Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Methods Appl Fluoresc ; 11(3)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37257457

RESUMO

This work describes the relationship between the complex of photosystem I and photosystem II in the senescence process of rice leaves observed through changes in the optical response. We studied three varieties of rice plants at different aging times using time-resolved photoluminescence to measure the time decay of the emission, and stationary photoluminescence, to measure the emission wavelength. The spectra obtained with the former technique were fitted with decreasing exponential functions. Two relaxation times were obtained, one ranging between 1.0 and 1.7 ns, and the other, from 5.0 to 10.5 ns. They are associated with the electron's deexcitation of PSI and PSII, respectively, and these decay times increase as the leaf senescence process takes place. The spectra obtained with stationary photoluminescence were fitted with Voigt functions. These spectra exhibit two main peaks around 683 and 730 nm, which could be associated mainly with PSII and PSI emissions, respectively. The PSI de-excitation exhibits higher dispersive processes because chlorophyll-a molecules in it move away from each other, decreasing their concentration. Therefore, it takes longer for electrons to recombine during photosynthesis, as seen in the time-resolve response. Articulating the results of both photoluminescence techniques, the changes in the response of the photosystems of the living rice leaves during senescence are evidenced.


Assuntos
Oryza , Oryza/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta
2.
Plant J ; 99(3): 465-477, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30985038

RESUMO

Chlorophyll (Chl) loss is the main visible symptom of senescence in leaves. The initial steps of Chl degradation operate within the chloroplast, but the observation that 'senescence-associated vacuoles' (SAVs) contain Chl raises the question of whether SAVs might also contribute to Chl breakdown. Previous confocal microscope observations (Martínez et al., 2008) showed many SAVs containing Chl. Isolated SAVs contained Chl a and b (with a Chl a/b ratio close to 5) and lower levels of chlorophyllide a. Pheophytin a and pheophorbide a were formed after the incubation of SAVs at 30°C in darkness, suggesting the presence of Chl-degrading activities in SAVs. Chl in SAVs was bound to a number of 'green bands'. In the most abundant green band of SAVs, Western blot analysis showed the presence of photosystem I (PSI) Chl-binding proteins, including the PsaA protein of the PSI reaction center and the apoproteins of the light-harvesting complexes (Lhca 1-4). This was confirmed by: (i) measurements of 77-K fluorescence emission spectra showing a single emission peak at around 730 nm in SAVs; (ii) mass spectrometry of the most prominent green band with the slowest electrophoretic mobility; and (iii) immunofluorescence detection of PsaA in SAVs observed through confocal microscopy. Incubation of SAVs at 30°C in darkness caused a steady decrease in PsaA levels. Overall, these results indicate that SAVs may be involved in the degradation of PSI proteins and their associated chlorophylls during the senescence of leaves.


Assuntos
Clorofila/metabolismo , Cloroplastos/metabolismo , Nicotiana/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo , Envelhecimento , Senescência Celular , Escuridão , Plastídeos/metabolismo , Proteólise
3.
Physiol Plant ; 167(3): 404-417, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30737801

RESUMO

Salinity commonly affects photosynthesis and crop production worldwide. Salt stress disrupts the fine balance between photosynthetic electron transport and the Calvin cycle reactions, leading to over-reduction and excess energy within the thylakoids. The excess energy triggers reactive oxygen species (ROS) overproduction that causes photoinhibition in both photosystems (PS) I and II. However, the role of PSI photoinhibition and its physiological mechanisms for photoprotection have not yet been fully elucidated. In the present study, we analyzed the effects of 15 consecutive days of 100 mM NaCl in Jatropha curcas plants, primarily focusing on the photosynthetic electron flow at PSI level. We found that J. curcas plants have important photoprotective mechanisms to cope with the harmful effects of salinity. We show that maintaining P700 in an oxidized state is an important photoprotector mechanism, avoiding ROS burst in J. curcas exposed to salinity. In addition, upon photoinhibition of PSI, the highly reduced electron transport chain triggers a significant increase in H2 O2 content which can lead to the production of hydroxyl radical by Mehler reactions in chloroplast, thereby increasing PSI photoinhibition.


