Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
PLoS One ; 19(7): e0306429, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38980867

RESUMO

Brucella abortus (Ba) is a pathogen that survives inside macrophages. Despite being its preferential niche, Ba infects other cells, as shown by the multiple signs and symptoms humans present. This pathogen can evade our immune system. Ba displays a mechanism of down-modulating MHC-I on monocytes/macrophages in the presence of IFN-γ (when Th1 response is triggered) without altering the total expression of MHC-I. The retained MHC-I proteins are located within the Golgi Apparatus (GA). The RNA of Ba is one of the PAMPs that trigger this phenomenon. However, we acknowledged whether this event could be triggered in other cells relevant during Ba infection. Here, we demonstrate that Ba RNA reduced the surface expression of MHC-I induced by IFN-γ in the human bronchial epithelium (Calu-6), the human alveolar epithelium (A-549) and the endothelial microvasculature (HMEC) cell lines. In Calu-6 and HMEC cells, Ba RNA induces the retention of MHC-I in the GA. This phenomenon was not observed in A-549 cells. We then evaluated the effect of Ba RNA on the secretion of IL-8, IL-6 and MCP-1, key cytokines in Ba infection. Contrary to our expectations, HMEC, Calu-6 and A-549 cells treated with Ba RNA had higher IL-8 and IL-6 levels compared to untreated cells. In addition, we showed that Ba RNA down-modulates the MHC-I surface expression induced by IFN-γ on human monocytes/macrophages via the pathway of the Epidermal Growth Factor Receptor (EGFR). So, cells were stimulated with an EGFR ligand-blocking antibody (Cetuximab) and Ba RNA. Neutralization of the EGFR to some extent reversed the down-modulation of MHC-I mediated by Ba RNA in HMEC and A-549 cells. In conclusion, this is the first study exploring a central immune evasion strategy, such as the downregulation of MHC-I surface expression, beyond monocytes and could shed light on how it persists effectively within the host, enduring unseen and escaping CD8+ T cell surveillance.


Assuntos
Brucella abortus , Células Endoteliais , Células Epiteliais , Antígenos de Histocompatibilidade Classe I , Interferon gama , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , RNA Bacteriano/genética , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/metabolismo , Brucelose/imunologia , Brucelose/metabolismo , Brucelose/microbiologia , Brucelose/genética , Complexo de Golgi/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/efeitos dos fármacos
2.
Cells ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38391929

RESUMO

In this study, we investigated the inter-organelle communication between the Golgi apparatus (GA) and mitochondria. Previous observations suggest that GA-derived vesicles containing phosphatidylinositol 4-phosphate (PI(4)P) play a role in mitochondrial fission, colocalizing with DRP1, a key protein in this process. However, the functions of these vesicles and potentially associated proteins remain unknown. GOLPH3, a PI(4)P-interacting GA protein, is elevated in various types of solid tumors, including breast cancer, yet its precise role is unclear. Interestingly, GOLPH3 levels influence mitochondrial mass by affecting cardiolipin synthesis, an exclusive mitochondrial lipid. However, the mechanism by which GOLPH3 influences mitochondria is not fully understood. Our live-cell imaging analysis showed GFP-GOLPH3 associating with PI(4)P vesicles colocalizing with YFP-DRP1 at mitochondrial fission sites. We tested the functional significance of these observations with GOLPH3 knockout in MDA-MB-231 cells of breast cancer, resulting in a fragmented mitochondrial network and reduced bioenergetic function, including decreased mitochondrial ATP production, mitochondrial membrane potential, and oxygen consumption. Our findings suggest a potential negative regulatory role for GOLPH3 in mitochondrial fission, impacting mitochondrial function and providing insights into GA-mitochondria communication.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Células MDA-MB-231 , Dinâmica Mitocondrial , Complexo de Golgi/metabolismo , Metabolismo Energético , Proteínas de Membrana/metabolismo
3.
Trends Plant Sci ; 29(6): 607-609, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38135605

RESUMO

Fluctuations in temperature severely impact crop yield and trigger various plant response mechanisms. In a recent study, Zhou et al. discovered a non-canonical role of autophagy in mediating Golgi apparatus restoration after short-term heat stress (HS). Their results further suggest a critical, yet previously unknown, mechanism of autophagy-related (ATG)-8 in Golgi reassembly after HS.


