Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 477: 116697, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734572

RESUMO

Arsenic exposure is associated with an increased risk of many cancers, and epigenetic mechanisms play a crucial role in arsenic-mediated carcinogenesis. Our previous studies have shown that arsenic exposure induces polyadenylation of H3.1 mRNA and inhibits the deposition of H3.3 at critical gene regulatory elements. However, the precise underling mechanisms are not yet understood. To characterize the factors governing arsenic-induced inhibition of H3.3 assembly through H3.1 mRNA polyadenylation, we utilized mass spectrometry to identify the proteins, especially histone chaperones, with reduced binding affinity to H3.3 under conditions of arsenic exposure and polyadenylated H3.1 mRNA overexpression. Our findings reveal that the interaction between H3.3 and the histone chaperon protein MCM2 is diminished by both polyadenylated H3.1 mRNA overexpression and arsenic treatment in human lung epithelial BEAS-2B cells. The increased binding of MCM2 to H3.1, resulting from elevated H3.1 protein levels, appears to contribute to the reduced availability of MCM2 for H3.3. To further investigate the role of MCM2 in H3.3 deposition during arsenic exposure and H3.1 mRNA polyadenylation, we overexpressed MCM2 in BEAS-2B cells overexpressing polyadenylated H3.1 or exposed to arsenic. Our results demonstrate that MCM2 overexpression attenuates H3.3 depletion at several genomic loci, suggesting its involvement in the arsenic-induced displacement of H3.3 mediated by H3.1 mRNA polyadenylation. These findings suggest that changes in the association between histone chaperone MCM2 and H3.3 due to polyadenylation of H3.1 mRNA may play a pivotal role in arsenic-induced carcinogenesis.


Assuntos
Arsênio , Humanos , Arsênio/toxicidade , Arsênio/química , Chaperonas de Histonas/genética , Carcinogênese , Genômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo
2.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641492

RESUMO

An efficient self-cleavable purification tag could be a powerful tool for purifying recombinant proteins and peptides without additional proteolytic processes using specific proteases. Thus, the intein-mediated self-cleavage tag was developed and has been commercially available as the IMPACT™ system. However, uncontrolled cleavages of the purification tag by the inteins in the IMPACT™ system have been reported, thereby reducing final yields. Therefore, controlling the protein-splicing activity of inteins has become critical. Here we utilized conditional protein splicing by salt conditions. We developed the inducible intein-mediated self-cleaving tag (IIST) system based on salt-inducible protein splicing of the MCM2 intein from the extremely halophilic archaeon, Halorhabdus utahensis and applied it to small peptides. Moreover, we described a method for the amidation using the same IIST system and demonstrated 15N-labeling of the C-terminal amide group of a single domain antibody (VHH).


Assuntos
Amidas/química , Proteínas de Fluorescência Verde/isolamento & purificação , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Fragmentos de Peptídeos/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Cromatografia de Afinidade , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Halobacteriaceae/química , Halobacteriaceae/metabolismo , Inteínas , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência
3.
Genes Genet Syst ; 94(3): 123-132, 2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31092751

RESUMO

Cellular aging is characterized by the loss of DNA replication capability and is mainly brought about by various changes in chromatin structure. Here, we examined changes in MCM2-7 proteins, which act as a replicative DNA helicase, during aging of human WI38 fibroblasts at the single-cell level. We used nuclear accumulation of p21 as a marker of senescent cells, and examined changes in MCM2-7 by western blot analysis. First, we found that senescent cells are enriched for cells with a DNA content higher than 4N. Second, the levels of MCM2, MCM3, MCM4 and MCM6 proteins decreased in senescent cells. Third, cytoplasmic localization of MCM2 and MCM7 was observed in senescent cells, from an analysis of MCM2-7 except for MCM5. Consistent with this finding, fragmented MCM2 was predominant in these cells. These age-dependent changes in MCM2-7, a protein complex that directly affects cellular DNA replication, may play a critical role in cellular senescence.