Assuntos
Jatropha/efeitos dos fármacos , Jatropha/metabolismo , Cloreto de Sódio/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/metabolismo , Salinidade
4.
Photosynth Res ; 140(3): 321-335, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30694432

RESUMO

Mechanisms involving ammonium toxicity, excess light, and photosynthesis are scarcely known in plants. We tested the hypothesis that high NH4+ supply in presence of high light decreases photosynthetic efficiency of rice plants, an allegedly tolerant species. Mature rice plants were previously supplied with 10 mM NH4+ or 10 mM NO3- and subsequently exposed to 400 µmol m-2 s-1 (moderate light-ML) or 2000 µmol m-2 s-1 (high light-HL) for 8 h. HL greatly stimulated NH4+ accumulation in roots and in a minor extent in leaves. These plants displayed significant delay in D1 protein recovery in the dark, compared to nitrate-supplied plants. These responses were related to reduction of both PSII and PSI quantum efficiencies and induction of non-photochemical quenching. These changes were also associated with higher limitation in the donor side and lower restriction in the acceptor side of PSI. This later response was closely related to prominent decrease in stomatal conductance and net CO2 assimilation that could have strongly affected the energy balance in chloroplast, favoring ATP accumulation and NPQ induction. In parallel, NH4+ induced a strong increase in the electron flux to photorespiration and, inversely, it decreased the flux to Rubisco carboxylation. Overall, ammonium supply negatively interacts with excess light, possibly by enhancing ammonium transport towards leaves, causing negative effects on some photosynthetic steps. We propose that high ammonium supply to rice combined with excess light is capable to induce strong delay in D1 protein turnover and restriction in stomatal conductance, which might have contributed to generalized disturbances on photosynthetic efficiency.


Assuntos
Compostos de Amônio/toxicidade , Oryza/fisiologia , Cloroplastos/metabolismo , Metabolismo Energético , Luz , Oryza/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Ribulose-Bifosfato Carboxilase/metabolismo
5.
Braz. j. biol ; Braz. j. biol;77(1): 43-51, Jan-Mar. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839155

RESUMO

Abstract Soil flooding is an environmental stressor for crops that can affect physiological performance and reduce crop yields. Abiotic stressors cause changes in protein synthesis, modifying the levels of a series of proteins, especially the heat shock proteins (HSP), and these proteins can help protect the plants against abiotic stress. The objective of this study was to verify if tomato plants cv. Micro-Tom from different genotypes with varying expression levels of MT-sHSP23.6 (mitochondrial small heat shock proteins) have different responses physiological to flooding. Plants from three genotypes (untransformed, MT-sHSP23.6 sense expression levels and MT-sHSP23.6 antisense expression levels) were cultivated under controlled conditions. After 50 days, the plants were flooded for 14 days. After this period half of the plants from each genotype were allowed to recover. Chlorophyll fluorescence, gas exchange, chlorophyll index, leaf area and dry matter were evaluated. Flood stress affected the photosynthetic electron transport chain, which is related to inactivation of the oxygen-evolving complex, loss of connectivity among units in photosystem II, oxidation-reduction of the plastoquinone pool and activity of photosystem I. The genotype with MT-sHSP23.6 sense expression levels was less sensitive to stress from flooding.