Assuntos
Autofagia , Complexo de Golgi , Resposta ao Choque Térmico , Complexo de Golgi/metabolismo , Complexo de Golgi/fisiologia , Autofagia/fisiologia , Resposta ao Choque Térmico/fisiologia , Temperatura Alta
4.
Cell Rep ; 42(4): 112306, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36972172

RESUMO

STING is an endoplasmic reticulum-resident protein regulating innate immunity. After binding with cyclic guanosine monophosphate-AMP (cGAMP), STING translocates from the endoplasmic reticulum (ER) to the Golgi apparatus to stimulate TBK1 and IRF3 activation, leading to expression of type I interferon. However, the exact mechanism concerning STING activation remains largely enigmatic. Here, we identify tripartite motif 10 (TRIM10) as a positive regulator of STING signaling. TRIM10-deficient macrophages exhibit reduced type I interferon production upon double-stranded DNA (dsDNA) or cGAMP stimulation and decreased resistance to herpes simplex virus 1 (HSV-1) infection. Additionally, TRIM10-deficient mice are more susceptible to HSV-1 infection and exhibit faster melanoma growth. Mechanistically, TRIM10 associates with STING and catalyzes K27- and K29-linked polyubiquitination of STING at K289 and K370, which promotes STING trafficking from the ER to the Golgi apparatus, formation of STING aggregates, and recruitment of TBK1 to STING, ultimately enhancing the STING-dependent type I interferon response. Our study defines TRIM10 as a critical activator in cGAS-STING-mediated antiviral and antitumor immunity.


Assuntos
Herpes Simples , Interferon Tipo I , Animais , Camundongos , DNA , Complexo de Golgi/metabolismo , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina , Ubiquitina-Proteína Ligases
5.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36260296

RESUMO

Post-endocytic recycling in yeast has been posited to transit solely through the Golgi, raising the possibility that yeast lack early endosomes. In this issue, Laidlaw and colleagues (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202109137) describe a yeast endosomal recycling pathway that gives proteins a second chance to return to the plasma membrane.


Assuntos
Endossomos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Transporte Biológico , Membrana Celular/metabolismo
6.
Int J Mol Sci ; 23(18)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142273

RESUMO

Glycolipid glycosylation is an intricate process that mainly takes place in the Golgi by the complex interplay between glycosyltransferases. Several features such as the organization, stoichiometry and composition of these complexes may modify their sorting properties, sub-Golgi localization, enzymatic activity and in consequence, the pattern of glycosylation at the plasma membrane. In spite of the advance in our comprehension about physiological and pathological cellular states of glycosylation, the molecular basis underlying the metabolism of glycolipids and the players involved in this process remain not fully understood. In the present work, using biochemical and fluorescence microscopy approaches, we demonstrate the existence of a physical association between two ganglioside glycosyltransferases, namely, ST3Gal-II (GD1a synthase) and ß3GalT-IV (GM1 synthase) with Golgi phosphoprotein 3 (GOLPH3) in mammalian cultured cells. After GOLPH3 knockdown, the localization of both enzymes was not affected, but the fomation of ST3Gal-II/ß3GalT-IV complex was compromised and glycolipid expression pattern changed. Our results suggest a novel control mechanism of glycolipid expression through the regulation of the physical association between glycolipid glycosyltransferases mediated by GOLPH3.


Assuntos
Glicolipídeos , Glicosiltransferases , Animais , Gangliosídeo G(M1)/metabolismo , Gangliosídeos/metabolismo , Glicolipídeos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Mamíferos/metabolismo , Fosfoproteínas/metabolismo
7.
J Biol Chem ; 298(8): 102172, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753347

RESUMO

One of the hallmarks of Alzheimer's disease is the accumulation of toxic amyloid-ß (Aß) peptides in extracellular plaques. The direct precursor of Aß is the carboxyl-terminal fragment ß (or C99) of the amyloid precursor protein (APP). C99 is detected at elevated levels in Alzheimer's disease brains, and its intracellular accumulation has been linked to early neurotoxicity independently of Aß. Despite this, the causes of increased C99 levels are poorly understood. Here, we demonstrate that APP interacts with the clathrin vesicle adaptor AP-1 (adaptor protein 1), and we map the interaction sites on both proteins. Using quantitative kinetic trafficking assays, established cell lines and primary neurons, we also show that this interaction is required for the transport of APP from the trans-Golgi network to endosomes. In addition, disrupting AP-1-mediated transport of APP alters APP processing and degradation, ultimately leading to increased C99 production and Aß release. Our results indicate that AP-1 regulates the subcellular distribution of APP, altering its processing into neurotoxic fragments.


