Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.978
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732034

RESUMO

Photosystem I (PS I) is a photosynthetic pigment-protein complex that absorbs light and uses the absorbed energy to initiate electron transfer. Electron transfer has been shown to occur concurrently along two (A- and B-) branches of reaction center (RC) cofactors. The electron transfer chain originates from a special pair of chlorophyll a molecules (P700), followed by two chlorophylls and one phylloquinone in each branch (denoted as A-1, A0, A1, respectively), converging in a single iron-sulfur complex Fx. While there is a consensus that the ultimate electron donor-acceptor pair is P700+A0-, the involvement of A-1 in electron transfer, as well as the mechanism of the very first step in the charge separation sequence, has been under debate. To resolve this question, multiple groups have targeted electron transfer cofactors by site-directed mutations. In this work, the peripheral hydrogen bonds to keto groups of A0 chlorophylls have been disrupted by mutagenesis. Four mutants were generated: PsaA-Y692F; PsaB-Y667F; PsaB-Y667A; and a double mutant PsaA-Y692F/PsaB-Y667F. Contrary to expectations, but in agreement with density functional theory modeling, the removal of the hydrogen bond by Tyr → Phe substitution was found to have a negligible effect on redox potentials and optical absorption spectra of respective chlorophylls. In contrast, Tyr → Ala substitution was shown to have a fatal effect on the PS I function. It is thus inferred that PsaA-Y692 and PsaB-Y667 residues have primarily structural significance, and their ability to coordinate respective chlorophylls in electron transfer via hydrogen bond plays a minor role.


Assuntos
Clorofila , Ligação de Hidrogênio , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/genética , Clorofila/metabolismo , Clorofila/química , Transporte de Elétrons , Elétrons , Modelos Moleculares , Mutação
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732056

RESUMO

The involvement of the second pair of chlorophylls, termed A-1A and A-1B, in light-induced electron transfer in photosystem I (PSI) is currently debated. Asparagines at PsaA600 and PsaB582 are involved in coordinating the A-1B and A-1A pigments, respectively. Here we have mutated these asparagine residues to methionine in two single mutants and a double mutant in PSI from Synechocystis sp. PCC 6803, which we term NA600M, NB582M, and NA600M/NB582M mutants. (P700+-P700) FTIR difference spectra (DS) at 293 K were obtained for the wild-type and the three mutant PSI samples. The wild-type and mutant FTIR DS differ considerably. This difference indicates that the observed changes in the (P700+-P700) FTIR DS cannot be due to only the PA and PB pigments of P700. Comparison of the wild-type and mutant FTIR DS allows the assignment of different features to both A-1 pigments in the FTIR DS for wild-type PSI and assesses how these features shift upon cation formation and upon mutation. While the exact role the A-1 pigments play in the species we call P700 is unclear, we demonstrate that the vibrational modes of the A-1A and A-1B pigments are modified upon P700+ formation. Previously, we showed that the A-1 pigments contribute to P700 in green algae. In this manuscript, we demonstrate that this is also the case in cyanobacterial PSI. The nature of the mutation-induced changes in algal and cyanobacterial PSI is similar and can be considered within the same framework, suggesting a universality in the nature of P700 in different photosynthetic organisms.


Assuntos
Mutação , Complexo de Proteína do Fotossistema I , Synechocystis , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/genética , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Synechocystis/genética , Synechocystis/metabolismo , Clorofila/metabolismo , Transporte de Elétrons/genética , Clorofila A/metabolismo
3.
Commun Biol ; 7(1): 560, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734819

RESUMO

Photosynthetic cryptophytes are eukaryotic algae that utilize membrane-embedded chlorophyll a/c binding proteins (CACs) and lumen-localized phycobiliproteins (PBPs) as their light-harvesting antennae. Cryptophytes go through logarithmic and stationary growth phases, and may adjust their light-harvesting capability according to their particular growth state. How cryptophytes change the type/arrangement of the photosynthetic antenna proteins to regulate their light-harvesting remains unknown. Here we solve four structures of cryptophyte photosystem I (PSI) bound with CACs that show the rearrangement of CACs at different growth phases. We identify a cryptophyte-unique protein, PsaQ, which harbors two chlorophyll molecules. PsaQ specifically binds to the lumenal region of PSI during logarithmic growth phase and may assist the association of PBPs with photosystems and energy transfer from PBPs to photosystems.