Resumo O alagamento do solo é um estressor ambiental para as culturas e pode afetar o desempenho fisiológico e reduzir a produtividade das culturas. Estresses abióticos causam mudanças na síntese de proteínas, modificando os níveis de uma série de proteínas, em especial as proteínas de choque térmico (HSP) e essas proteínas são conhecidas por proteger as plantas contra estresses abióticos. O objetivo deste estudo foi verificar se as plantas do tomateiro cv. Micro-Tom de distintos genótipos com diferentes níveis de expressão da MT-sHSP23.6 (proteínas mitocondriais de choque térmico com pequena massa molecular), têm diferentes respostas fisiológicas ao alagamento. As plantas de três genótipos (não-transformado, transformado com orientação antisense e transformado com orientação sense para MT-sHSP23.6) foram cultivadas sob condições controladas. Após 50 dias as plantas foram alagadas durante 14 dias. Após esse período as plantas de cada genótipo foram recuperadas. Foram avaliados fluorescência da clorofila, trocas gasosas, índice de clorofila, área foliar e massa seca. O estresse por alagamento afetou a cadeia de transporte de elétrons da fotossíntese, que está relacionado à inativação do complexo de evolução do oxigênio, perda da conectividade entre as unidades do fotossistema II, de oxidação e redução do pool de plastoquinona e atividade do fotossistema I. O genótipo com orientação sense MT-sHSP23.6 foi menos sensível ao estresse por alagamento.


Assuntos
Estresse Fisiológico , Solanum lycopersicum/fisiologia , Proteínas de Choque Térmico Pequenas/metabolismo , Inundações , Mitocôndrias/metabolismo , Fotossíntese/fisiologia , Clorofila/metabolismo , Folhas de Planta/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Genótipo
6.
Photosynth Res ; 134(3): 235-250, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28150152

RESUMO

The development of oxygenic photosynthesis by primordial cyanobacteria ~2.7 billion years ago led to major changes in the components and organization of photosynthetic electron transport to cope with the challenges of an oxygen-enriched atmosphere. We review herein, following the seminal contributions as reported by Jaganathan et al. (Functional genomics and evolution of photosynthetic systems, vol 33, advances in photosynthesis and respiration, Springer, Dordrecht, 2012), how these changes affected carriers and enzymes at the acceptor side of photosystem I (PSI): the electron shuttle ferredoxin (Fd), its isofunctional counterpart flavodoxin (Fld), their redox partner ferredoxin-NADP+ reductase (FNR), and the primary PSI acceptors F x and F A/F B. Protection of the [4Fe-4S] centers of these proteins from oxidative damage was achieved by strengthening binding between the F A/F B polypeptide and the reaction center core containing F x, therefore impairing O2 access to the clusters. Immobilization of F A/F B in the PSI complex led in turn to the recruitment of new soluble electron shuttles. This function was fulfilled by oxygen-insensitive [2Fe-2S] Fd, in which the reactive sulfide atoms of the cluster are shielded from solvent by the polypeptide backbone, and in some algae and cyanobacteria by Fld, which employs a flavin as prosthetic group and is tolerant to oxidants and iron limitation. Tight membrane binding of FNR allowed solid-state electron transfer from PSI bridged by Fd/Fld. Fine tuning of FNR catalytic mechanism led to formidable increases in turnover rates compared with FNRs acting in heterotrophic pathways, favoring Fd/Fld reduction instead of oxygen reduction.


Assuntos
Evolução Molecular , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , Flavodoxina/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Fotossíntese , Processos Fototróficos
7.
Braz J Biol ; 0: 0, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27409224

RESUMO

Soil flooding is an environmental stressor for crops that can affect physiological performance and reduce crop yields. Abiotic stressors cause changes in protein synthesis, modifying the levels of a series of proteins, especially the heat shock proteins (HSP), and these proteins can help protect the plants against abiotic stress. The objective of this study was to verify if tomato plants cv. Micro-Tom from different genotypes with varying expression levels of MT-sHSP23.6 (mitochondrial small heat shock proteins) have different responses physiological to flooding. Plants from three genotypes (untransformed, MT-sHSP23.6 sense expression levels and MT-sHSP23.6 antisense expression levels) were cultivated under controlled conditions. After 50 days, the plants were flooded for 14 days. After this period half of the plants from each genotype were allowed to recover. Chlorophyll fluorescence, gas exchange, chlorophyll index, leaf area and dry matter were evaluated. Flood stress affected the photosynthetic electron transport chain, which is related to inactivation of the oxygen-evolving complex, loss of connectivity among units in photosystem II, oxidation-reduction of the plastoquinone pool and activity of photosystem I. The genotype with MT-sHSP23.6 sense expression levels was less sensitive to stress from flooding.


