Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biochem Mol Biol ; 52(2): 107-144, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28094588

RESUMO

Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.


Assuntos
Replicação do DNA , Células Eucarióticas/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Ativação Enzimática , Humanos , Proteínas de Manutenção de Minicromossomo/análise , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/análise , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação
2.
Cell Tissue Res ; 363(1): 195-200, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26453397

RESUMO

The origin recognition complex (ORC) proteins, ORC1-6, are the first known proteins that bind DNA replication origins to mark the competency for the initiation of DNA synthesis. These proteins have complex mechanisms of assembly into the ORC complex and unexpected localizations in the mitotic chromosomes, cytoplasm, and nuclear structures. The mammalian zygote is a potentially important model that may contribute to our understanding of the mechanisms and features influencing origin establishment and in the identification of other functions of the ORC proteins. Together with expected localizations to the chromatin during G1, we found an unexpected distribution in the cytoplasm that appeared to accumulate ORC proteins suggesting potential roles for ORC subunits in mitosis and chromatin segregation. ORC1, 2, 3, and 5 all localize to the area between the separating maternal chromosomes shortly after fertilization. ORC4 forms a cage around the set of chromosomes that will be extruded during polar body formation before it binds to the chromatin shortly before zygotic DNA replication. These data suggest that the ORC proteins may also play roles in preparing the cell for DNA replication in addition to their direct role in establishing functional replication origins.


Assuntos
Complexo de Reconhecimento de Origem/metabolismo , Zigoto/metabolismo , Animais , Replicação do DNA , Feminino , Humanos , Masculino , Complexo de Reconhecimento de Origem/análise , Espermatozoides/citologia , Espermatozoides/metabolismo , Zigoto/citologia
3.
Cell Rep ; 2(1): 185-97, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22840408

RESUMO

Identification of replication initiation sites, termed origins, is a crucial step in understanding genome transmission in any organism. Transcription of the Trypanosoma brucei genome is highly unusual, with each chromosome comprising a few discrete transcription units. To understand how DNA replication occurs in the context of such organization, we have performed genome-wide mapping of the binding sites of the replication initiator ORC1/CDC6 and have identified replication origins, revealing that both localize to the boundaries of the transcription units. A remarkably small number of active origins is seen, whose spacing is greater than in any other eukaryote. We show that replication and transcription in T. brucei have a profound functional overlap, as reducing ORC1/CDC6 levels leads to genome-wide increases in mRNA levels arising from the boundaries of the transcription units. In addition, ORC1/CDC6 loss causes derepression of silent Variant Surface Glycoprotein genes, which are critical for host immune evasion.


Assuntos
Replicação do DNA/genética , Genoma de Protozoário , Origem de Replicação/fisiologia , Análise de Sequência de DNA , Transcrição Gênica/genética , Trypanosoma brucei brucei/genética , Sítios de Ligação/genética , Epistasia Genética , Regulação da Expressão Gênica , Genoma de Protozoário/genética , Modelos Biológicos , Complexo de Reconhecimento de Origem/análise , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação/genética
4.
Proc Natl Acad Sci U S A ; 105(5): 1692-7, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18234858

RESUMO

In all eukaryotic cells, origins of DNA replication are characterized by the binding of the origin recognition complex (ORC). How ORC is positioned to sites where replication initiates is unknown, because metazoan ORC binds DNA without apparent sequence specificity. Thus, additional factors might be involved in ORC positioning. Our experiments indicate that a family member of the high-mobility group proteins, HMGA1a, can specifically target ORC to DNA. Coimmunoprecipitations and imaging studies demonstrate that HMGA1a interacts with different ORC subunits in vitro and in vivo. This interaction occurs mainly in AT-rich heterochromatic regions to which HMGA1a localizes. Fusion proteins of HMGA1a and the DNA-binding domain of the viral factor EBNA1 or the prokaryotic tetracycline repressor, TetR, can recruit ORC to cognate operator sites forming functional origins of DNA replication. When HMGA1a is targeted to plasmid DNA, the prereplicative complex is assembled during G(1) and the amount of ORC correlates with the local concentration of HMGA1a. Nascent-strand abundance assays demonstrate that DNA replication initiates at or near HMGA1a-rich sites. Our experiments indicate that chromatin proteins can target ORC to DNA, suggesting they might specify origins of DNA replication in metazoan cells.