Assuntos
Criptófitas , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Criptófitas/metabolismo , Criptófitas/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Proteínas de Ligação à Clorofila/genética , Fotossíntese , Ficobiliproteínas/metabolismo , Ficobiliproteínas/genética
5.
Plant Cell Physiol ; 65(4): 644-656, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591346

RESUMO

The function of ascorbate peroxidase-related (APX-R) proteins, present in all green photosynthetic eukaryotes, remains unclear. This study focuses on APX-R from Chlamydomonas reinhardtii, namely, ascorbate peroxidase 2 (APX2). We showed that apx2 mutants exhibited a faster oxidation of the photosystem I primary electron donor, P700, upon sudden light increase and a slower re-reduction rate compared to the wild type, pointing to a limitation of plastocyanin. Spectroscopic, proteomic and immunoblot analyses confirmed that the phenotype was a result of lower levels of plastocyanin in the apx2 mutants. The redox state of P700 did not differ between wild type and apx2 mutants when the loss of function in plastocyanin was nutritionally complemented by growing apx2 mutants under copper deficiency. In this case, cytochrome c6 functionally replaces plastocyanin, confirming that lower levels of plastocyanin were the primary defect caused by the absence of APX2. Overall, the results presented here shed light on an unexpected regulation of plastocyanin level under copper-replete conditions, induced by APX2 in Chlamydomonas.


Assuntos
Ascorbato Peroxidases , Chlamydomonas reinhardtii , Mutação , Plastocianina , Plastocianina/metabolismo , Plastocianina/genética , Ascorbato Peroxidases/metabolismo , Ascorbato Peroxidases/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Cobre/metabolismo , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citocromos c6/metabolismo , Citocromos c6/genética , Proteômica/métodos , Luz
6.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612659

RESUMO

Photosystem I (PSI) is one of the two main pigment-protein complexes where the primary steps of oxygenic photosynthesis take place. This review describes low-temperature frequency-domain experiments (absorption, emission, circular dichroism, resonant and non-resonant hole-burned spectra) and modeling efforts reported for PSI in recent years. In particular, we focus on the spectral hole-burning studies, which are not as common in photosynthesis research as the time-domain spectroscopies. Experimental and modeling data obtained for trimeric cyanobacterial Photosystem I (PSI3), PSI3 mutants, and PSI3-IsiA18 supercomplexes are analyzed to provide a more comprehensive understanding of their excitonic structure and excitation energy transfer (EET) processes. Detailed information on the excitonic structure of photosynthetic complexes is essential to determine the structure-function relationship. We will focus on the so-called "red antenna states" of cyanobacterial PSI, as these states play an important role in photochemical processes and EET pathways. The high-resolution data and modeling studies presented here provide additional information on the energetics of the lowest energy states and their chlorophyll (Chl) compositions, as well as the EET pathways and how they are altered by mutations. We present evidence that the low-energy traps observed in PSI are excitonically coupled states with significant charge-transfer (CT) character. The analysis presented for various optical spectra of PSI3 and PSI3-IsiA18 supercomplexes allowed us to make inferences about EET from the IsiA18 ring to the PSI3 core and demonstrate that the number of entry points varies between sample preparations studied by different groups. In our most recent samples, there most likely are three entry points for EET from the IsiA18 ring per the PSI core monomer, with two of these entry points likely being located next to each other. Therefore, there are nine entry points from the IsiA18 ring to the PSI3 trimer. We anticipate that the data discussed below will stimulate further research in this area, providing even more insight into the structure-based models of these important cyanobacterial photosystems.


Assuntos
Clorofila , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/genética , Dicroísmo Circular , Transferência de Energia , Temperatura Baixa
7.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612934

RESUMO

We establish a general kinetic scheme for the energy transfer and radical-pair dynamics in photosystem I (PSI) of Chlamydomonas reinhardtii, Synechocystis PCC6803, Thermosynechococcus elongatus and Spirulina platensis grown under white-light conditions. With the help of simultaneous target analysis of transient-absorption data sets measured with two selective excitations, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described as a Bulk Chl a in equilibrium with a higher-energy Chl a, one or two Red Chl a and a reaction-center compartment (WL-RC). Three radical pairs (RPs) have been resolved with very similar properties in the four model organisms. The charge separation is virtually irreversible with a rate of ≈900 ns-1. The second rate, of RP1 → RP2, ranges from 70-90 ns-1 and the third rate, of RP2 → RP3, is ≈30 ns-1. Since RP1 and the Red Chl a are simultaneously present, resolving the RP1 properties is challenging. In Chlamydomonas reinhardtii, the excited WL-RC and Bulk Chl a compartments equilibrate with a lifetime of ≈0.28 ps, whereas the Red and the Bulk Chl a compartments equilibrate with a lifetime of ≈2.65 ps. We present a description of the thermodynamic properties of the model organisms at room temperature.