Assuntos
Inundações , Proteínas de Choque Térmico Pequenas/metabolismo , Mitocôndrias/metabolismo , Solanum lycopersicum/fisiologia , Estresse Fisiológico , Clorofila/metabolismo , Genótipo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/metabolismo
8.
Chem Biodivers ; 13(1): 100-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26765357

RESUMO

Continuing our search for herbicide models based on natural products, we investigated the action mechanisms of five alkaloids isolated from Swinglea glutinosa (Rutaceae): Citrusinine-I (1), glycocitrine-IV (2), 1,3,5-trihydroxy-10-methyl- 2,8-bis(3-methylbut-2-en-1-yl)-9(10H)-acridinone (3), (2R)-2-tert-butyl-3,10-dihydro-4,9-dihydroxy-11-methoxy-10-methylfuro[3,2-b]acridin-5(2H)-one (4), and (3R)-2,3,4,7-tetrahydro-3,5,8-trihydroxy-6-methoxy-2,2,7-trimethyl-12H-pyrano[2,3-a]acridin-12-one (5) on several photosynthetic activities in an attempt to find new compounds that affect photosynthesis. Through polarographic techniques, the compounds inhibited the non-cyclic electron transport in the basal, phosphorylating, and uncoupled conditions from H2 O to methylviologen (=MV). Therefore, they act as Hill reaction inhibitors. This approach still suggested that the compounds 4 and 5 had their interaction site located at photosystem I. Studies on fluorescence of chlorophyll a suggested that acridones (1-3) have different modes of interaction and inhibition sites on the photosystem II electron transport chain.


Assuntos
Acridinas/farmacologia , Alcaloides/farmacologia , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/antagonistas & inibidores , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Rutaceae/química , Acridinas/química , Acridinas/isolamento & purificação , Acridonas , Alcaloides/química , Alcaloides/isolamento & purificação , Clorofila/química , Clorofila/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Relação Estrutura-Atividade
9.
J Photochem Photobiol B ; 145: 11-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25748644

RESUMO

Natural products called rubrolides have been investigated as a model for the development of new herbicides that act on the photosynthesis apparatus. This study comprises a comprehensive analysis of the photosynthesis inhibitory ability of 27 new structurally diverse rubrolide analogues. In general, the results revealed that the compounds exhibited efficient inhibition of the photosynthetic process, but in some cases low water solubility may be a limiting factor. To elucidate their mode of action, the effects of the compounds on PSII and PSI, as well as their partial reaction on chloroplasts and the chlorophyll a fluorescence transients were measured. Our results showed that some of the most active rubrolide analogues act as a Hill reaction inhibitors at the QB level by interacting with the D1 protein at the reducing side of PSII. All of the active analogues follow Tice's rule of 5, which indicates that these compounds present physicochemical properties suitable for herbicides.


Assuntos
Furanos/química , Luz , Complexo de Proteína do Fotossistema I/antagonistas & inibidores , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Clorofila/química , Clorofila A , Cloroplastos/metabolismo , Transporte de Elétrons , Furanos/metabolismo , Furanos/toxicidade , Herbicidas/química , Herbicidas/metabolismo , Herbicidas/toxicidade , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Spinacia oleracea/metabolismo
10.
J Plant Physiol ; 171(15): 1423-35, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25046763

RESUMO

The effect of salt stress was analyzed in chloroplasts of Amaranthus cruentus var. Amaranteca, a plant NAD-malic enzyme (NAD-ME) type. Morphology of chloroplasts from bundle sheath (BSC) and mesophyll (MC) was observed by transmission electron microscopy (TEM). BSC and MC from control plants showed similar morphology, however under stress, changes in BSC were observed. The presence of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) was confirmed by immunohistochemical staining in both types of chloroplasts. Proteomic profiles of thylakoid protein complexes from BSC and MC, and their changes induced by salt stress were analyzed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (2-D BN/SDS-PAGE). Differentially accumulated protein spots were analyzed by LC-MS/MS. Although A. cruentus photosynthetic tissue showed the Kranz anatomy, the thylakoid proteins showed some differences at photosystem structure level. Our results suggest that A. cruentus var. Amaranteca could be better classified as a C3-C4 photosynthetic plant.