Assuntos
Doença de Alzheimer , Amiloidose , Complexo de Golgi , Síndromes Neurotóxicas , Proteínas Adaptadoras de Transporte Vesicular , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Complexo de Golgi/metabolismo , Humanos , Fator de Transcrição AP-1/genética
8.
Cells ; 11(8)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455998

RESUMO

Neurons are highly polarized cells requiring precise regulation of trafficking and targeting of membrane proteins to generate and maintain different and specialized compartments, such as axons and dendrites. Disruption of the Golgi apparatus (GA) secretory pathway in developing neurons alters axon/dendritic formation. Therefore, detailed knowledge of the mechanisms underlying vesicles exiting from the GA is crucial for understanding neuronal polarity. In this study, we analyzed the role of Brefeldin A-Ribosylated Substrate (CtBP1-S/BARS), a member of the C-terminal-binding protein family, in the regulation of neuronal morphological polarization and the exit of membrane proteins from the Trans Golgi Network. Here, we show that BARS is expressed during neuronal development in vitro and that RNAi suppression of BARS inhibits axonal and dendritic elongation in hippocampal neuronal cultures as well as largely perturbed neuronal migration and multipolar-to-bipolar transition during cortical development in situ. In addition, using plasma membrane (PM) proteins fused to GFP and engineered with reversible aggregation domains, we observed that expression of fission dominant-negative BARS delays the exit of dendritic and axonal membrane protein-containing carriers from the GA. Taken together, these data provide the first set of evidence suggesting a role for BARS in neuronal development by regulating post-Golgi membrane trafficking.


Assuntos
Complexo de Golgi , Neurônios , Axônios/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Rede trans-Golgi/metabolismo
9.
J Eukaryot Microbiol ; 69(6): e12893, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148450

RESUMO

Giardia intestinalis has unique characteristics, even in the absence of certain organelles. For instance, Golgi and mitochondria are not found. On the other hand, there is a network of peripheral vacuoles (PVs) and mitosomes. The endoplasmic reticulum (ER), nuclear membrane, peroxisomes, and lipid bodies are present. The peripheral vacuole system seems to play several simultaneous roles. It is involved in the endocytic activity of the trophozoite but also has characteristics of early and late endosomes and even lysosomes, establishing a connection with the ER. Some of the PVs contain small vesicles, acting as multivesicular bodies, including the release of exosomes. The mitosomes are surrounded by two membranes, divide during mitosis, and are distributed throughout the cell. They do not contain DNA, enzymes involved in the citric acid cycle, respiratory chain, or ATP synthesis. However, they contain the iron-sulfur complex and transporters as TOM and TIM. Some mitosomes are linked to flagellar axonemes through a fibrillar connection. During encystation, two types of larger cytoplasmic vesicles appear. One originating from the ER contains the cyst wall proteins. Another contains carbohydrates. Both migrate to the cell periphery and fuse with plasma membrane secreting their contents to give rise to the cell wall.


Assuntos
Giardia lamblia , Animais , Giardia lamblia/genética , Trofozoítos/metabolismo , Complexo de Golgi , Retículo Endoplasmático/metabolismo , Mitocôndrias
10.
FEBS Lett ; 596(8): 973-990, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35099811

RESUMO

The classical secretory pathway is the key membrane-based delivery system in eukaryotic cells. Several families of proteins involved in the secretory pathway, with functionalities going from cargo sorting receptors to the maintenance and dynamics of secretory organelles, share soluble globular domains predicted to mediate protein-protein interactions. One of them is the 'Golgi Dynamics' (GOLD) domain, named after its strong association with the Golgi apparatus. There are many GOLD-containing protein families, such as the transmembrane emp24 domain-containing proteins (TMED/p24 family), animal SEC14-like proteins, human Golgi resident protein ACBD3, a splice variant of TICAM2 called TRAM with GOLD domain, and FYCO1. Here, we critically review the state-of-the-art knowledge of the structures and functions of the main representatives of GOLD-containing proteins in vertebrates. We provide the first unified description of the GOLD domain structure across different families since the first high-resolution structure was determined. With a brand-new update on the definition of the GOLD domain, we also discuss how its tertiary structure fits the ß-sandwich-like fold map and give exciting new directions for forthcoming studies.