Assuntos
Chlamydomonas reinhardtii , Complexo de Proteína do Fotossistema I , Clorofila A , Transferência de Energia , Cinética
8.
J Phys Chem B ; 128(11): 2664-2674, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38456814

RESUMO

In the development of single-molecule spectroscopy, the simultaneous detection of the excitation and emission spectra has been limited. The fluorescence excitation spectrum based on background-free signals is compatible with the fluorescence-emission-based detection of single molecules and can provide insight into the variations in the input energy of the different terminal emitters. Here, we implement single-molecule excitation-emission spectroscopy (SMEES) for photosystem I (PSI) via a cryogenic optical microscope. To this end, we extended our line-focus-based excitation-spectral microscope system to the cryogenic temperature-compatible version. PSI is one of the two photosystems embedded in the thylakoid membrane in oxygen-free photosynthetic organisms. PSI plays an essential role in electron transfer in the photosynthesis reaction. PSIs of many organisms contain a few red-shifted chlorophylls (Chls) with much lower excitation energies than ordinary antenna Chls. The fluorescence emission spectrum originates primarily from the red-shifted Chls, whereas the excitation spectrum is sensitive to the antenna Chls that are upstream of red-shifted Chls. Using SMEES, we obtained the inclining two-dimensional excitation-emission matrix (2D-EEM) of PSI particles isolated from a cyanobacterium, Thermosynechococcus vestitus (equivalent to elongatus), at about 80 K. Interestingly, by decomposing the inclining 2D-EEMs within time course observation, we found prominent variations in the excitation spectra of the red-shifted Chl pools with different emission wavelengths, strongly indicating the variable excitation energy transfer (EET) pathway from the antenna to the terminal emitting pools. SMEES helps us to directly gain information about the antenna system, which is fundamental to depicting the EET within pigment-protein complexes.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/química , Imagem Individual de Molécula , Espectrometria de Fluorescência , Cianobactérias/química , Temperatura , Clorofila/química
9.
Plant Cell Environ ; 47(6): 2240-2257, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482712

RESUMO

Plants have evolved multiple regulatory mechanisms to cope with natural light fluctuations. The interplay between these mechanisms leads presumably to the resilience of plants in diverse light patterns. We investigated the energy-dependent nonphotochemical quenching (qE) and cyclic electron transports (CET) in light that oscillated with a 60-s period with three different amplitudes. The photosystem I (PSI) and photosystem II (PSII) function-related quantum yields and redox changes of plastocyanin and ferredoxin were measured in Arabidopsis thaliana wild types and mutants with partial defects in qE or CET. The decrease in quantum yield of qE due to the lack of either PsbS- or violaxanthin de-epoxidase was compensated by an increase in the quantum yield of the constitutive nonphotochemical quenching. The mutant lacking NAD(P)H dehydrogenase (NDH)-like-dependent CET had a transient significant PSI acceptor side limitation during the light rising phase under high amplitude of light oscillations. The mutant lacking PGR5/PGRL1-CET restricted electron flows and failed to induce effective photosynthesis control, regardless of oscillation amplitudes. This suggests that PGR5/PGRL1-CET is important for the regulation of PSI function in various amplitudes of light oscillation, while NDH-like-CET acts' as a safety valve under fluctuating light with high amplitude. The results also bespeak interplays among multiple photosynthetic regulatory mechanisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Luz , Proteínas de Membrana , Fotossíntese , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Transporte de Elétrons , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ferredoxinas/metabolismo , Mutação , Oxirredução , Plastocianina/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética
11.
Proc Natl Acad Sci U S A ; 121(11): e2319658121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442179

RESUMO

Light-harvesting complexes (LHCs) are diversified among photosynthetic organisms, and the structure of the photosystem I-LHC (PSI-LHCI) supercomplex has been shown to be variable depending on the species of organisms. However, the structural and evolutionary correlations of red-lineage LHCs are unknown. Here, we determined a 1.92-Å resolution cryoelectron microscopic structure of a PSI-LHCI supercomplex isolated from the red alga Cyanidium caldarium RK-1 (NIES-2137), which is an important taxon in the Cyanidiophyceae. We subsequently investigated the correlations of PSI-LHCIs from different organisms through structural comparisons and phylogenetic analysis. The PSI-LHCI structure obtained shows five LHCI subunits surrounding a PSI-monomer core. The five LHCIs are composed of two Lhcr1s, two Lhcr2s, and one Lhcr3. Phylogenetic analysis of LHCs bound to PSI in the red-lineage algae showed clear orthology of LHCs between C. caldarium and Cyanidioschyzon merolae, whereas no orthologous relationships were found between C. caldarium Lhcr1-3 and LHCs in other red-lineage PSI-LHCI structures. These findings provide evolutionary insights into conservation and diversity of red-lineage LHCs associated with PSI.


Assuntos
Complexo de Proteína do Fotossistema I , Rodófitas , Filogenia , Complexo de Proteína do Fotossistema I/genética , Evolução Biológica , Microscopia Crioeletrônica , Rodófitas/genética
12.
Nat Commun ; 15(1): 2392, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493166

RESUMO

Symbiodinium are the photosynthetic endosymbionts for corals and play a vital role in supplying their coral hosts with photosynthetic products, forming the nutritional foundation for high-yield coral reef ecosystems. Here, we determine the cryo-electron microscopy structure of Symbiodinium photosystem I (PSI) supercomplex with a PSI core composed of 13 subunits including 2 previously unidentified subunits, PsaT and PsaU, as well as 13 peridinin-Chl a/c-binding light-harvesting antenna proteins (AcpPCIs). The PSI-AcpPCI supercomplex exhibits distinctive structural features compared to their red lineage counterparts, including extended termini of PsaD/E/I/J/L/M/R and AcpPCI-1/3/5/7/8/11 subunits, conformational changes in the surface loops of PsaA and PsaB subunits, facilitating the association between the PSI core and peripheral antennae. Structural analysis and computational calculation of excitation energy transfer rates unravel specific pigment networks in Symbiodinium PSI-AcpPCI for efficient excitation energy transfer. Overall, this study provides a structural basis for deciphering the mechanisms governing light harvesting and energy transfer in Symbiodinium PSI-AcpPCI supercomplexes adapted to their symbiotic ecosystem, as well as insights into the evolutionary diversity of PSI-LHCI among various photosynthetic organisms.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Ecossistema , Microscopia Crioeletrônica , Fotossíntese
13.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473924

RESUMO

The molecular entity responsible for catalyzing ferredoxin (Fd)-dependent cyclic electron flow around photosystem I (Fd-CEF) remains unidentified. To reveal the in vivo molecular mechanism of Fd-CEF, evaluating ferredoxin reduction-oxidation kinetics proves to be a reliable indicator of Fd-CEF activity. Recent research has demonstrated that the expression of Fd-CEF activity is contingent upon the oxidation of plastoquinone. Moreover, chloroplast NAD(P)H dehydrogenase does not catalyze Fd-CEF in Arabidopsis thaliana. In this study, we analyzed the impact of reduced Fd on Fd-CEF activity by comparing wild-type and pgr5-deficient mutants (pgr5hope1). PGR5 has been proposed as the mediator of Fd-CEF, and pgr5hope1 exhibited a comparable CO2 assimilation rate and the same reduction-oxidation level of PQ as the wild type. However, P700 oxidation was suppressed with highly reduced Fd in pgr5hope1, unlike in the wild type. As anticipated, the Fd-CEF activity was enhanced in pgr5hope1 compared to the wild type, and its activity further increased with the oxidation of PQ due to the elevated CO2 assimilation rate. This in vivo research clearly demonstrates that the expression of Fd-CEF activity requires not only reduced Fd but also oxidized PQ. Importantly, PGR5 was found to not catalyze Fd-CEF, challenging previous assumptions about its role in this process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteína do Fotossistema I/metabolismo , Arabidopsis/metabolismo , Ferredoxinas/metabolismo , Transporte de Elétrons , Elétrons , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Oxirredução , Proteínas de Arabidopsis/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
14.
Nature ; 627(8005): 915-922, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480893