Assuntos
Adaptação Fisiológica , Amaranthus/metabolismo , Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Cromatografia Líquida , Bases de Dados de Proteínas , Eletroforese em Gel de Poliacrilamida , Complexos de Proteínas Captadores de Luz , Células do Mesofilo , Microscopia Eletrônica de Transmissão , Complexos Multiproteicos , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Feixe Vascular de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Espectrometria de Massas em Tandem , Tilacoides/metabolismo
11.
Photochem Photobiol ; 90(1): 107-12, 2014 01.
Artigo em Inglês | MEDLINE | ID: mdl-23869421

RESUMO

In this work, we use the effect of herbicides that affect the photosynthetic chain at defined sites in the photosynthetic reaction steps to derive information about the fluorescence emission of photosystems. The interpretation of spectral data from treated and control plants, after correction for light reabsorption processes, allowed us to elucidate current controversies in the subject. Results were compatible with the fact that a nonnegligible Photosystem I contribution to chlorophyll fluorescence in plants at room temperature does exist. In another aspect, variable and nonvariable chlorophyll fluorescence were comparatively tested as bioindicators for detection of both herbicides in aquatic environment. Both methodologies were appropriate tools for this purpose. However, they showed better sensitivity for pollutants disconnecting Photosystem II-Photosystem I by blocking the electron transport between them as Atrazine. Specifically, changes in the (experimental and corrected by light reabsorption) red to far red fluorescence ratio, in the maximum photochemical quantum yield and in the quantum efficiency of Photosytem II for increasing concentrations of herbicides have been measured and compared. The most sensitive bioindicator for both herbicides was the quantum efficiency of Photosystem II.


Assuntos
Atrazina/toxicidade , Clorofila/metabolismo , Paraquat/toxicidade , Complexo de Proteína do Fotossistema I/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Fluorescência , Herbicidas/toxicidade , Folhas de Planta/metabolismo
12.
J Exp Bot ; 64(1): 343-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23183256

RESUMO

The effects of exposure to increasing manganese concentrations (50-1500 µM) from the start of the experiment on the functional performance of photosystem II (PSII) and photosystem I (PSI) and photosynthetic apparatus composition of Arabidopsis thaliana were compared. In agreement with earlier studies, excess Mn caused minimal changes in the PSII photochemical efficiency measured as F(v)/F(m), although the characteristic peak temperature of the S(2/3)Q(B) (-) charge recombinations was shifted to lower temperatures at the highest Mn concentration. SDS-PAGE and immunoblot analyses also did not exhibit any significant change in the relative abundance of PSII-associated polypeptides: PSII reaction centre protein D1, Lhcb1 (major light-harvesting protein of LHCII complex), and PsbO (OEC33, a 33 kDa protein of the oxygen-evolving complex). In addition, the abundance of Rubisco also did not change with Mn treatments. However, plants grown under excess Mn exhibited increased susceptibility to PSII photoinhibition. In contrast, in vivo measurements of the redox transients of PSI reaction centre (P700) showed a considerable gradual decrease in the extent of P700 photooxidation (P700(+)) under increased Mn concentrations compared to control. This was accompanied by a slower rate of P700(+) re-reduction indicating a downregulation of the PSI-dependent cyclic electron flow. The abundance of PSI reaction centre polypeptides (PsaA and PsaB) in plants under the highest Mn concentration was also significantly lower compared to the control. The results demonstrate for the first time that PSI is the major target of Mn toxicity within the photosynthetic apparatus of Arabidopsis plants. The possible involvement mechanisms of Mn toxicity targeting specifically PSI are discussed.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Manganês/farmacologia , Complexo de Proteína do Fotossistema I/antagonistas & inibidores , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Biomassa , Eletroforese em Gel de Poliacrilamida , Luz , Manganês/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Temperatura , Dosimetria Termoluminescente
13.
Plant Sci ; 196: 107-16, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23017905