Assuntos
Senescência Celular/genética , Replicação do DNA/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Complexos Multiproteicos/genética , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica/genética , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Componente 3 do Complexo de Manutenção de Minicromossomo/genética , Componente 4 do Complexo de Manutenção de Minicromossomo/genética , Componente 6 do Complexo de Manutenção de Minicromossomo/genética , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Complexos Multiproteicos/química , Análise de Célula Única , Quinases Ativadas por p21/genética
4.
J Biol Chem ; 292(31): 13008-13021, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28646110

RESUMO

The protein mini-chromosome maintenance 10 (Mcm10) was originally identified as an essential yeast protein in the maintenance of mini-chromosome plasmids. Subsequently, Mcm10 has been shown to be required for both initiation and elongation during chromosomal DNA replication. However, it is not fully understood how the multiple functions of Mcm10 are coordinated or how Mcm10 interacts with other factors at replication forks. Here, we identified and characterized the Mcm2-7-interacting domain in human Mcm10. The interaction with Mcm2-7 required the Mcm10 domain that contained amino acids 530-655, which overlapped with the domain required for the stable retention of Mcm10 on chromatin. Expression of truncated Mcm10 in HeLa cells depleted of endogenous Mcm10 via siRNA revealed that the Mcm10 conserved domain (amino acids 200-482) is essential for DNA replication, whereas both the conserved and the Mcm2-7-binding domains were required for its full activity. Mcm10 depletion reduced the initiation frequency of DNA replication and interfered with chromatin loading of replication protein A, DNA polymerase (Pol) α, and proliferating cell nuclear antigen, whereas the chromatin loading of Cdc45 and Pol ϵ was unaffected. These results suggest that human Mcm10 is bound to chromatin through the interaction with Mcm2-7 and is primarily involved in the initiation of DNA replication after loading of Cdc45 and Pol ϵ.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação , Transporte Ativo do Núcleo Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Componente 7 do Complexo de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/antagonistas & inibidores , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Estabilidade Proteica , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Mutação Silenciosa , Homologia Estrutural de Proteína
5.
Int. braz. j. urol ; 42(6): 1121-1128, Nov.-Dec. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-828921

RESUMO

ABSTRACT Introduction/Background: Fuhrman nuclear grade is the most important histological parameter to predict prognosis in a patient of renal cell carcinoma (RCC). However, it suffers from inter-observer and intra-observer variation giving rise to need of a parameter that not only correlates with nuclear grade but is also objective and reproducible. Proliferation is the measure of aggressiveness of a tumour and it is strongly correlated with Fuhrman nuclear grade, clinical survival and recurrence in RCC. Ki-67 is conventionally used to assess proliferation. Mini-chromosome maintenance 2 (MCM-2) is a lesser known marker of proliferation and identifies a greater proliferation faction. This study was designed to assess the prognostic significance of MCM-2 by comparing it with Fuhrman nuclear grade and Ki-67. Material and Methods: n=50 cases of various ages, stages, histological subtypes and grades of RCC were selected for this study. Immunohistochemical staining using Ki-67(MIB-1, Mouse monoclonal antibody, Dako) and MCM-2 (Mouse monoclonal antibody, Thermo) was performed on the paraffin embedded blocks in the department of Morbid anatomy and Histopathology, University of Health Sciences, Lahore. Labeling indices (LI) were determined by two pathologists independently using quantitative and semi-quantitative analysis. Statistical analysis was carried out using SPSS 20.0. Kruskall-Wallis test was used to determine a correlation of proliferation markers with grade, and Pearson's correlate was used to determine correlation between the two proliferation markers. Results: Labeling index of MCM-2 (median=24.29%) was found to be much higher than Ki-67(median=13.05%). Both markers were significantly related with grade (p=0.00; Kruskall-Wallis test). LI of MCM-2 was found to correlate significantly with LI of Ki-67(r=0.0934;p=0.01 with Pearson's correlate). Results of semi-quantitative analysis correlated well with quantitative analysis. Conclusion: Both Ki-67 and MCM-2 are markers of proliferation which are closely linked to grade. Therefore, they can act as surrogate markers for grade in a manner that is more objective and reproducible.


Assuntos
Humanos , Masculino , Feminino , Carcinoma de Células Renais/patologia , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Ki-67/análise , Proliferação de Células , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Neoplasias Renais/patologia , Imuno-Histoquímica , Variações Dependentes do Observador , Gradação de Tumores , Pessoa de Meia-Idade , Estadiamento de Neoplasias
6.
Cell Signal ; 28(12): 1852-1862, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27592030

RESUMO

In eukaryotes, proper loading and activation of MCM helicase at chromosomal origins plays a central role in DNA replication. Activation of MCM helicase requires its association with CDC45-GINS complex, but the mechanism of how this complex activates MCM helicase is poorly understood. Here we identified SIK1 (salt-inducible kinase 1), an AMPK related protein kinase, as a molecular link that connects GINS complex with MCM helicase activity. We demonstrated that Sld5 a component of GINS complex interacts with SIK1 and recruits it to the sites of DNA replication at the onset of S phase. Depletion of SIK1 leads to defective DNA replication. Further, we showed that SIK1 phosphorylates MCM2 at five conserved residues at its N-terminus, which is essential for the activation of MCM helicase. Collectively, our results suggest SIK1 as a novel integral component of CMG replicative helicase during eukaryotic DNA replication.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Fase G1 , Células HeLa , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Modelos Biológicos , Fosforilação , Fase S
7.
Int Braz J Urol ; 42(6): 1121-1128, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27532114

RESUMO

INTRODUCTION/BACKGROUND: Fuhrman nuclear grade is the most important histological parameter to predict prognosis in a patient of renal cell carcinoma (RCC). However, it suffers from inter-observer and intra-observer variation giving rise to need of a parameter that not only correlates with nuclear grade but is also objective and reproducible. Proliferation is the measure of aggressiveness of a tumour and it is strongly correlated with Fuhrman nuclear grade, clinical survival and recurrence in RCC. Ki-67 is conventionally used to assess proliferation. Mini-chromosome maintenance 2 (MCM-2) is a lesser known marker of proliferation and identifies a greater proliferation faction. This study was designed to assess the prognostic significance of MCM-2 by comparing it with Fuhrman nuclear grade and Ki-67. MATERIAL AND METHODS: n=50 cases of various ages, stages, histological subtypes and grades of RCC were selected for this study. Immunohistochemical staining using Ki-67(MIB-1, Mouse monoclonal antibody, Dako) and MCM-2 (Mouse monoclonal antibody, Thermo) was performed on the paraffin embedded blocks in the department of Morbid anatomy and Histopathology, University of Health Sciences, Lahore. Labeling indices (LI) were determined by two pathologists independently using quantitative and semi-quantitative analysis. Statistical analysis was carried out using SPSS 20.0. Kruskall-Wallis test was used to determine a correlation of proliferation markers with grade, and Pearson's correlate was used to determine correlation between the two proliferation markers. RESULTS: Labeling index of MCM-2 (median=24.29%) was found to be much higher than Ki-67(median=13.05%). Both markers were significantly related with grade (p=0.00; Kruskall-Wallis test). LI of MCM-2 was found to correlate significantly with LI of Ki-67(r=0.0934;p=0.01 with Pearson's correlate). Results of semi-quantitative analysis correlated well with quantitative analysis. CONCLUSION: Both Ki-67 and MCM-2 are markers of proliferation which are closely linked to grade. Therefore, they can act as surrogate markers for grade in a manner that is more objective and reproducible.


Assuntos
Carcinoma de Células Renais/patologia , Proliferação de Células , Antígeno Ki-67/análise , Neoplasias Renais/patologia , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Antígeno Nuclear de Célula em Proliferação/química , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Variações Dependentes do Observador
10.
Nat Struct Mol Biol ; 22(8): 618-26, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26167883

RESUMO

During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication.


Assuntos
Replicação do DNA , Histonas/química , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Modelos Moleculares , Chaperonas Moleculares/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Western Blotting , Linhagem Celular Tumoral , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica , Interferência de RNA , Homologia de Sequência de Aminoácidos
11.
Nucleic Acids Res ; 43(3): 1905-17, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25618846

RESUMO

MCM2 is a subunit of the replicative helicase machinery shown to interact with histones H3 and H4 during the replication process through its N-terminal domain. During replication, this interaction has been proposed to assist disassembly and assembly of nucleosomes on DNA. However, how this interaction participates in crosstalk with histone chaperones at the replication fork remains to be elucidated. Here, we solved the crystal structure of the ternary complex between the histone-binding domain of Mcm2 and the histones H3-H4 at 2.9 Å resolution. Histones H3 and H4 assemble as a tetramer in the crystal structure, but MCM2 interacts only with a single molecule of H3-H4. The latter interaction exploits binding surfaces that contact either DNA or H2B when H3-H4 dimers are incorporated in the nucleosome core particle. Upon binding of the ternary complex with the histone chaperone ASF1, the histone tetramer dissociates and both MCM2 and ASF1 interact simultaneously with the histones forming a 1:1:1:1 heteromeric complex. Thermodynamic analysis of the quaternary complex together with structural modeling support that ASF1 and MCM2 could form a chaperoning module for histones H3 and H4 protecting them from promiscuous interactions. This suggests an additional function for MCM2 outside its helicase function as a proper histone chaperone connected to the replication pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Calorimetria , Cromatografia em Gel , Drosophila melanogaster , Humanos , Espectroscopia de Ressonância Magnética , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Ligação Proteica , Conformação Proteica , Termodinâmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...