RESUMO

Scientific exploration of phototrophic bacteria over nearly 200 years has revealed large phylogenetic gaps between known phototrophic groups that limit understanding of how phototrophy evolved and diversified1,2. Here, through Boreal Shield lake water incubations, we cultivated an anoxygenic phototrophic bacterium from a previously unknown order within the Chloroflexota phylum that represents a highly novel transition form in the evolution of photosynthesis. Unlike all other known phototrophs, this bacterium uses a type I reaction centre (RCI) for light energy conversion yet belongs to the same bacterial phylum as organisms that use a type II reaction centre (RCII) for phototrophy. Using physiological, phylogenomic and environmental metatranscriptomic data, we demonstrate active RCI-utilizing metabolism by the strain alongside usage of chlorosomes3 and bacteriochlorophylls4 related to those of RCII-utilizing Chloroflexota members. Despite using different reaction centres, our phylogenomic data provide strong evidence that RCI-utilizing and RCII-utilizing Chloroflexia members inherited phototrophy from a most recent common phototrophic ancestor. The Chloroflexota phylum preserves an evolutionary record of the use of contrasting phototrophic modes among genetically related bacteria, giving new context for exploring the diversification of phototrophy on Earth.


Assuntos
Bactérias , Complexo de Proteína do Fotossistema I , Processos Fototróficos , Bactérias/química , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Lagos/microbiologia , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Filogenia , Anaerobiose , Complexo de Proteína do Fotossistema II/metabolismo , Perfilação da Expressão Gênica
15.
Plant Physiol Biochem ; 207: 108420, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324953

RESUMO

Cyclic electron transport (CET) around photosystem I (PSI) mediated by the NADH dehydrogenase-like (NDH) complex is closely related to plant salt tolerance. However, whether overexpression of a core subunit of the NDH complex affects the photosynthetic electron transport under salt stress is currently unclear. Here, we expressed the NDH complex L subunit (Ndhl) genes ZmNdhl1 and ZmNdhl2 from C4 plant maize (Zea mays) or OsNdhl from C3 plant rice (Oryza sativa) using a constitutive promoter in rice. Transgenic rice lines expressing ZmNdhl1, ZmNdhl2, or OsNdhl displayed enhanced salt tolerance, as indicated by greater plant height, dry weight, and leaf relative water content, as well as lower malondialdehyde content compared to wild-type plants under salt stress. Fluorescence parameters such as post-illumination rise (PIR), the prompt chlorophyll a fluorescence transient (OJIP), modulated 820-nm reflection (MR), and delayed chlorophyll a fluorescence (DF) remained relatively normal in transgenic plants during salt stress. These results indicate that expression of ZmNdhl1, ZmNdhl2, or OsNdhl increases cyclic electron transport activity, slows down damage to linear electron transport, alleviates oxidative damage to the PSI reaction center and plastocyanin, and reduces damage to electron transport on the receptor side of PSI in rice leaves under salt stress. Thus, expression of Ndhl genes from maize or rice improves salt tolerance by enhancing photosynthetic electron transport in rice. Maize and rice Ndhl genes played a similar role in enhancing salinity tolerance and avoiding photosynthetic damage.


Assuntos
Oryza , Tolerância ao Sal , Transporte de Elétrons , Tolerância ao Sal/genética , Clorofila A/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Oryza/genética , Oryza/metabolismo
16.
Plant Physiol Biochem ; 207: 108426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340689

RESUMO

In nature, light intensity usually fluctuates and a sudden shade-sun transition can induce photodamage to photosystem I (PSI) in many angiosperms. Photosynthetic regulation in fluctuating light (FL) has been studied extensively in C3 plants; however, little is known about how C4 plants cope FL to prevent PSI photoinhibition. We here compared photosynthetic responses to FL between maize (Zea mays, C4) and tomato (Solanum lycopersicum, C3) grown under full sunlight. Maize leaves had significantly higher cyclic electron flow (CEF) activity and lower photorespiration activity than tomato. Upon a sudden shade-sun transition, maize showed a significant stronger transient PSI over-reduction than tomato, resulting in a significant greater PSI photoinhibition in maize after FL treatment. During the first seconds upon shade-sun transition, CEF was stimulated in maize at a much higher extent than tomato, favoring the rapid formation of trans-thylakoid proton gradient (ΔpH), which was helped by a transient down-regulation of chloroplast ATP synthase activity. Therefore, modulation of ΔpH by regulation of CEF and chloroplast ATP synthase adjusted PSI redox state at donor side, which partially compensated for the deficiency of photorespiration. We propose that C4 plants use different photosynthetic strategies for coping with FL as compared with C3 plants.


Assuntos
Complexo de Proteína do Fotossistema I , Zea mays , Complexo de Proteína do Fotossistema I/metabolismo , Zea mays/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons , Fotossíntese/fisiologia , Luz , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
17.
Environ Sci Pollut Res Int ; 31(12): 18579-18592, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351353

RESUMO

Ginkgo biloba leaf extract (GBE) can effectively treat bloom-forming freshwater algae. However, there is limited information about the underlying suppression mechanism of the marine bloom-forming Prorocentrum donghaiense-the most dominant algal bloom species in the East China Sea. We investigated the effect of GBE on P. donghaiense in terms of its response to photosynthesis at the molecular/omic level. In total, 93,743 unigenes were annotated using six functional databases. Furthermore, 67,203 differentially expressed genes (DEGs) were identified in algae treated with 1.8 g∙L-1 GBE. Among these DEGs, we identified the genes involved in photosynthesis. PsbA, PsbB and PsbD in photosystem II, PsaA in photosystem I, and PetB and PetD in the cytochrome b6/f complex were downregulated. Other related genes, such as PsaC, PsaE, and PsaF in photosystem I; PetA in the cytochrome b6/f complex; and atpA, atpD, atpH, atpG, and atpE in the F-type H+-ATPase were upregulated. These results suggest that the structure and activity of the complexes were destroyed by GBE, thereby inhibiting the electron flow between the primary and secondary quinone electron acceptors, primary quinone electron acceptor, and oxygen-evolving complex in the PSII complex, and interrupting the electron flow between PSII and PSI, ultimately leading to a decline in algal cell photosynthesis. These findings provide a basis for understanding the molecular mechanisms underlying P. donghaiense exposure to GBE and a theoretical basis for the prevention and control of harmful algal blooms.


Assuntos
Dinoflagellida , Ginkgo biloba , Citocromos b , Complexo de Proteína do Fotossistema I , Proliferação Nociva de Algas , Fotossíntese , Perfilação da Expressão Gênica , Extratos Vegetais/farmacologia , Quinonas/farmacologia
18.
Physiol Plant ; 176(2): e14227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410876

RESUMO

In addition to leaves, the main site of photosynthetic reactions, active photosynthesis also takes place in stems, siliques and tree trunks. Although non-foliar photosynthesis has a marked effect on plant growth and yield, only limited information on the expression patterns of photosynthesis-related genes and the structure of photosynthetic machinery in different plant organs has been available. Here, we report the results of transcriptomic analysis of various organs of Arabidopsis thaliana and compare the gene expression profiles of young and mature leaves with a special focus on photosynthetic genes. Further, we analyzed the composition and organization of the photosynthetic electron transfer machinery in leaves, stems and green siliques at the protein level using BN-PAGE. RNA-Seq analysis revealed unique gene expression profiles in different plant organs and showed major differences in the expression of photosynthesis-related genes in young as compared to mature rosettes. Gel-based proteomic analysis of the thylakoid protein complex organization further showed that all studied plant organs contain the necessary components of the photosynthetic electron transfer chain. Intriguingly, stems accumulate high amounts of PSI-NDH complex, which has previously been implicated in cyclic electron transfer.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Transcriptoma , Proteômica , Fotossíntese/genética , Transporte de Elétrons/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Perfilação da Expressão Gênica , Complexo de Proteína do Fotossistema I/metabolismo
19.
New Phytol ; 242(2): 544-557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38379464

RESUMO

The phosphorylation of photosystem II (PSII) and its antenna (LHCII) proteins has been studied, and its involvement in state transitions and PSII repair is known. Yet, little is known about the phosphorylation of photosystem I (PSI) and its antenna (LHCI) proteins. Here, we applied proteomics analysis to generate a map of the phosphorylation sites of the PSI-LHCI proteins in Chlorella ohadii cells that were grown under low or extreme high-light intensities (LL and HL). Furthermore, we analyzed the content of oxidized tryptophans and PSI-LHCI protein degradation products in these cells, to estimate the light-induced damage to PSI-LHCI. Our work revealed the phosphorylation of 17 of 22 PSI-LHCI subunits. The analyses detected the extensive phosphorylation of the LHCI subunits Lhca6 and Lhca7, which is modulated by growth light intensity. Other PSI-LHCI subunits were phosphorylated to a lesser extent, including PsaE, where molecular dynamic simulation proposed that a phosphoserine stabilizes ferredoxin binding. Additionally, we show that HL-grown cells accumulate less oxidative damage and degradation products of PSI-LHCI proteins, compared with LL-grown cells. The significant phosphorylation of Lhca6 and Lhca7 at the interface with other LHCI subunits suggests a physiological role during photosynthesis, possibly by altering light-harvesting characteristics and binding of other subunits.


Assuntos
Chlorella , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Fosforilação , Complexos de Proteínas Captadores de Luz/metabolismo , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...