RESUMO

Systemic infections are commonly associated with changes in host metabolism and gene expression. Sunflower chlorotic mottle virus (SuCMoV) causes systemic infection with sugar increase, photoinhibition and increase in antioxidant enzyme activities before chlorotic symptom appearance in sunflower leaves. The aim of this study was to determine if chlorotic symptom development induced by SuCMoV infection is accompanied by changes in different redox-related metabolites and transcripts. Symptom development was analyzed in the second pair of leaves (systemic infection) at different post-inoculation times: before symptom appearance (BS, 4 dpi), and at an early (ES, 7 dpi) and later stage (LS, 12 dpi) of symptom expression. The results showed that the virus reaches the second pair of leaves at 4 dpi. A positive correlation between chlorotic symptom and number of viral copies was also observed. Changes in hydrogen peroxide, glutathione, pyridine nucleotides and ATP content were observed since symptom appearance (ES, 7 dpi). The expression of some of the genes analyzed was also strongly affected by SuCMoV infection. Specifically, down-regulation of both chloroplast-encoded genes and chloroplast-targeted genes: psbA, rbcS, Cu/Zn sod, Fe sod, phosphoglycolate phosphatase, psbO, psaH and fnr was present, whereas the expression of cytoplasmic-targeted genes, apx1, and Cu/Zn sod was up-regulated. Mitochondrial Mn sod decreased at BS stage and aox decreased only at ES stage. Peroxisomal catalase (cat-2) was lower at BS and LS stages. All these results suggest that SuCMoV infection induces progressive changes in determinants of redox homeostasis associated with chlorotic symptom development.


Assuntos
Regulação da Expressão Gênica de Plantas , Helianthus/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Trifosfato de Adenosina/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Helianthus/metabolismo , Helianthus/virologia , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/metabolismo , Proteínas Mitocondriais/genética , NADP/metabolismo , Oxirredução , Oxirredutases/genética , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/genética , Potyvirus/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxido Dismutase/genética , Fatores de Tempo
14.
Photochem Photobiol Sci ; 11(4): 724-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22337099

RESUMO

Kiwi fruit displays chlorophyll fluorescence. A physical model was developed to reproduce the observed original fluorescence for the whole fruit, from the emission of the different parts of the kiwi fruit. The spectral distribution of fluorescence in each part of the fruit, was corrected to eliminate distortions due to light re-absorption and it was analyzed in relation to photosystem II-photosystem I ratio. Kiwi fruit also displays variable chlorophyll-fluorescence, similar to that observed from leaves. The maximum quantum efficiency of photosystem II photochemistry (F(v)/F(m)), the quantum efficiency of photosystem II (Φ(PSII)), and the photochemical and non-photochemical quenching coefficients (q(P) and q(NP) respectively) were determined and discussed in terms of the model developed. The study was extended by determining the photosynthetic parameters as a function of the storage time, at both 4 °C and room temperature for 25 days.


Assuntos
Actinidia/metabolismo , Clorofila/química , Modelos Químicos , Frutas/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Espectrofotometria Ultravioleta
15.
Plant Physiol ; 151(4): 1802-11, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19812182

RESUMO

A cytoplasmically inherited chlorophyll-deficient mutant of barley (Hordeum vulgare) termed cytoplasmic line 3 (CL3), displaying a viridis (homogeneously light-green colored) phenotype, has been previously shown to be affected by elevated temperatures. In this article, biochemical, biophysical, and molecular approaches were used to study the CL3 mutant under different temperature and light conditions. The results lead to the conclusion that an impaired assembly of photosystem I (PSI) under higher temperatures and certain light conditions is the primary cause of the CL3 phenotype. Compromised splicing of ycf3 transcripts, particularly at elevated temperature, resulting from a mutation in a noncoding region (intron 1) in the mutant ycf3 gene results in a defective synthesis of Ycf3, which is a chaperone involved in PSI assembly. The defective PSI assembly causes severe photoinhibition and degradation of PSII.


Assuntos
Hordeum/genética , Padrões de Herança/genética , Mutação/genética , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/genética , Splicing de RNA/genética , Temperatura , Sequência de Bases , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Citoplasma/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Germinação , Hordeum/crescimento & desenvolvimento , Immunoblotting , Fenótipo , Fotoquímica , Fotossíntese , Pigmentos Biológicos/metabolismo , Extratos Vegetais/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/crescimento & desenvolvimento , Espectrometria de Fluorescência , Tilacoides/metabolismo
16.
Photosynth Res ; 91(1): 71-80, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17333505

RESUMO

In our search for new natural photosynthetic inhibitors that could lead to the development of "green herbicides" less toxic to environment, the diterpene labdane-8alpha,15-diol (1) and its acetyl derivative (2) were isolated for the first time from Croton ciliatoglanduliferus Ort. They inhibited photophosphorylation, electron transport (basal, phosphorylating and uncoupled) and the partial reactions of both photosystems in spinach thylakoids. Compound 1 inhibits the photosystem II (PS II) partial reaction from water to Na(+) Silicomolibdate (SiMo) and has no effect on partial reaction from diphenylcarbazide (DPC) to 2,6-dichlorophenol indophenol (DCPIP), therefore 1 inhibits at the water splitting enzyme and also inhibits PS I partial reaction from reduced phenylmetasulfate (PMS) to methylviologen (MV). Thus, it also inhibits in the span of P(700) to Iron sulfur center X (F(X)). Compound 2 inhibits both, the PS II partial reactions from water to SiMo and from DPC to DCPIP; besides this, it inhibits the photosystem I (PS I) partial reaction from reduced PMS to MV. With these results, we concluded that the targets of the natural product 2 are located at the water splitting enzyme, and at P(680) in PS II and at the span of P(700) to F(X) in PS I. The results of compounds 1 and 2 on PS II were corroborated by chlorophyll a fluorescence.


Assuntos
Croton/química , Diterpenos/farmacologia , Complexo de Proteína do Fotossistema I/antagonistas & inibidores , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Clorofila/química , Clorofila A , Diterpenos/química , Diterpenos/isolamento & purificação , Transporte de Elétrons/efeitos dos fármacos , Fotofosforilação/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Extratos Vegetais/química , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo
17.
J Photochem Photobiol B ; 83(2): 105-13, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16458013

RESUMO

Nineteen 2-[(R-phenyl)amine]-1,4-naphthalendione derivatives (PAN) were tested on spinach thylakoids for their activity as electron acceptors. These molecules act as photosystem I electron acceptors in the micromolar range. AC(50) values varied from 5 nM to 24 microM. QSAR analysis revealed a linear correlation of the m-PAN derivative log [1/AC(50)] with the energy difference of the LUMO and HOMO orbitals. The biological activity of p-PAN derivatives correlates linearly with structural parameters. Electron affinity is being the most important. The half wave I potential values (E(1/2)) of PAN compounds (from -213 to -569 mV vs. NHE) match with the mid-point potentials of the A(0) to F(X) niche of PSI electron transport carriers. The logP values of PAN derivatives were 3.35 and 3.88, indicating that they are hydrophobic compounds. Therefore PAN compounds accept electrons at the hydrophobic A(0) to F(X) niche of PSI.


Assuntos
Naftoquinonas/química , Naftoquinonas/farmacologia , Complexo de Proteína do Fotossistema I/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/metabolismo , Trifosfato de Adenosina/biossíntese , Transporte de Elétrons/efeitos dos fármacos , Isomerismo , Cinética , Naftoquinonas/metabolismo , Fotobiologia , Relação Quantitativa Estrutura-Atividade , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo
18.
Biochim Biophys Acta ; 1412(2): 94-107, 1999 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-10393253

RESUMO

One of the strains of the marine green alga Ostreobium sp. possesses an exceptionally large number of long wavelength absorbing chlorophylls (P. Haldall, Biol. Bull. 134, 1968, 411-424) as evident from a distinct shoulder in the absorption spectrum at around 710 nm while in the other strain this shoulder is absent. Therefore, Ostreobium offers a unique possibility to explore the origin of these red-shifted chlorophylls, because strains with and without these spectral forms can be compared. Here, we characterize these red forms spectroscopically by absorption, fluorescence and CD spectroscopy. In the CD spectra at least three spectroscopic red forms are identified which lead to an unusual room temperature fluorescence spectrum that peaks at 715 nm. The gel electrophoretic pattern from thylakoids of Ostreobium sp. shows an intense band at 22 kDa which correlates with the presence or absence of long wavelength absorbing pigments. By protein sequencing of the N-terminus of the 22-kDa polypeptide and sequence alignments, this was identified as an Lhca1-type light-harvesting complex. The abundance of this polypeptide - and a possibly co-migrating one - in Ostreobium sp. indicates an antenna size of approximately 340 chlorophyll molecules (Chl a and Chl b) per PS IIalpha reaction center, which is significantly larger than in higher plants ( approximately 240). The red forms are more abundant in the interior of the thalli where a 'shade-light' light field is expected than in the white-light exposed surface. This demonstrates that algae exist which may be able to up-regulate the synthesis of large amounts of LHCI and associated red forms under appropriate illumination conditions.


Assuntos
Proteínas de Arabidopsis , Clorofila/química , Clorófitas/química , Complexos de Proteínas Captadores de Luz , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteína do Fotossistema I , Proteínas de Plantas/química , Sequência de Aminoácidos , Chile , Proteínas de Ligação à Clorofila , Clorófitas/genética , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Mar do Norte , Alinhamento de Sequência , Espectrometria de Fluorescência , Espectrofotometria
19.
Biophys J ; 63(6): 1613-22, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1489915

RESUMO

The effects of hydrostatic pressure on the excited state reactions of the photosynthetic system of cyanobacteria were studied with the use of stationary and dynamic fluorescence spectroscopy. When the cells were excited with blue light (442 nm), hydrostatic pressure promoted a large increase in the fluorescence emission of the phycobilisomes (PBS). When PBS were excited at 565 nm, the shoulder originating from photosystem II (PSII) emission (F685) disappeared under 2.4 kbar compression, suggesting suppression of the energy transfer from PBS to PSII. At atmospheric pressure, the excited state decay was complex due to energy transfer processes, and the best fit to the data consisted of a broad Lorentzian distribution of short lifetimes. At 2.4 kbar, the decay data changed to a narrower distribution of longer lifetimes, confirming the pressure-induced suppression of the energy transfer between the PBS and PSII. When the cells were excited with blue light, the decay at atmospheric pressure was even more complex and the best fit to the data consisted of a two-component Lorentzian distribution of short lifetimes. Under compression, the broad distribution of lifetimes spanning the region 100-1,000 ps disappeared and gave rise to the appearance of a narrow distribution characteristic of the PBS centered at 1.2 ns. The emission of photosystem I underwent 2.2-fold increase at 2.4 kbar and room temperature. A decrease in temperature from 20 to -10 degrees C at 2.4 kbar promoted a further increase in the fluorescence emission from photosystem I to a level comparable with that obtained at temperatures below 120 degrees K and atmospheric pressure. On the other hand, when the temperature was decreased under pressure, the PBS emission diminished to very low value at blue or green excitation, suggesting the disassembly into the phycobiliprotein subunits.


Assuntos
Cianobactérias/química , Fotossíntese , Fenômenos Biofísicos , Biofísica , Temperatura Baixa , Cianobactérias/efeitos da radiação , Transferência de Energia/efeitos da radiação , Pressão Hidrostática , Luz , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Ficobilissomas , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA