Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
J Inorg Biochem ; 251: 112436, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016328

RESUMO

The successful choice of hit compounds during drug development programs involves the integration of structure-activity relationship (SAR) studies with pharmacokinetic determinations, including metabolic stability assays and metabolite profiling. A panel of nine ruthenium-cyclopentadienyl (RuCp) compounds with the general formula [Ru(η5-C5H4R)(PPh3)(bipyR')]+ (with R = H, CHO, CH2OH; R' = H, CH3, CH2OH, CH2Biotin) has been tested against hormone-dependent MCF-7 and triple negative MDA-MB-231 breast cancer cells. In general, all compounds showed important cytotoxicity against both cancer cell lines and were able to inhibit the formation of MDA-MB-231 colonies in a dose-dependent manner, while showing selectivity for cancer cells over normal fibroblasts. Among them, four compounds stood out as lead structures to be further studied. Cell distribution assays revealed their preference for the accumulation at cell membrane (Ru quantification by ICP-MS) and the mechanism of cell death seemed to be mediated by apoptosis. Potential structural liabilities of lead compounds were subsequently flagged upon in vitro metabolic stability assays and metabolite profiling. The implementation of this integrated strategy led to the selection of RT151 as a promising hit compound.


Assuntos
Antineoplásicos , Neoplasias da Mama , Complexos de Coordenação , Rutênio , Humanos , Feminino , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Rutênio/química , Compostos de Rutênio/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Complexos de Coordenação/química
2.
J Med Chem ; 66(20): 14080-14094, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37616241

RESUMO

The search for more effective and selective drugs to overcome cancer multidrug resistance is urgent. As such, a new series of ruthenium-cyclopentadienyl ("RuCp") compounds with the general formula [Ru(η5-C5H4R)(4,4'-R'-2,2'-bipy)(PPh3)] were prepared and fully characterized. All compounds were evaluated toward non-small cell lung cancer cells with different degrees of cisplatin sensitivity (A549, NCI-H2228, Calu-3, and NCI-H1975), showing better cytotoxicity than the first-line chemotherapeutic drug cisplatin. Compounds 2 and 3 (R' = -OCH3; R = CHO (2) or CH2OH (3)) further inhibited the activity of P-gp and MRP1 efflux pumps by impairing their catalytic activity. Molecular docking calculations identified the R-site P-gp pocket as the preferred one, which was further validated using site-directed mutagenesis experiments in P-gp. Altogether, our results unveil the first direct evidence of the interaction between P-gp and "RuCp" compounds in the modulation of P-gp activity and establish them as valuable candidates to circumvent cancer MDR.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Rutênio , Humanos , Antineoplásicos/farmacologia , Rutênio/farmacologia , Cisplatino/farmacologia , Simulação de Acoplamento Molecular , Compostos de Rutênio/farmacologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos
3.
Dalton Trans ; 51(10): 3937-3953, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35171173

RESUMO

Ruthenium complexes are being studied extensively as anticancer drugs following the inclusion of NAMI-A and KP1019 in phase II clinical trials for the treatment of metastatic phase and primary tumors. Herein, we designed and synthesized four organometallic Ru(II)-arene complexes [Ru(η6-p-cymene)(L)Cl] (1), [Ru(η6-benzene)(L)Cl] (2), [Ru(η6-p-cymene)(L)N3] (3) and [Ru(η6-benzene)(L)N3] (4) [HL = (E)-N'-(pyren-1-ylmethylene)thiopene-2-carbohydrazide] that have anticancer, antimetastatic and two-photon cell imaging abilities. Moreover, in the transfer hydrogenation of NADH to NAD+, these compounds also display good catalytic activity. All the complexes, 1-4, are well characterized by spectroscopic techniques (NMR, mass, FTIR, UV-vis and fluorescence). The single crystal X-ray diffraction technique proved that the ligand L coordinates through an N,O-bidentate chelating fashion in the solid-state structures of complexes 1 and 2. The stability study of the complexes was performed through UV-visible spectroscopy. The cytotoxicities of all the complexes were screened through MTT assay and the results revealed that the complexes have potential anticancer activity against various cancerous cells (HeLa, MCF7 and A431). Studies with spectroscopic techniques revealed that complexes 1-4 exhibit strong interactions with biological molecules i.e. proteins (HSA and BSA) and CT-DNA. The density functional theory (DFT-D) method has been employed in the present study to know the interaction between DNA and complexes by calculating the HOMO and LUMO energy. A plausible mechanism for NADH oxidation has also been explored and the DFT calculations are found to be in accord with the experimental observation. Furthermore, we have investigated intracellular reactive oxygen species (ROS) generation capabilities in the MCF7 breast cancer cell line. The Hoechst/PI dual staining method confirmed the apoptosis mode of cell death. Meanwhile, complexes 1-4 show capabilities to prevent the metastasis phase of cancer cells by inhibiting cell migration.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Pirenos/química , Compostos de Rutênio/química , Compostos de Rutênio/farmacologia , Antineoplásicos/síntese química , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Complexos de Coordenação , DNA/química , Humanos , Ligação Proteica , Compostos de Rutênio/síntese química , Análise de Célula Única
4.
Molecules ; 27(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056783

RESUMO

To meet the demand for alternatives to commonly used antibiotics, this paper evaluates the antimicrobial potential of arene-ruthenium(II) complexes and their salts, which may be of value in antibacterial treatment. Their antimicrobial activity (MIC, MBC/MFC) was examined in vitro against Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus vulgaris and Candida albicans and compared with classic antibiotics used as therapeutics. Selected arene-ruthenium(II) complexes were found to have synergistic effects with oxacillin and vancomycin against staphylococci. Their bactericidal effect was found to be associated with cell lysis and the ability to cut microbial DNA. To confirm the safety of the tested arene-ruthenium(II) complexes in vivo, their cytotoxicity was also investigated against normal human foreskin fibroblasts (HFF-1). In addition, the antioxidant and thus pro-health potential of the compounds, i.e., their nonenzymatic antioxidant capacity (NEAC), was determined by two different methods: ferric-TPTZ complex and DPPH assay.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Hidrocarbonetos Aromáticos/farmacologia , Pirazóis/farmacologia , Compostos de Rutênio/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Fibroblastos/efeitos dos fármacos , Prepúcio do Pênis/citologia , Prepúcio do Pênis/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Humanos , Hidrocarbonetos Aromáticos/química , Masculino , Oxacilina/farmacologia , Pirazóis/química , Compostos de Rutênio/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Vancomicina/farmacologia
5.
Dalton Trans ; 51(4): 1489-1501, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34989381

RESUMO

We have synthesized and characterized three new ruthenium(II) diphosphine complexes containing an acylthiourea ligand, with the general formula [Ru(DPEPhos)(O,S)(bipy)]PF6, where DPEPhos = bis(2-(diphenylphosphino)phenyl)ether, bipy = 2,2'-bipyridine, and O,S = N,N-dimethyl-N'-(benzoyl)thiourea (1), N,N-dimethyl-N'-(furoyl)thiourea (2), and N,N-dimethyl-N'-(thiophenyl)thiourea (3), by several physicochemical techniques. We evaluated the ruthenium complexes for their cytotoxicity against two human cancer cell lines, A549 (lung) and MDA-MB-231 (breast), and two corresponding lines of non-cancer cells, MRC-5 (lung) and MCF-10A (breast). All the complexes are cytotoxic against the cancer cell lines; the IC50 values lie in the micromolar range (0.07-0.70 µM). Ruthenium complex 1 is more selective (7 times more active) toward lung cancer cells (A549) than toward non-cancer cells (MRC-5) and is 160 times more cytotoxic than cisplatin against A549 cells. Investigations of the mechanism of action of complex 1 in A549 cells demonstrated that it inhibits colony formation and promotes cell cycle arrest in the G1 phase and apoptotic cell death. DNA binding studies revealed that complexes 1-3 interact with the biomolecule via minor grooves. These complexes also interact with human serum albumin (HSA) and have affinity for site I by hydrophobic forces. Therefore, this new class of ruthenium complexes can act as cytotoxic agents, mainly for lung cancer treatment.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Compostos de Rutênio/farmacologia , Tioureia/análogos & derivados , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/uso terapêutico , Feminino , Humanos , Compostos de Rutênio/síntese química , Compostos de Rutênio/uso terapêutico , Tioureia/química
6.
Dalton Trans ; 51(5): 1888-1900, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018930

RESUMO

The purpose of this study was to investigate the correlation between the spectroscopic and photophysical properties of Ru(II) polypyridyl complexes and their photodynamic activity in vitro. A series of Ru(II) polypyridyl complexes with 4,7-diphenyl-1,10-phenanthroline (dip) and 2,3-bis(2-pyridyl)quinoxaline (dpq) and its derivatives were synthesized and characterized regarding their photophysical, biological, and photodynamic properties. The complexes were evaluated not only in the context of 1O2 generation but also regarding other types of reactive oxygen species (ROS) to assess the possibility of Ru(II) complexes to induce phototoxicity via various ROS using fluorescence and EPR spectroscopy. The compounds were found to be moderately cytotoxic with IC50 values ranging from 1 to 35 µM and retained their cytotoxic activity under hypoxic conditions. The unraveled phototoxic activity is based mainly on the generation of H2O2 and 1O2, highlighting the importance of electron-transfer processes in the observed photodynamic activity of Ru polypyridyl complexes. A combination of photodynamic activity with cytotoxicity under decreased dioxygen concentrations may help overcome the current photodynamic therapy (PDT) limitation. The findings highlight the need for broadening the scope of tested Ru-based photosensitizers.


Assuntos
Transporte de Elétrons/fisiologia , Oxigênio/metabolismo , Fenantrolinas/química , Compostos de Rutênio/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Sistema Livre de Células , Humanos , Peróxido de Hidrogênio , Camundongos , Modelos Moleculares , Estrutura Molecular , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio , Compostos de Rutênio/química
7.
Braz J Microbiol ; 53(1): 179-184, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34741282

RESUMO

OBJECTIVES: The present study aims to evaluate the antimicrobial property of Casiopeinas® copper- and ruthenium-based compounds against Aggregatibacter actinomycetemcomitans serotype b (ATCC® 43,718™), as well as the cytotoxicity on an osteoblasts cell line of both compounds. MATERIAL AND METHODS: The antibacterial effect of the copper-based compounds (CasII-gly, CasIII-ia) and the ruthenium-based compound (RuN-6) at four different concentrations was evaluated as the inhibition ratio of the bacterial growth after 48 h under anaerobic conditions, and the cell viability was measured through resazurin assay. RESULTS: The copper- and ruthenium-based compounds used for this assay were (CasII-gly, CasIII-ia, and RuN-6), showing inhibitory activity between 39 and 62% compared to the antibiotic employed as control 66%. Cell viability was established between 61 and 96%. CONCLUSIONS: Casiopeinas® and ruthenium showed dose and time dependent, inhibitory activity on A. actinomycetemcomitans, and low toxicity on cells (osteoblast) underexposure. The compound CasII-gly showed the best antimicrobial effect, and it could be considered a possible antimicrobial agent in periodontal therapy.


Assuntos
Aggregatibacter actinomycetemcomitans , Rutênio , Sobrevivência Celular , Cobre/farmacologia , Osteoblastos , Rutênio/farmacologia , Compostos de Rutênio/farmacologia
8.
Dalton Trans ; 51(3): 1099-1111, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34935812

RESUMO

Four new ruthenium(II) polypyridine complexes bearing 18ß-glycyrrhetinic acid derivatives, [Ru(bpy)2L](PF6)2 (Ru1), [Ru(dmb)2L](PF6)2 (Ru2), [Ru(dtb)2L](PF6)2 (Ru3) and [Ru(phen)2L](PF6)2 (Ru4) (bpy = 2,2-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine, dtb = 4,4'-di-tert-butyl-2,2'-bipyridine, phen = 1,10-phenanthroline and L is the GA modified new ligand) were designed and synthesized. Their antimicrobial activities against Staphylococcus aureus (S. aureus) were evaluated and all complexes showed an obvious inhibitory effect, especially, the minimum inhibitory concentration (MIC) value of Ru2 was 3.9 µg mL-1. Moreover, Ru2 was found to significantly inhibit the formation of biofilms. The membrane-compromising action mode was suggested to be their potential antibactericidal mechanism. In hemolysis experiments, Ru2 hardly showed cytotoxicity to mammalian erythrocytes. Furthermore, the synergism between Ru2 and common antibiotics, such as ampicillin, chloramphenicol, tetracyclines and ofloxacin, against S. aureus was also detected using the checkerboard method. Finally, a mouse skin infection model was established to evaluate the antibacterial activity of Ru2in vivo, and the results showed that Ru2 could effectively promote wound healing in mice infected with S. aureus. Moreover, the results of histopathological research were consistent with the results of the hemolysis test, indicating that the Ru2 complex was almost non-toxic. Thus, it was demonstrated that the polypyridine ruthenium complexes modified with glycyrrhetinic acid (GA) are a promising strategy for developing interesting antibacterial agents.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Ácido Glicirretínico/farmacologia , Compostos de Rutênio/síntese química , Compostos de Rutênio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos de Rutênio/efeitos adversos , Pele/efeitos dos fármacos , Testes de Irritação da Pele
9.
Toxicol Appl Pharmacol ; 434: 115822, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896434

RESUMO

Our recent investigation directed to synthesize a novel ruthenium-phloretin complex accompanied by the study of antioxidant in addition to DNA binding capabilities, to determine the chemotherapeutic activity against breast carcinoma in vitro and in vivo. Ruthenium-phloretin complex was synthesized and characterized by different spectroscopic methods. The complex was further investigated to determine its efficacy in both MCF-7 and MDA-MB-231 human carcinoma cell lines and finally in an in vivo model of mammary carcinogenesis induced by DMBA in rats. Our studies confirm that the chelation of the metal and ligand was materialize by the 3-OH and 9-OH functional groups of the ligand and the complex is found crystalline and was capable of intercalating with CT-DNA. The complex was capable of reducing cellular propagation and initiate apoptotic events in MCF-7 and MDA-MB-231 breast carcinoma cell lines. Ruthenium-phloretin complex could modulate p53 intervene apoptosis in the breast carcinoma, initiated by the trail of intrinsic apoptosis facilitated through Bcl2 and Bax and at the same time down regulating the PI3K/Akt/mTOR pathway coupled with MMP9 regulated tumor invasive pathways. Ruthenium-phloretin chemotherapy could interrupt, revoke or suspend the succession of breast carcinoma by altering intrinsic apoptosis along with the anti-angiogenic pathway.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Malus/química , Floretina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Compostos de Rutênio/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Mamárias Animais/induzido quimicamente , Neoplasias Mamárias Animais/tratamento farmacológico , Camundongos , Neoplasias Experimentais , Floretina/química , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Compostos de Rutênio/química , Compostos de Rutênio/toxicidade , Serina-Treonina Quinases TOR , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Biomolecules ; 11(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944502

RESUMO

Metal-based drugs represent a rich source of chemical substances of potential interest for the treatment of COVID-19. To this end, we have developed a small but representative panel of nine metal compounds, including both synthesized and commercially available complexes, suitable for medical application and tested them in vitro against the SARS-CoV-2 virus. The screening revealed that three compounds from the panel, i.e., the organogold(III) compound Aubipyc, the ruthenium(III) complex KP1019, and antimony trichloride (SbCl3), are endowed with notable antiviral properties and an acceptable cytotoxicity profile. These initial findings prompted us to perform a computational study to unveil the likely molecular basis of their antiviral actions. Calculations evidenced that the metalation of nucleophile sites in SARS-CoV-2 proteins or nucleobase strands, induced by Aubipyc, SbCl3, and KP1019, is likely to occur. Remarkably, we found that only the deprotonated forms of Cys and Sec residues can react favorably with these metallodrugs. The mechanistic implications of these findings are discussed.


Assuntos
2,2'-Dipiridil/análogos & derivados , Antimônio/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Cloretos/farmacologia , Indazóis/farmacologia , Compostos Organoáuricos/farmacologia , Compostos Organometálicos/farmacologia , Compostos de Rutênio/farmacologia , SARS-CoV-2/efeitos dos fármacos , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacologia , Animais , Antimônio/química , Antivirais/química , Linhagem Celular , Cloretos/química , Chlorocebus aethiops , Descoberta de Drogas , Humanos , Indazóis/química , Compostos Organoáuricos/química , Compostos Organometálicos/química , Compostos de Rutênio/química , Células Vero
11.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638791

RESUMO

Ruthenium complexes are developed as substitutes for platinum complexes to be used in the chemotherapy of hematological and gynecological malignancies, such as ovarian cancer. We synthesized and screened 14 ruthenium half-sandwich complexes with bidentate monosaccharide ligands in ovarian cancer cell models. Four complexes were cytostatic, but not cytotoxic on A2780 and ID8 cells. The IC50 values were in the low micromolar range (the best being 0.87 µM) and were similar to or lower than those of the clinically available platinum complexes. The active complexes were cytostatic in cell models of glioblastoma, breast cancer, and pancreatic adenocarcinoma, while they were not cytostatic on non-transformed human skin fibroblasts. The bioactive ruthenium complexes showed cooperative binding to yet unidentified cellular target(s), and their activity was dependent on reactive oxygen species production. Large hydrophobic protective groups on the hydroxyl groups of the sugar moiety were needed for biological activity. The cytostatic activity of the ruthenium complexes was dependent on reactive species production. Rucaparib, a PARP inhibitor, potentiated the effects of ruthenium complexes.


Assuntos
Neoplasias/tratamento farmacológico , Compostos de Rutênio/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Espécies Reativas de Oxigênio , Compostos de Rutênio/síntese química , Compostos de Rutênio/química , Compostos de Rutênio/uso terapêutico
12.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34639127

RESUMO

Toxoplasma gondii is an apicomplexan parasite that infects and proliferates within many different types of host cells and infects virtually all warm-blooded animals and humans. Trypanosoma brucei is an extracellular kinetoplastid that causes human African trypanosomiasis and Nagana disease in cattle, primarily in rural sub-Saharan Africa. Current treatments against both parasites have limitations, e.g., suboptimal efficacy and adverse side effects. Here, we investigate the potential cellular and molecular targets of a trithiolato-bridged arene ruthenium complex conjugated to 9-(2-hydroxyethyl)-adenine (1), which inhibits both parasites with IC50s below 10-7 M. Proteins that bind to 1 were identified using differential affinity chromatography (DAC) followed by shotgun-mass spectrometry. A trithiolato-bridged ruthenium complex decorated with hypoxanthine (2) and 2-hydroxyethyl-adenine (3) were included as controls. Transmission electron microscopy (TEM) revealed distinct ultrastructural modifications in the mitochondrion induced by (1) but not by (2) and (3) in both species. DAC revealed 128 proteins in T. gondii and 46 proteins in T. brucei specifically binding to 1 but not 2 or 3. In T. gondii, the most abundant was a protein with unknown function annotated as YOU2. This protein is a homolog to the human mitochondrial inner membrane translocase subunit Tim10. In T. brucei, the most abundant proteins binding specifically to 1 were mitochondrial ATP-synthase subunits. Exposure of T. brucei bloodstream forms to 1 resulted in rapid breakdown of the ATP-synthase complex. Moreover, both datasets contained proteins involved in key steps of metabolism and nucleic acid binding proteins.


Assuntos
Nucleotídeos/química , Compostos de Rutênio/farmacologia , Compostos de Sulfidrila/química , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase/tratamento farmacológico , Humanos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas de Protozoários/metabolismo , Compostos de Rutênio/química , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Trypanosoma brucei brucei/metabolismo , Tripanossomíase/metabolismo , Tripanossomíase/parasitologia
13.
Crit Rev Oncog ; 26(2): 73-78, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347974

RESUMO

The expansion of metal-based complexes in the last 20 years has been very intense and many metals have been involved. Among the many compounds studied, the ruthenium-based complex NAMI-A embodies the unique paradigm of the ability to selectively inhibiting and preventing the development and the growth of distant metastases originating from solid tumors in all the tumor models on which it has been tested. An activity that can be detected only in vivo since the compound is virtually free of measurable direct cell cytotoxicity in vitro. Recently, a published paper reported on a significant in vitro cytotoxicity against some leukemic cells. The present study was undertaken to reproduce those experiments to further support this novel antileukemic activity that would have put NAMI-A on a new trajectory for development. Our results do not confirm the efficacy of NAMI-A in vitro against the human HL-60 promyelocytic leukemia cell line either using test cultures identical to those reported in the study of reference or in even more stressed conditions, supporting the lack of in vitro direct cell cytotoxicity of NAMI-A. The present study also helps to elucidate that many factors can influence the outcome of in vitro tests of cytotoxicity and suggests caution to speculate on possible therapeutic properties based on the results of simple and reductive in vitro tests of cytotoxicity.


Assuntos
Antineoplásicos , Leucemia , Compostos Organometálicos , Compostos de Rutênio , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Dimetil Sulfóxido/análogos & derivados , Humanos , Leucemia/tratamento farmacológico , Compostos Organometálicos/farmacologia , Compostos de Rutênio/farmacologia
14.
J Biol Inorg Chem ; 26(6): 667-674, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34378103

RESUMO

The known ruthenium complex [Ru(tpy)(bpy)(Hmte)](PF6)2 ([1](PF6)2, where tpy = 2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, Hmte = 2-(methylthio)ethanol) is photosubstitutionally active but non-toxic to cancer cells even upon light irradiation. In this work, the two analogs complexes [Ru(tpy)(NN)(Hmte)](PF6)2, where NN = 3,3'-biisoquinoline (i-biq, [2](PF6)2) and di(isoquinolin-3-yl)amine (i-Hdiqa, [3](PF6)2), were synthesized and their photochemistry and phototoxicity evaluated to assess their suitability as photoactivated chemotherapy (PACT) agents. The increase of the aromatic surface of [2](PF6)2 and [3](PF6)2, compared to [1](PF6)2, leads to higher lipophilicity and higher cellular uptake for the former complexes. Such improved uptake is directly correlated to the cytotoxicity of these compounds in the dark: while [2](PF6)2 and [3](PF6)2 showed low EC50 values in human cancer cells, [1](PF6)2 is not cytotoxic due to poor cellular uptake. While stable in the dark, all complexes substituted the protecting thioether ligand upon light irradiation (520 nm), with the highest photosubstitution quantum yield found for [3](PF6)2 (Φ[3] = 0.070). Compounds [2](PF6)2 and [3](PF6)2 were found both more cytotoxic after light activation than in the dark, with a photo index of 4. Considering the very low singlet oxygen quantum yields of these compounds, and the lack of cytotoxicity of the photoreleased Hmte thioether ligand, it can be concluded that the toxicity observed after light activation is due to the photoreleased aqua complexes [Ru(tpy)(NN)(OH2)]2+, and thus that [2](PF6)2 and [3](PF6)2 are promising PACT candidates.


Assuntos
Compostos de Rutênio/síntese química , Compostos de Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Rutênio , Compostos de Rutênio/química
15.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445620

RESUMO

The clinical success of cisplatin, carboplatin, and oxaliplatin has sparked the interest of medicinal inorganic chemistry to synthesize and study compounds with non-platinum metal centers. Despite Ru(II)-polypyridyl complexes being widely studied and well established for their antitumor properties, there are not enough in vivo studies to establish the potentiality of this type of compound. Therefore, we report to the best of our knowledge the first in vivo study of Ru(II)-polypyridyl complexes against breast cancer with promising results. In order to conduct our study, we used MCF7 zebrafish xenografts and ruthenium complexes [Ru(bipy)2(C12H8N6-N,N)][CF3SO3]2Ru1 and [{Ru(bipy)2}2(µ-C12H8N6-N,N)][CF3SO3]4Ru2, which were recently developed by our group. Ru1 and Ru2 reduced the tumor size by an average of 30% without causing significant signs of lethality when administered at low doses of 1.25 mg·L-1. Moreover, the in vitro selectivity results were confirmed in vivo against MCF7 breast cancer cells. Surprisingly, this work suggests that both the mono- and the dinuclear Ru(II)-polypyridyl compounds have in vivo potential against breast cancer, since there were no significant differences between both treatments, highlighting Ru1 and Ru2 as promising chemotherapy agents in breast cancer therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Compostos de Rutênio/química , Compostos de Rutênio/farmacologia , Animais , Apoptose , Neoplasias da Mama/patologia , Proliferação de Células , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Técnicas In Vitro , Estrutura Molecular , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
16.
Molecules ; 26(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200469

RESUMO

The photophysical and biological properties of two new phenanthroline-based ligand ruthenium complexes were investigated in detail. Their DNA interaction modes were determined to be the intercalation mode using spectra titration and viscosity measurements. Under irradiation, obvious photo-reduced DNA cleavages were observed in the two complexes via singlet oxygen generation. Furthermore, complex 2 showed higher DNA affinity, photocleavage activity, and singlet oxygen quantum yields than complex 1. The two complexes showed no toxicity towards tumor cells (HeLa, A549, and A375) in the dark. However, obvious photocytotoxicities were observed in the two complexes. Complex 2 exhibited large PIs (phototherapeutic indices) (ca. 400) towards HeLa cells. The study suggests that these complexes may act as DNA intercalators, DNA photocleavers, and photocytotoxic agents.


Assuntos
Clivagem do DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Fenantrolinas/farmacologia , Compostos de Rutênio/farmacologia , Células A549 , Linhagem Celular Tumoral , Células HeLa , Humanos , Substâncias Intercalantes/farmacologia , Ligantes , Compostos Organometálicos/farmacologia , Oxigênio Singlete/metabolismo
17.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299199

RESUMO

Continuing our studies on the mechanisms underlying the cytotoxicity of potential drugs, we have described several aspects of the in vitro anticancer activity of ruthenium(II) and platinum(II) complexes with bioactive, synthetic aminoflavone ligands. We examined the mechanism of proapoptotic activity of cis-dichlorobis(3-imino-2-methoxyflavanone)ruthenium(II), cis-dichlorobis(3-imino-2-ethoxyflavanone)ruthenium(II), and trans-dichlorobis(3-aminoflavone)platinum(II). Cisplatin was used as a reference compound. The cytotoxicity was investigated by MTT assay. The mechanism of proapoptotic activity of the tested compounds was investigated by evaluation of caspase-8 activity, cytometric analysis of annexin-V positive cells, and mitochondrial potential loss measurement. The results showed that ruthenium compounds break partially or completely the cisplatin resistance by activating the caspase 8-dependent apoptosis pathway and loss of mitochondrial membrane potential. Platinum compounds also have a cytostatic effect, but their action requires more exposure time. Potential mechanisms underlying drug resistance in the two pairs of cancer cell lines were investigated: total glutathione content, P-glycoprotein activity, and differences in the activity of DNA repair induced by nucleotide excision. Results showed that cisplatin-resistant cells have elevated glutathione levels relative to sensitive cells. Moreover, they indicated the mechanisms enabling cells to avoid apoptosis caused by DNA damage. Pg-P activity has no effect on the development of cisplatin resistance in the cell lines described.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Flavonoides/farmacologia , Neoplasias/tratamento farmacológico , Compostos de Platina/farmacologia , Compostos de Rutênio/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Cisplatino/farmacologia , Complexos de Coordenação/química , Resistencia a Medicamentos Antineoplásicos , Flavonoides/química , Humanos , Ligantes , Neoplasias/metabolismo , Neoplasias/patologia , Compostos de Platina/química , Compostos de Rutênio/química , Células Tumorais Cultivadas
18.
Molecules ; 26(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070457

RESUMO

Cisplatin and derivatives are highly effective in the treatment of a wide range of cancer types; however, these metallodrugs display low selectivity, leading to severe side effects. Additionally, their administration often results in the development of chemoresistance, which ultimately results in therapeutic failure. This scenario triggered the study of other transition metals with innovative pharmacological profiles as alternatives to platinum, ruthenium- (e.g., KP1339 and NAMI-A) and gold-based (e.g., Auranofin) complexes being among the most advanced in terms of clinical evaluation. Concerning the importance of improving the in vivo selectivity of metal complexes and the current relevance of ruthenium and gold metals, this review article aims to survey the main research efforts made in the past few years toward the design and biological evaluation of target-specific ruthenium and gold complexes. Herein, we give an overview of the inorganic and organometallic molecules conjugated to different biomolecules for targeting membrane proteins, namely cell adhesion molecules, G-protein coupled receptors, and growth factor receptors. Complexes that recognize the progesterone receptors or other targets involved in metabolic pathways such as glucose transporters are discussed as well. Finally, we describe some complexes aimed at recognizing cell organelles or compartments, mitochondria being the most explored. The few complexes addressing targeted gene therapy are also presented and discussed.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Compostos de Ouro/farmacologia , Compostos de Rutênio/farmacologia , Antineoplásicos/administração & dosagem , Moléculas de Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/administração & dosagem , Compostos de Ouro/administração & dosagem , Humanos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores de Fatores de Crescimento/efeitos dos fármacos , Compostos de Rutênio/administração & dosagem
19.
Toxicol Appl Pharmacol ; 426: 115618, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34126112

RESUMO

WHO suggests that colon cancer incidences are rising steadily, propelling researchers to search for novel chemotherapeutic options. Metal-based chemotherapy is a potential forte to explore ruthenium-based complexes, exhibiting the capability to influence a variety of cellular targets. We discovered the chemotherapeutic effects of ruthenium-rifampicin complex on HT-29 and HCT-116 human colorectal cell lines and on a chemically developed murine colorectal cancer model. Complex was synthesized and characterized by analytical techniques and evaluation of antioxidant potential along with DNA binding capabilities. The complex minimizes cellular propagation and initiates apoptotic events in the colon cancer cell lines of HT-29 and HCT-116. The results of the in vivo study suggest that the complex has been successful in minimizing the wide spectrum of aberrant crypt foci and hyperplastic lesions, as well as encouraging elevated amounts of CAT, SOD and glutathione. Along with that, p53 could be modulated by the ruthenium-rifampicin complex to interfere with apoptosis in colon carcinoma, initiated by the intrinsic apoptotic trail facilitated through Bcl2 and Bax, thus controlling the Akt/mTOR/VEGF pathway coupled through the WNT/ß-catenin trail. Ruthenium-rifampicin chemotherapy could interrupt, retract or interrupt the progression of colorectal cancer through modifying intrinsic apoptosis including the antiangiogenic pathway, thereby achieving the function of a potential contender in chemotherapy in the near future.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Rifampina/uso terapêutico , Compostos de Rutênio/uso terapêutico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Combinação de Medicamentos , Feminino , Células HCT116 , Células HT29 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Rifampina/farmacologia , Rifampina/toxicidade , Compostos de Rutênio/farmacologia , Compostos de Rutênio/toxicidade , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Top Curr Chem (Cham) ; 379(4): 29, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34109453

RESUMO

This review concentrates on recent developments in ruthenium Schiff bases, whose steric and electronic characteristics can be manipulated easily by selecting suitable condensing aldehydes or ketones and primary amines, and their metal complexes. Ruthenium metal-based complexes and Schiff base ligands are rapidly becoming conventionally considered for biological applications (antioxidant, anticancer, antimicrobial), in catalysis, in functional materials, in sensors, and as pigments for dyes. Ruthenium complexes exhibit a broad variety of activities concerning simple Schiff base ligands. This may be due to the octahedral bonding of both Ru(II) and Ru(III) complexes, which acquire an extended reservoir of a three-dimensional framework, providing the potential for an elevated degree of site selectivity for binding to their biological targets. This review provides an overview of this field, and intends to highlight both ligand design and synthetic methodology development, as well as significant applications of these metal complexes. In this review, we summarize our work on the development of ruthenium complexes, which was performed over the last few years.


Assuntos
Compostos de Rutênio/síntese química , Compostos de Rutênio/farmacologia , Bases de Schiff , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...