Assuntos
Replicação do DNA , Proteína HMGA1a/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação , Sítios de Ligação , Linhagem Celular , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteína HMGA1a/análise , Proteína HMGA1a/genética , Humanos , Imunoprecipitação , Complexo de Reconhecimento de Origem/análise , Plasmídeos/química , Plasmídeos/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Biochim Biophys Acta ; 1772(4): 413-21, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17236750

RESUMO

Higher cerebral functions are based upon a dynamic organization of neuronal networks. To form synaptic connections and to continuously re-shape them in a process of ongoing structural adaptation, neurons must permanently withdraw from the cell cycle. In other words, synaptic plasticity can only occur on the expense of the ability to proliferate. Previously, we have put forward a hypothesis, coined "Dr. Jekyll and Mr. Hyde concept" that differentiated neurons after having withdrawn from the cell cycle are able to use those molecular mechanisms primarily developed to control proliferation alternatively to control synaptic plasticity [T. Arendt, Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways The Dr. Jekyll and Mr. Hyde Theory of Alzheimer's disease or The yin and yang of Neuroplasticity. Progr. Neurobiol. 71 (2003) 83-248]. The existence of these alternative effector pathways within a neuron might put it on the risk to erroneously convert signals derived from plastic synaptic changes into cell cycle activation which subsequently leads to cell death. Here we add further evidence to this hypothesis demonstrating a tight association of the origin recognition complex (ORC) with neurofibrillar pathology in AD. The ORC is a critical "guard" of DNA replication and point of convergence of numerous functionally redundant signaling pathways involved in cell cycle progression and transcriptional silencing of apoptotic programmes. ORC subunits in the mammalian brain and their homologes in Drosophila, however, have further been implicated in the regulation of structural neuronal plasticity and cognitive function. We propose that the abnormal subcellular distribution and segregation of ORC proteins in AD might compromise their physiological function in gene silencing and plasticity. This might result in cell cycle activation, DNA-replication and de-repression of apoptotic programmes. ORC subunits might, thus, provide a direct molecular link between synaptic plasticity, DNA replication and cell death.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Ciclo Celular , Plasticidade Neuronal/fisiologia , Sinapses/patologia , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Humanos , Modelos Neurológicos , Complexo de Reconhecimento de Origem/análise , Sinapses/fisiologia
6.
FEMS Microbiol Lett ; 261(1): 12-8, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16842352

RESUMO

DNA replication takes place at five different stages during the life cycle of Plasmodium falciparum including the human and mosquito hosts. DNA replication initiation, the rate-determining step is poorly understood in Plasmodium. Here we show that PfMCM4 and PfORC1, two members of prereplication initiation complex are expressed specifically in the nucleus during the trophozoite and schizont stages of the asexual parasitic life cycle where maximum amount of DNA replication takes place. Further, we show that these proteins are also expressed in gametocytes, where DNA replication also occurs. These results expand our knowledge on these proteins and resolves discrepancies arising from previous studies with respect to the expression pattern of replication initiation proteins during the parasite's life cycle.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eritrócitos/parasitologia , Complexo de Reconhecimento de Origem/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Transativadores/metabolismo , Animais , Culicidae/parasitologia , Replicação do DNA , Humanos , Complexo de Reconhecimento de Origem/análise , Complexo de Reconhecimento de Origem/fisiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/análise , Proteínas de Protozoários/fisiologia , Reprodução , Reprodução Assexuada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...