Assuntos
Fenômenos Fisiológicos Celulares , Complexo de Golgi , Animais , Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Domínios Proteicos , Transporte Proteico/fisiologia
11.
Traffic ; 23(3): 174-187, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35075729

RESUMO

The endoplasmic reticulum (ER)-to-Golgi intermediate compartment (ERGIC) is a membranous organelle that mediates protein transport between the ER and the Golgi apparatus. In neurons, clusters of these vesiculotubular structures are situated throughout the cell in proximity to the ER, passing cargo to the cis-Golgi cisternae, located mainly in the perinuclear region. Although ERGIC markers have been identified in neurons, the distribution and dynamics of neuronal ERGIC structures have not been characterized yet. Here, we show that long-distance ERGIC transport occurs via an intermittent mechanism in dendrites, with mobile elements moving between stationary structures. Slow and fast live-cell imaging have captured stable ERGIC structures remaining in place over long periods of time, as well as mobile ERGIC structures advancing very short distances along dendrites. These short distances have been consistent with the lengths between the stationary ERGIC structures. Kymography revealed ERGIC elements that moved intermittently, emerging from and fusing with stationary ERGIC structures. Interestingly, this movement apparently depends not only on the integrity of the microtubule cytoskeleton, as previously reported, but on the actin cytoskeleton as well. Our results indicate that the dendritic ERGIC has a dual nature, with both stationary and mobile structures. The neural ERGIC network transports proteins via a stop-and-go movement in which both the microtubule and the actin cytoskeletons participate.


Assuntos
Retículo Endoplasmático , Complexo de Golgi , Citoesqueleto de Actina/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Transporte Proteico/fisiologia
12.
J Virol ; 96(4): e0200521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878889

RESUMO

Birnaviruses are members of the Birnaviridae family, responsible for major economic losses to poultry and aquaculture. The family is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome. Infectious bursal disease virus (IBDV), the prototypic family member, is the etiological agent of Gumboro disease, a highly contagious immunosuppressive disease in the poultry industry worldwide. We previously demonstrated that IBDV hijacks the endocytic pathway for establishing the viral replication complexes on endosomes associated with the Golgi complex (GC). Here, we report that IBDV reorganizes the GC to localize the endosome-associated replication complexes without affecting its secretory functionality. By analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b for viral replication. Rab1b comprises a key regulator of GC transport and we demonstrate that transfecting the negative mutant Rab1b N121I or knocking down Rab1b expression by RNA interference significantly reduces the yield of infectious viral progeny. Furthermore, we showed that the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), which activates the small GTPase ADP ribosylation factor 1 (ARF1), is required for IBDV replication, since inhibiting its activity by treatment with brefeldin A (BFA) or golgicide A (GCA) significantly reduces the yield of infectious viral progeny. Finally, we show that ARF1 dominant negative mutant T31N overexpression hampered IBDV infection. Taken together, these results demonstrate that IBDV requires the function of the Rab1b-GBF1-ARF1 axis to promote its replication, making a substantial contribution to the field of birnavirus-host cell interactions. IMPORTANCE Birnaviruses are unconventional members of the dsRNA viruses, with the lack of a transcriptionally active core being the main differential feature. This structural trait, among others that resemble those of the plus single-stranded (+ssRNA) viruses features, suggests that birnaviruses might follow a different replication program from that conducted by prototypical dsRNA members and the hypothesis that birnaviruses could be evolutionary links between +ssRNA and dsRNA viruses has been argued. Here, we present original data showing that IBDV-induced GC reorganization and the cross talk between IBDV and the Rab1b-GBF1-ARF1 mediate the intracellular trafficking pathway. The replication of several +ssRNA viruses depends on the cellular protein GBF1, but its role in the replication process is not clear. Thus, our findings make a substantial contribution to the field of birnavirus-host cell interactions and provide further evidence supporting the proposed evolutionary connection role of birnaviruses, an aspect which we consider especially relevant for researchers working in the virology field.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Vírus da Doença Infecciosa da Bursa/fisiologia , Via Secretória/fisiologia , Replicação Viral/fisiologia , Proteínas rab1 de Ligação ao GTP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Animais , Brefeldina A/farmacologia , Linhagem Celular , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Piridinas/farmacologia , Quinolinas/farmacologia , Via Secretória/efeitos dos fármacos , Compartimentos de Replicação Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Proteínas rab1 de Ligação ao GTP/genética
13.
Int J Biol Macromol ; 194: 264-275, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861272

RESUMO

The Golgi complex is an essential organelle of the eukaryotic exocytic pathway. A subfamily of Golgi matrix proteins, called GRASPs, is central in stress-induced unconventional secretion, Golgi dynamics during mitosis/apoptosis, and Golgi ribbon formation. The Golgi ribbon is vertebrate-specific and correlates with the appearance of two GRASP paralogues and two Golgins (GM130/Golgin45), which form specific GRASP-Golgin pairs. The molecular details of their appearance only in Metazoans are unknown. Moreover, despite new functionalities supported by GRASP paralogy, little is known about their structural and evolutionary differences. Here, we used ancestor sequence reconstruction and biophysical/biochemical approaches to assess the evolution of GRASPs structure/dynamics, fibrillation, and how they started anchoring their Golgin partners. Our data showed that a GRASP ancestor anchored Golgins before gorasp gene duplication in Metazoans. After gene duplication, variations within the GRASP binding pocket determined which paralogue would recruit which Golgin. These interactions are responsible for their specific Golgi location and Golgi ribbon appearance. We also suggest that GRASPs have a long-standing capacity to form supramolecular structures, affecting their participation in stress-induced processes.


Assuntos
Complexo de Golgi/fisiologia , Proteínas da Matriz do Complexo de Golgi/metabolismo , Estresse Fisiológico , Sequência de Aminoácidos , Proteínas da Matriz do Complexo de Golgi/química , Proteínas da Matriz do Complexo de Golgi/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica , Transporte Proteico , Relação Estrutura-Atividade , Termodinâmica
14.
Biochimie ; 192: 72-82, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34634369

RESUMO

The transmembrane emp24 domain-containing (TMED) proteins, also called p24 proteins, are members of a family of sorting receptors present in all representatives of the Eukarya and abundantly present in all subcompartments of the early secretory pathway, namely the endoplasmic reticulum (ER), the Golgi, and the intermediate compartment. Although essential during the bidirectional transport between the ER and the Golgi, there is still a lack of information regarding the TMED's structure across different subfamilies. Besides, although the presence of a TMED homo-oligomerization was suggested previously based on crystallographic contacts observed for the isolated Golgi Dynamics (GOLD) domain, no further analyses of its presence in solution were done. Here, we describe the first high-resolution structure of a TMED1 GOLD representative and its biophysical characterization in solution. The crystal structure showed a dimer formation that is also present in solution in a salt-dependent manner, suggesting that the GOLD domain can form homodimers in solution even in the absence of the TMED1 coiled-coil region. A molecular dynamics description of the dimer stabilization, with a phylogenetic analysis of the residues important for the oligomerization and a model for the orientation towards the lipid membrane, are also presented.


Assuntos
Complexo de Golgi/química , Simulação de Acoplamento Molecular , Filogenia , Proteínas de Transporte Vesicular/química , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Domínios Proteicos , Termodinâmica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Sci Rep ; 11(1): 23489, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873243

RESUMO

The stress of the Golgi apparatus is an autoregulatory mechanism that is induced to compensate for greater demand in the Golgi functions. No examples of Golgi stress responses due to physiological stimuli are known. Furthermore, the impact on this organelle of viral infections that occupy the vesicular transport during replication is unknown. In this work, we evaluated if a Golgi stress response is triggered during dengue and Zika viruses replication, two flaviviruses whose replicative cycle is heavily involved with the Golgi complex, in vertebrate and mosquito cells. Using GM-130 as a Golgi marker, and treatment with monensin as a positive control for the induction of the Golgi stress response, a significant expansion of the Golgi cisternae was observed in BHK-21, Vero E6 and mosquito cells infected with either virus. Activation of the TFE3 pathway was observed in the infected cells as indicated by the translocation from the cytoplasm to the nucleus of TFE3 and increased expression of pathway targeted genes. Of note, no sign of activation of the stress response was observed in CRFK cells infected with Feline Calicivirus (FCV), a virus released by cell lysis, not requiring vesicular transport. Finally, dilatation of the Golgi complex and translocation of TFE3 was observed in vertebrate cells expressing dengue and Zika viruses NS1, but not NS3. These results indicated that infections by dengue and Zika viruses induce a Golgi stress response in vertebrate and mosquito cells due to the increased demand on the Golgi complex imposed by virion and NS1 processing and secretion.


