrupts the protein structure. An autosomal dominant mode of inheritance, a family history of mild bleeding episodes, aggregation pattern in affected individuals together with evidence of mutation occurring in part of the GP1BA gene encoding the leucine-rich repeat region suggest a novel variant causing monoallelic Bernard-Soulier syndrome.


Assuntos
Síndrome de Bernard-Soulier/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Mutação Puntual , Síndrome de Bernard-Soulier/metabolismo , Cristalografia por Raios X , Feminino , Humanos , Masculino , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Domínios Proteicos
19.
PLoS One ; 13(9): e0203675, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30222754

RESUMO

The protein von Willebrand factor (VWF) is key for the adhesion of blood platelets to sites of vascular injury. Recent studies have shown that the release of oxidative agents during inflammation increases the platelet-tethering activity of VWF contributing to a pro-thrombotic state. This has been linked to the oxidation of methionine residues in the A1, A2 and A3 domains of VWF. The A1 domain binds to platelet surface receptors glycoprotein Ib α (GpIbα). This interaction has been shown to be inhibited under static conditions by the neighboring A2 domain. Tensile force exerted by blood flow unfolds the A2 domain normally leading to its cleavage by the metalloprotease ADAMTS13 preventing pathological thrombus formation. However, oxidizing conditions inhibit proteolysis through ADAMTS13. Here, molecular dynamics simulations tested the hypothesis whether methionine oxidation induced by inflammatory conditions favors unfolding of the A2 domain contributing to the experimentally observed activation of VWF. The results indicate that oxidation of methionine residues located near the C-terminal helix of the A2 domain reduce the force necessary to initiate unfolding. Furthermore, oxidation of methionine residues shifts the thermodynamic equilibrium of the A2 domain fold towards the denatured state. This work suggests a mechanism whereby oxidation reduces the kinetic and thermodynamic stability of the A2 domain removing its inhibitory function on the binding of the A1 domain to GpIbα.


Assuntos
Fator de von Willebrand/química , Sítios de Ligação , Cinética , Metionina/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Oxirredução , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Domínios Proteicos , Dobramento de Proteína , Termodinâmica
20.
Nat Commun ; 9(1): 1079, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540701

RESUMO

Teneurins are ancient cell-cell adhesion receptors that are vital for brain development and synapse organisation. They originated in early metazoan evolution through a horizontal gene transfer event when a bacterial YD-repeat toxin fused to a eukaryotic receptor. We present X-ray crystallography and cryo-EM structures of two Teneurins, revealing a ~200 kDa extracellular super-fold in which eight sub-domains form an intricate structure centred on a spiralling YD-repeat shell. An alternatively spliced loop, which is implicated in homophilic Teneurin interaction and specificity, is exposed and thus poised for interaction. The N-terminal side of the shell is 'plugged' via a fibronectin-plug domain combination, which defines a new class of YD proteins. Unexpectedly, we find that these proteins are widespread amongst modern bacteria, suggesting early metazoan receptor evolution from a distinct class of proteins, which today includes both bacterial proteins and eukaryotic Teneurins.


Assuntos
Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Comunicação Celular/fisiologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Estrutura Secundária de Proteína , Tenascina/química , Tenascina/genética , Tenascina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...