Assuntos
Culicidae/virologia , Infecções por Flavivirus/virologia , Flavivirus/genética , Complexo de Golgi/virologia , Vertebrados/virologia , Animais , Células Cultivadas , Chlorocebus aethiops , Mesocricetus , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral/genética
16.
Biophys Chem ; 279: 106690, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34600312

RESUMO

GRASP55 is a myristoylated protein localized in the medial/trans-Golgi faces and involved in the Golgi structure maintenance and the regulation of unconventional secretion pathways. It is believed that GRASP55 achieves its main functionalities in the Golgi organization by acting as a tethering factor. When bound to the lipid bilayer, its orientation relative to the membrane surface is restricted to determine its proper trans-oligomerization. Despite the paramount role of myristoylation in GRASP function, the impact of such protein modification on the membrane-anchoring properties and the structural organization of GRASP remains elusive. Here, an optimized protocol for the myristoylation in E. coli of the membrane-anchoring domain of GRASP55 is presented. The biophysical properties of the myristoylated/non-myristoylated GRASP55 GRASP domain were characterized in a membrane-mimicking micellar environment. Although myristoylation did not cause any impact on the protein's secondary structure, according to our circular dichroism data, it had a significant impact on the protein's thermal stability and solubility. Electrophoresis of negatively charged liposomes incubated with the two GRASP55 constructions showed different electrophoretic mobility for the myristoylated anchored protein only, thus demonstrating that myristoylation is essential for the biological membrane anchoring. Molecular dynamics simulations were used to further explore the anchoring process in determining the restricted orientation of GRASPs in the membrane.


Assuntos
Escherichia coli , Proteínas de Membrana , Escherichia coli/metabolismo , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química
17.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34241635

RESUMO

Here we introduce zapalog-mediated endoplasmic reticulum trap (zapERtrap), which allows one to use light to precisely trigger forward trafficking of diverse integral membrane proteins from internal secretory organelles to the cell surface with single cell and subcellular spatial resolution. To demonstrate its utility, we use zapERtrap in neurons to dissect where synaptic proteins emerge at the cell surface when processed through central (cell body) or remote (dendrites) secretory pathways. We reveal rapid and direct long-range trafficking of centrally processed proteins deep into the dendritic arbor to synaptic sites. Select proteins were also trafficked to the plasma membrane of the axon initial segment, revealing a novel surface trafficking hotspot. Proteins locally processed through dendritic secretory networks were widely dispersed before surface insertion, challenging assumptions for precise trafficking at remote sites. These experiments provide new insights into compartmentalized secretory trafficking and showcase the tunability and spatiotemporal control of zapERtrap, which will have broad applications for regulating cell signaling and function.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Neurônios/metabolismo , Via Secretória/genética , Sinapses/metabolismo , Transmissão Sináptica/genética , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Membrana Celular/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Feminino , Corantes Fluorescentes/química , Expressão Gênica , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Hipocampo/citologia , Hipocampo/metabolismo , Luz , Masculino , Imagem Molecular/métodos , Neurônios/citologia , Cultura Primária de Células , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/ultraestrutura , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
18.
Sci Rep ; 11(1): 12483, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127736

RESUMO

Golgi phosphoprotein 3 (GOLPH3) was the first reported oncoprotein of the Golgi apparatus. It was identified as an evolutionarily conserved protein upon its discovery about 20 years ago, but its function remains puzzling in normal and cancer cells. The GOLPH3 gene is part of a group of genes that also includes the GOLPH3L gene. Because cancer has deep roots in multicellular evolution, studying the evolution of the GOLPH3 gene family in non-model species represents an opportunity to identify new model systems that could help better understand the biology behind this group of genes. The main goal of this study is to explore the evolution of the GOLPH3 gene family in birds as a starting point to understand the evolutionary history of this oncoprotein. We identified a repertoire of three GOLPH3 genes in birds. We found duplicated copies of the GOLPH3 gene in all main groups of birds other than paleognaths, and a single copy of the GOLPH3L gene. We suggest there were at least three independent origins for GOLPH3 duplicates. Amino acid divergence estimates show that most of the variation is located in the N-terminal region of the protein. Our transcript abundance estimations show that one paralog is highly and ubiquitously expressed, and the others were variable. Our results are an example of the significance of understanding the evolution of the GOLPH3 gene family, especially for unraveling its structural and functional attributes.


Assuntos
Aves/genética , Evolução Molecular , Complexo de Golgi/genética , Proteínas de Membrana/genética , Proteínas Oncogênicas/genética , Sequência de Aminoácidos/genética , Animais , Carcinogênese/genética , Duplicação Gênica , Humanos , Neoplasias/genética , Fosfoproteínas/genética , Alinhamento de Sequência
19.
Clin Transl Oncol ; 23(11): 2195-2205, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34101128

RESUMO

The Coatomer protein complex subunit beta 2 (COPB2) is involved in the formation of the COPI coatomer protein complex and is responsible for the transport of vesicles between the Golgi apparatus and the endoplasmic reticulum. It plays an important role in maintaining the integrity of these cellular organelles, as well as in maintaining cell homeostasis. More importantly, COPB2 plays key roles in embryonic development and tumor progression. COPB2 is regarded as a vital oncogene in several cancer types and has been implicated in tumor cell proliferation, survival, invasion, and metastasis. Here, we summarize the current knowledge on the roles of COPB2 in cancer development and progression in the context of the hallmarks of cancer.


Assuntos
Proteína Coatomer/fisiologia , Neoplasias/etiologia , Animais , Apoptose/genética , Apoptose/fisiologia , Morte Celular Autofágica/fisiologia , Ciclo Celular/fisiologia , Proliferação de Células/genética , Sobrevivência Celular/genética , Proteína Coatomer/genética , Modelos Animais de Doenças , Progressão da Doença , Desenvolvimento Embrionário , Retículo Endoplasmático/fisiologia , Complexo de Golgi/fisiologia , Homeostase , Humanos , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/fisiopatologia , Metástase Neoplásica/genética , Metástase Neoplásica/fisiopatologia , Neoplasias/patologia , Vesículas Transportadoras/fisiologia
20.
Biol Cell ; 113(10): 419-437, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34021618

RESUMO

BACKGROUND INFORMATION: The endo-lysosomal system (ELS) comprises a set of membranous organelles responsible for transporting intracellular and extracellular components within cells. Defects in lysosomal proteins usually affect a large variety of processes and underlie many diseases, most of them with a strong neuronal impact. Mutations in the endoplasmic reticulum-resident CLN8 protein cause CLN8 disease. This condition is one of the 14 known neuronal ceroid lipofuscinoses (NCLs), a group of inherited diseases characterised by accumulation of lipofuscin-like pigments within lysosomes. Besides mediating the transport of soluble lysosomal proteins, recent research suggested a role for CLN8 in the transport of vesicles and lipids, and autophagy. However, the consequences of CLN8 deficiency on ELS structure and activity, as well as the potential impact on neuronal development, remain poorly characterised. Therefore, we performed CLN8 knockdown in neuronal and non-neuronal cell models to analyse structural, dynamic and functional changes in the ELS and to assess the impact of CLN8 deficiency on axodendritic development. RESULTS: CLN8 knockdown increased the size of the Golgi apparatus, the number of mobile vesicles and the speed of endo-lysosomes. Using the fluorescent fusion protein mApple-LAMP1-pHluorin, we detected significant lysosomal alkalisation in CLN8-deficient cells. In turn, experiments in primary rat hippocampal neurons showed that CLN8 deficiency decreased the complexity and size of the somatodendritic compartment. CONCLUSIONS: Our results suggest the participation of CLN8 in vesicular distribution, lysosomal pH and normal development of the dendritic tree. We speculate that the defects triggered by CLN8 deficiency on ELS structure and dynamics underlie morphological alterations in neurons, which ultimately lead to the characteristic neurodegeneration observed in this NCL. SIGNIFICANCE: This is, to our knowledge, the first characterisation of the effects of CLN8 dysfunction on the structure and dynamics of the ELS. Moreover, our findings suggest a novel role for CLN8 in somatodendritic development, which may account at least in part for the neuropathological manifestations associated with CLN8 disease.


Assuntos
Lipofuscinoses Ceroides Neuronais , Animais , Retículo Endoplasmático , Complexo de Golgi , Lisossomos , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA