Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 577
Filtrar
1.
ACS Synth Biol ; 12(12): 3578-3590, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38049144

RESUMO

Metagenomic sequences represent an untapped source of genetic novelty, particularly for conjugative systems that could be used for plasmid-based delivery of Cas9-derived antimicrobial agents. However, unlocking the functional potential of conjugative systems purely from metagenomic sequences requires the identification of suitable candidate systems as starting scaffolds for de novo DNA synthesis. Here, we developed a bioinformatics approach that searches through the metagenomic "trash bin" for genes associated with conjugative systems present on contigs that are typically excluded from common metagenomic analysis pipelines. Using a human metagenomic gut data set representing 2805 taxonomically distinct units, we identified 1598 contigs containing conjugation genes with a differential distribution in human cohorts. We synthesized de novo an entire Citrobacter spp. conjugative system of 54 kb containing at least 47 genes and assembled it into a plasmid, pCitro. We found that pCitro conjugates from Escherichia coli to Citrobacter rodentium with a 30-fold higher frequency than to E. coli, and is compatible with Citrobacter resident plasmids. Mutations in the traV and traY conjugation components of pCitro inhibited conjugation. We showed that pCitro can be repurposed as an antimicrobial delivery agent by programming it with the TevCas9 nuclease and Citrobacter-specific sgRNAs to kill C. rodentium. Our study reveals a trove of uncharacterized conjugative systems in metagenomic data and describes an experimental framework to animate these large genetic systems as novel target-adapted delivery vectors for Cas9-based editing of bacterial genomes.


Assuntos
Anti-Infecciosos , Escherichia coli , Humanos , Escherichia coli/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Conjugação Genética/genética , Plasmídeos/genética
2.
Microb Genom ; 9(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37341708

RESUMO

Nucleotide sequence similarity, including k-mer plasmid composition, has been used for prediction of plasmid evolutionary host range, representing the hosts in which a plasmid has replicated at some point during its evolutionary history. However, the relationships between the bacterial taxa of experimentally identified transconjugants and the predicted evolutionary host ranges are poorly understood. Here, four different PromA group plasmids showing different k-mer compositions were used as model plasmids. Filter mating assays were performed with a donor harbouring plasmids and recipients of bacterial communities extracted from environmental samples. A broad range of transconjugants was obtained with different bacterial taxa. A calculation of the dissimilarities in k-mer compositions as Mahalanobis distance between the plasmid and its sequenced transconjugant chromosomes revealed that each plasmid and transconjugant were significantly more similar than the plasmid and other non-transconjugant chromosomes. These results indicate that plasmids with different k-mer compositions clearly have different host ranges to which the plasmid will be transferred and replicated. The similarity of the nucleotide compositions could be used for predicting not only the plasmid evolutionary host range but also future host ranges.


Assuntos
Conjugação Genética , Microbiota , Conjugação Genética/genética , Plasmídeos/genética , Bactérias/genética , Cromossomos
3.
Plasmid ; 126: 102685, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121291

RESUMO

Conjugation is a central characteristic of plasmid biology and an important mechanism of horizontal gene transfer in bacteria. However, there is little consensus on how to accurately estimate and report plasmid conjugation rates, in part due to the wide range of available methods. Given the similarity between approaches, we propose general reporting guidelines for plasmid conjugation experiments. These constitute best practices based on recent literature about plasmid conjugation and methods to measure conjugation rates. In addition to the general guidelines, we discuss common theoretical assumptions underlying existing methods to estimate conjugation rates and provide recommendations on how to avoid violating these assumptions. We hope this will aid the implementation and evaluation of conjugation rate measurements, and initiate a broader discussion regarding the practice of quantifying plasmid conjugation rates.


Assuntos
Bactérias , Conjugação Genética , Transferência Genética Horizontal , Plasmídeos , Projetos de Pesquisa , Bactérias/genética , Conjugação Genética/genética , Transferência Genética Horizontal/genética , Plasmídeos/genética , Terminologia como Assunto
4.
PLoS Biol ; 21(2): e3001988, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36787297

RESUMO

Beyond their role in horizontal gene transfer, conjugative plasmids commonly encode homologues of bacterial regulators. Known plasmid regulator homologues have highly targeted effects upon the transcription of specific bacterial traits. Here, we characterise a plasmid translational regulator, RsmQ, capable of taking global regulatory control in Pseudomonas fluorescens and causing a behavioural switch from motile to sessile lifestyle. RsmQ acts as a global regulator, controlling the host proteome through direct interaction with host mRNAs and interference with the host's translational regulatory network. This mRNA interference leads to large-scale proteomic changes in metabolic genes, key regulators, and genes involved in chemotaxis, thus controlling bacterial metabolism and motility. Moreover, comparative analyses found RsmQ to be encoded on a large number of divergent plasmids isolated from multiple bacterial host taxa, suggesting the widespread importance of RsmQ for manipulating bacterial behaviour across clinical, environmental, and agricultural niches. RsmQ is a widespread plasmid global translational regulator primarily evolved for host chromosomal control to manipulate bacterial behaviour and lifestyle.


Assuntos
Bactérias , Proteômica , Plasmídeos/genética , Bactérias/genética , Conjugação Genética/genética , Transferência Genética Horizontal , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Nucleic Acids Res ; 51(6): 2790-2799, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36772829

RESUMO

Dissemination of antibiotic resistance, a current societal challenge, is often driven by horizontal gene transfer through bacterial conjugation. During conjugative plasmid transfer, single-stranded (ss) DNA is transferred from the donor to the recipient cell. Subsequently, a complete double-stranded (ds) plasmid molecule is generated and plasmid-encoded genes are expressed, allowing successful establishment of the transconjugant cell. Such dynamics of transmission can be modulated by host- or plasmid-encoded factors, either in the donor or in the recipient cell. We applied transposon insertion sequencing to identify host-encoded factors that affect conjugative transfer frequency in Escherichia coli. Disruption of the recipient uvrD gene decreased the acquisition frequency of conjugative plasmids belonging to different incompatibility groups. Results from various UvrD mutants suggested that dsDNA binding activity and interaction with RNA polymerase are dispensable, but ATPase activity is required for successful plasmid establishment of transconjugant cells. Live-cell microscopic imaging showed that the newly transferred ssDNA within a uvrD- recipient often failed to be converted to dsDNA. Our work suggested that in addition to its role in maintaining genome integrity, UvrD is also key for the establishment of horizontally acquired plasmid DNA that drives genome diversity and evolution.


Assuntos
DNA Helicases , DNA de Cadeia Simples , Proteínas de Escherichia coli , Conjugação Genética/genética , DNA , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transferência Genética Horizontal/genética , Plasmídeos/genética
6.
Nucleic Acids Res ; 51(5): 2345-2362, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36727472

RESUMO

Conjugation of DNA relies on multicomponent protein complexes bridging two bacterial cytoplasmic compartments. Whereas plasmid conjugation systems have been well documented, those of integrative and conjugative elements (ICEs) have remained poorly studied. We characterize here the conjugation system of the ICEclc element in Pseudomonas putida UWC1 that is a model for a widely distributed family of ICEs. By in frame deletion and complementation, we show the importance on ICE transfer of 22 genes in a 20-kb conserved ICE region. Protein comparisons recognized seven homologs to plasmid type IV secretion system components, another six homologs to frequent accessory proteins, and the rest without detectable counterparts. Stationary phase imaging of P. putida ICEclc with in-frame fluorescent protein fusions to predicted type IV components showed transfer-competent cell subpopulations with multiple fluorescent foci, largely overlapping in dual-labeled subcomponents, which is suggestive for multiple conjugation complexes per cell. Cross-dependencies between subcomponents in ICE-type IV secretion system assembly were revealed by quantitative foci image analysis in a variety of ICEclc mutant backgrounds. In conclusion, the ICEclc family presents an evolutionary distinct type IV conjugative system with transfer competent cells specialized in efficient transfer.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Sistemas de Secreção Tipo IV/genética , Proteínas de Bactérias/genética , Plasmídeos/genética , Conjugação Genética/genética , Transferência Genética Horizontal
7.
PLoS Genet ; 18(10): e1010467, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36279314

RESUMO

Integrative and conjugative elements (ICEs) serve as major drivers of bacterial evolution. These elements often confer some benefit to host cells, including antibiotic resistance, metabolic capabilities, or pathogenic determinants. ICEs can also have negative effects on host cells. Here, we investigated the effects of the ICE (conjugative transposon) Tn916 on host cells. Because Tn916 is active in a relatively small subpopulation of host cells, we developed a fluorescent reporter system for monitoring activation of Tn916 in single cells. Using this reporter, we found that cell division was arrested in cells of Bacillus subtilis and Enterococcus faecalis (a natural host for Tn916) that contained an activated (excised) Tn916. Furthermore, most of the cells with the activated Tn916 subsequently died. We also observed these phenotypes on the population level in B. subtilis utilizing a modified version of Tn916 that can be activated in the majority of cells. We identified two genes (orf17 and orf16) in Tn916 that were sufficient to cause growth defects in B. subtilis and identified a single gene, yqaR, that is in a defective phage (skin) in the B. subtilis chromosome that was required for this phenotype. These three genes were only partially responsible for the growth defect caused by Tn916, indicating that Tn916 possesses multiple mechanisms to affect growth and viability of host cells. These results highlight the complex relationships that conjugative elements have with their host cells and the interplay between mobile genetic elements.


Assuntos
Conjugação Genética , Elementos de DNA Transponíveis , Humanos , Conjugação Genética/genética , Plasmídeos , Elementos de DNA Transponíveis/genética , Bacillus subtilis/genética , Enterococcus faecalis/genética , DNA Bacteriano/genética
8.
PLoS Genet ; 18(6): e1010286, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35763548

RESUMO

The mechanisms and impact of horizontal gene transfer processes to distribute gene functions with potential adaptive benefit among prokaryotes have been well documented. In contrast, little is known about the life-style of mobile elements mediating horizontal gene transfer, whereas this is the ultimate determinant for their transfer fitness. Here, we investigate the life-style of an integrative and conjugative element (ICE) within the genus Pseudomonas that is a model for a widespread family transmitting genes for xenobiotic compound metabolism and antibiotic resistances. Previous work showed bimodal ICE activation, but by using single cell time-lapse microscopy coupled to combinations of chromosomally integrated single copy ICE promoter-driven fluorescence reporters, RNA sequencing and mutant analysis, we now describe the complete regulon leading to the arisal of differentiated dedicated transfer competent cells. The regulon encompasses at least three regulatory nodes and five (possibly six) further conserved gene clusters on the ICE that all become expressed under stationary phase conditions. Time-lapse microscopy indicated expression of two regulatory nodes (i.e., bisR and alpA-bisDC) to precede that of the other clusters. Notably, expression of all clusters except of bisR was confined to the same cell subpopulation, and was dependent on the same key ICE regulatory factors. The ICE thus only transfers from a small fraction of cells in a population, with an estimated proportion of between 1.7-4%, which express various components of a dedicated transfer competence program imposed by the ICE, and form the centerpiece of ICE conjugation. The components mediating transfer competence are widely conserved, underscoring their selected fitness for efficient transfer of this class of mobile elements.


Assuntos
Conjugação Genética , Transferência Genética Horizontal , Conjugação Genética/genética , Transferência Genética Horizontal/genética , Células Procarióticas , Regiões Promotoras Genéticas , Pseudomonas/genética
9.
PLoS Genet ; 18(5): e1009998, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584135

RESUMO

Integrative and conjugative elements (ICEs) are mobile genetic elements that reside in a bacterial host chromosome and are prominent drivers of bacterial evolution. They are also powerful tools for genetic analyses and engineering. Transfer of an ICE to a new host involves many steps, including excision from the chromosome, DNA processing and replication, transfer across the envelope of the donor and recipient, processing of the DNA, and eventual integration into the chromosome of the new host (now a stable transconjugant). Interactions between an ICE and its host throughout the life cycle likely influence the efficiencies of acquisition by new hosts. Here, we investigated how different functional modules of two ICEs, Tn916 and ICEBs1, affect the transfer efficiencies into different host bacteria. We constructed hybrid elements that utilize the high-efficiency regulatory and excision modules of ICEBs1 and the conjugation genes of Tn916. These elements produced more transconjugants than Tn916, likely due to an increase in the number of cells expressing element genes and a corresponding increase in excision. We also found that several Tn916 and ICEBs1 components can substitute for one another. Using B. subtilis donors and three Enterococcus species as recipients, we found that different hybrid elements were more readily acquired by some species than others, demonstrating species-specific interactions in steps of the ICE life cycle. This work demonstrates that hybrid elements utilizing the efficient regulatory functions of ICEBs1 can be built to enable efficient transfer into and engineering of a variety of other species.


Assuntos
Conjugação Genética , Transferência Genética Horizontal , Bacillus subtilis/genética , Biologia , Conjugação Genética/genética , DNA , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Transferência Genética Horizontal/genética
10.
PLoS Genet ; 18(2): e1010065, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35157704

RESUMO

Most bacterial genomes contain horizontally acquired and transmissible mobile genetic elements, including temperate bacteriophages and integrative and conjugative elements. Little is known about how these elements interact and co-evolved as parts of their host genomes. In many cases, it is not known what advantages, if any, these elements provide to their bacterial hosts. Most strains of Bacillus subtilis contain the temperate phage SPß and the integrative and conjugative element ICEBs1. Here we show that the presence of ICEBs1 in cells protects populations of B. subtilis from predation by SPß, likely providing selective pressure for the maintenance of ICEBs1 in B. subtilis. A single gene in ICEBs1 (yddK, now called spbK for SPß killing) was both necessary and sufficient for this protection. spbK inhibited production of SPß, during both activation of a lysogen and following de novo infection. We found that expression spbK, together with the SPß gene yonE constitutes an abortive infection system that leads to cell death. spbK encodes a TIR (Toll-interleukin-1 receptor)-domain protein with similarity to some plant antiviral proteins and animal innate immune signaling proteins. We postulate that many uncharacterized cargo genes in ICEs may confer selective advantage to cells by protecting against other mobile elements.


Assuntos
Bacteriófagos , Conjugação Genética , Animais , Bacteriófagos/genética , Conjugação Genética/genética , DNA Bacteriano/genética , Transferência Genética Horizontal/genética , Sequências Repetitivas Dispersas/genética , Comportamento Predatório
11.
Mil Med Res ; 9(1): 3, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012680

RESUMO

Bacteria can evolve rapidly by acquiring new traits such as virulence, metabolic properties, and most importantly, antimicrobial resistance, through horizontal gene transfer (HGT). Multidrug resistance in bacteria, especially in Gram-negative organisms, has become a global public health threat often through the spread of mobile genetic elements. Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact. Conjugative plasmids, a major vehicle for the dissemination of antimicrobial resistance, are selfish elements capable of mediating their own transmission through conjugation. To spread to and survive in a new bacterial host, conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids. Such mechanisms have mostly been studied in model plasmids such as the F plasmid, rather than in conjugative plasmids that confer antimicrobial resistance (AMR) in important human pathogens. A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance. Here, we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria, by following the life cycle of conjugative plasmids.


Assuntos
Antibacterianos , Conjugação Genética , Antibacterianos/farmacologia , Conjugação Genética/genética , Farmacorresistência Bacteriana/genética , Transferência Genética Horizontal/genética , Humanos , Plasmídeos/genética
12.
mSphere ; 6(4): e0058821, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378988

RESUMO

The rapid spread of the blaNDM-1 gene is a major public health concern. Here, we describe the multidrug-resistant Proteus mirabilis strain XH1653, which contains a novel SXT/R391 integrative and conjugative element (ICE), harboring two tandem copies of blaNDM-1 and 21 other resistance genes. XH1653 was resistant to all antibiotics tested, apart from aztreonam. Whole-genome data revealed that two copies of blaNDM-1 embedded in the ISCR1 element are located in HS4 of the novel ICE, which we named ICEPmiChnXH1653. A circular intermediate of ICEPmiChnXH1653 was detected by PCR, and conjugation experiments showed that the ICE can be transferred to the Escherichia coli strain EC600 with frequencies of 1.5 × 10-7. In the recipient strain, the ICE exhibited a higher excision frequency and extrachromosomal copy number than the ICE in the donor strain. We also observed that the presence of ICEPmiChnXH1653 has a negative impact on bacterial fitness and leads to changes in the transcriptome of the host. In vitro evolution experiments under nonselective conditions showed that the two tandem copies of the ISCR1 element and the ISVsa3 element can be lost during repeated laboratory passage. This is the first report of a novel SXT/R391 ICE carrying two tandem copies of blaNDM-1, which also illustrates the role that ICEs may play as platforms for the accumulation and transmission of antibiotic resistance genes. IMPORTANCE The occurrence of carbapenemase-producing Proteus mirabilis, especially those strains producing NDM-1 and its variants, is a major public health concern worldwide. The integrative conjugative element (ICE) plays an important role in horizontal acquisition of resistance genes. In this study, we characterized a novel SXT/R391 ICE from a clinical P. mirabilis isolate that we named ICEPmiChnXH1653, which contains two tandem copies of the carbapenemase gene blaNDM-1. We performed an integrative approach to gain insights into different aspects of ICEPmiChnXH1653 evolution and biology and observed that ICEPmiChnXH1653 obtained the carbapenemase gene blaNDM-1 by ISCR1-mediated homologous recombination. Our study reveals that the transmission of blaNDM-1 by ISCR1 elements or ICEs may be an important contributor to the carbapenem resistance development across species, which could improve our understanding of horizontal gene transfer in clinical environments.


Assuntos
Conjugação Genética/genética , Proteus mirabilis/enzimologia , Proteus mirabilis/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Técnicas de Transferência de Genes , Proteus mirabilis/efeitos dos fármacos
13.
Nat Commun ; 12(1): 2324, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875666

RESUMO

In bacterial communities, cells often communicate by the release and detection of small diffusible molecules, a process termed quorum-sensing. Signal molecules are thought to broadly diffuse in space; however, they often regulate traits such as conjugative transfer that strictly depend on the local community composition. This raises the question how nearby cells within the community can be detected. Here, we compare the range of communication of different quorum-sensing systems. While some systems support long-range communication, we show that others support a form of highly localized communication. In these systems, signal molecules propagate no more than a few microns away from signaling cells, due to the irreversible uptake of the signal molecules from the environment. This enables cells to accurately detect micron scale changes in the community composition. Several mobile genetic elements, including conjugative elements and phages, employ short-range communication to assess the fraction of susceptible host cells in their vicinity and adaptively trigger horizontal gene transfer in response. Our results underscore the complex spatial biology of bacteria, which can communicate and interact at widely different spatial scales.


Assuntos
Bactérias/genética , Conjugação Genética/genética , Transferência Genética Horizontal/genética , Percepção de Quorum/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bactérias/citologia , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Microscopia de Fluorescência/métodos , Transdução de Sinais/genética
14.
Nucleic Acids Res ; 49(14): 7807-7824, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33834206

RESUMO

IncC conjugative plasmids and the multiple variants of Salmonella Genomic Island 1 (SGI1) are two functionally interacting families of mobile genetic elements commonly associated with multidrug resistance in the Gammaproteobacteria. SGI1 and its siblings are specifically mobilised in trans by IncC conjugative plasmids. Conjugative transfer of IncC plasmids is activated by the plasmid-encoded master activator AcaCD. SGI1 carries five AcaCD-responsive promoters that drive the expression of genes involved in its excision, replication, and mobilisation. SGI1 encodes an AcaCD homologue, the transcriptional activator complex SgaCD (also known as FlhDCSGI1) that seems to recognise and activate the same SGI1 promoters. Here, we investigated the relevance of SgaCD in SGI1's lifecycle. Mating assays revealed the requirement for SgaCD and its IncC-encoded counterpart AcaCD in the mobilisation of SGI1. An integrative approach combining ChIP-exo, Cappable-seq, and RNA-seq confirmed that SgaCD activates each of the 18 AcaCD-responsive promoters driving the expression of the plasmid transfer functions. A comprehensive analysis of the activity of the complete set of AcaCD-responsive promoters of SGI1 and the helper IncC plasmid was performed through reporter assays. qPCR and flow cytometry assays revealed that SgaCD is essential to elicit the excision and replication of SGI1 and destabilise the helper IncC plasmid.


Assuntos
Conjugação Genética/genética , Ilhas Genômicas/genética , Plasmídeos/genética , Salmonella/genética , Ativação Transcricional , Proteínas de Bactérias/genética , Replicação do DNA/genética , Farmacorresistência Bacteriana Múltipla/genética , Gammaproteobacteria/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Modelos Genéticos , Regiões Promotoras Genéticas/genética , RNA-Seq/métodos
15.
ACS Synth Biol ; 10(4): 690-697, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33750103

RESUMO

Chromosomal exchange and subsequent recombination of the cognate DNA between bacteria was one of the most useful genetic tools (e.g., Hfr strains) for genetic analyses of E. coli before the genomic era. In this paper, yeast assembly has been used to recruit the conjugation machinery of environmentally promiscuous RP4 plasmid into a minimized, synthetic construct that enables transfer of chromosomal segments between donor/recipient strains of P. putida KT2440 and potentially many other Gram-negative bacteria. The synthetic device features [i] a R6K suicidal plasmid backbone, [ii] a mini-Tn5 transposon vector, and [iii] the minimal set of genes necessary for active conjugation (RP4 Tra1 and Tra2 clusters) loaded as cargo in the mini-Tn5 mobile element. Upon insertion of the transposon in different genomic locations, the ability of P. putida-TRANS (transference of RP4-activated nucleotide segments) donor strains to mobilize genomic stretches of DNA into neighboring bacteria was tested. To this end, a P. putida double mutant ΔpyrF (uracil auxotroph) Δedd (unable to grow on glucose) was used as recipient in mating experiments, and the restoration of the pyrF+/edd+ phenotypes allowed for estimation of chromosomal transfer efficiency. Cells with the inserted transposon behaved in a manner similar to Hfr-like strains and were able to transfer up to 23% of their genome at frequencies close to 10-6 exconjugants per recipient cell. The hereby described TRANS device not only expands the molecular toolbox for P. putida, but it also enables a suite of genomic manipulations which were thus far only possible with domesticated laboratory strains and species.


Assuntos
Pseudomonas/metabolismo , Conjugação Genética/genética , Conjugação Genética/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Plasmídeos/genética , Pseudomonas/genética , Translocação Genética/genética
16.
mBio ; 12(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727345

RESUMO

Conjugation, the process by which a DNA element is transferred from a donor to a recipient cell, is the main horizontal gene transfer route responsible for the spread of antibiotic resistance and virulence genes. Contact between a donor and a recipient cell is a prerequisite for conjugation, because conjugative DNA is transferred into the recipient via a channel connecting the two cells. Conjugative elements encode proteins dedicated to facilitating the recognition and attachment to recipient cells, also known as mating pair formation. A subgroup of the conjugative elements is able to mediate efficient conjugation during planktonic growth, and mechanisms facilitating mating pair formation will be particularly important in these cases. Conjugative elements of Gram-negative bacteria encode conjugative pili, also known as sex pili, some of which are retractile. Far less is known about mechanisms that promote mating pair formation in Gram-positive bacteria. The conjugative plasmid pLS20 of the Gram-positive bacterium Bacillus subtilis allows efficient conjugation in liquid medium. Here, we report the identification of an adhesin gene in the pLS20 conjugation operon. The N-terminal region of the adhesin contains a class II type thioester domain (TED) that is essential for efficient conjugation, particularly in liquid medium. We show that TED-containing adhesins are widely conserved in Gram-positive bacteria, including pathogens where they often play crucial roles in pathogenesis. Our study is the first to demonstrate the involvement of a class II type TED-containing adhesin in conjugation.IMPORTANCE Bacterial resistance to antibiotics has become a serious health care problem. The spread of antibiotic resistance genes between bacteria of the same or different species is often mediated by a process named conjugation, where a donor cell transfers DNA to a recipient cell through a connecting channel. The first step in conjugation is recognition and attachment of the donor to a recipient cell. Little is known about this first step, particularly in Gram-positive bacteria. Here, we show that the conjugative plasmid pLS20 of Bacillus subtilis encodes an adhesin protein that is essential for effective conjugation. This adhesin protein has a structural organization similar to adhesins produced by other Gram-positive bacteria, including major pathogens, where the adhesins serve in attachment to host tissues during colonization and infection. Our findings may thus also open novel avenues to design drugs that inhibit the spread of antibiotic resistance by blocking the first recipient-attachment step in conjugation.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Conjugação Genética/genética , Bacillus subtilis/patogenicidade , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Transferência Genética Horizontal , Óperon , Plasmídeos/genética
17.
Mol Microbiol ; 116(1): 154-167, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33567150

RESUMO

Incompatibility group C (IncC) plasmids are large (50-400 kb), broad host range plasmids that drive the spread of genes conferring resistance to all classes of antibiotics, most notably the blaNDM gene that confers resistance to last-line carbapenems and the mcr-3 gene that confers resistance to colistin. Several recent studies have improved our understanding of the basic biological mechanisms driving the success of IncC, in particular the identification of multiple novel IncC conjugation genes by transposon directed insertion-site sequencing. Here, one of these genes, dtrJ, was examined in further detail. The dtrJ gene is located in the DNA transfer locus on the IncC backbone, and quantitative reverse-transcriptase PCR analysis revealed it is transcribed in the same operon as the DNA transfer genes traI and traD (encoding the relaxase and coupling protein, respectively) and activated by the AcaDC regulatory complex. We confirmed that DtrJ is not required for pilus biogenesis or mate pair formation. Instead, DtrJ localizes to the membrane, where it interacts with the coupling protein TraD and functions as an IncC DNA transfer protein. Overall, this work has defined the role of DtrJ in DNA transfer of IncC plasmids during conjugation.


Assuntos
Conjugação Genética/genética , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Colistina/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , beta-Lactamases/genética
18.
Gene ; 777: 145476, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33549716

RESUMO

Soil bacteria can rapidly adapt to environmental perturbations through horizontal gene transfer. Acidobacteria is one of the most persistent dominant phyla in the soil. However, the role of these organisms in terrestrial ecosystems remains elusive. Here we identified and describe the integrative and conjugative elements (ICEs) in the published complete genomes of Acidobacteria. In total, ten novel ICEs were identified, in which nine were found integrated as three separated monopartite ICEs in the single chromosome sequences of three Acidobacteria. These ICEs carry a repertoire of genes with potential environmental roles, including heavy metal resistance, iron uptake, secondary metabolism, and antibiotic resistance. To our knowledge, these are the first evidence of three monopartite ICEs identified in the single chromosome, and this might be due to the absence of recognizable entry exclusion systems. We hypothesis that the coexistence of multiples ICEs in the chromosome of Acidobacteria might reflect a major advantage for the survival, resistance, and persistence of phylum in the environment.


Assuntos
Acidobacteria/genética , Elementos de DNA Transponíveis/genética , Genoma Bacteriano/genética , Conjugação Genética/genética , DNA Bacteriano/genética , Bases de Dados Genéticas , Transferência Genética Horizontal/genética , Filogenia , Análise de Sequência de DNA/métodos
19.
Nucleic Acids Res ; 49(2): 832-846, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33406256

RESUMO

The Salmonella genomic island 1 (SGI1) and its variants are mobilized by IncA and IncC conjugative plasmids. SGI1-family elements and their helper plasmids are effective transporters of multidrug resistance determinants. SGI1 exploits the transfer apparatus of the helper plasmid and hijacks its activator complex, AcaCD, to trigger the expression of several SGI1 genes. In this way, SGI1 times its excision from the chromosome to the helper entry and expresses mating pore components that enhance SGI1 transfer. The SGI1-encoded T4SS components and the FlhDC-family activator proved to be interchangeable with their IncC-encoded homologs, indicating multiple interactions between SGI1 and its helpers. As a new aspect of this crosstalk, we report here the helper-induced replication of SGI1, which requires both activators, AcaCD and FlhDCSGI1, and significantly increases the stability of SGI1 when coexists with the helper plasmid. We have identified the oriVSGI1 and shown that S004-repA operon encodes for a translationally coupled leader protein and an IncN2/N3-related RepA that are expressed under the control of the AcaCD-responsive promoter PS004. This replicon transiently maintains SGI1 as a 4-8-copy plasmid, not only stabilizing the island but also contributing to the fast displacement of the helper plasmid.


Assuntos
Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Conjugação Genética/genética , Farmacorresistência Bacteriana Múltipla/genética , Sequências Repetitivas Dispersas/genética , Salmonella typhimurium/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , Dosagem de Genes , Regulação Bacteriana da Expressão Gênica/genética , Genes Reporter , Integrases/metabolismo , Óperon/genética , Filogenia , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , Recombinases/metabolismo , Replicon/genética , Alinhamento de Sequência , Transativadores/genética , Transativadores/metabolismo
20.
Microbiol Res ; 242: 126598, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33039801

RESUMO

Many Pseudoalteromonas strains can produce bioactive compounds with antimicrobial activities. This study focused on a probiotic candidate P.flavipulchra CDM8 to reveal its novel antibacterial mechanism and risks for antibiotic resistance dissemination. Strain CDM8 could form floating biofilm, displayed strikingly broad antibacterial activities against multiple Vibrio and Bacillus species, and decreased the competitor's concentration in their co-cultures in the microtiter plate tests. It could also form vesicle/pilus-like structures on the outer surface, which were indicated to participate in the bactericidal activity and represent a novel antibacterial mechanism of CDM8, according to the scanning electron microscopic observation. However, CDM8 displayed multi-antibiotic resistance, conferred by the multidrug resistance regions in hotspot 4 and variable region III of a novel SXT/R391-like integrative and conjugative element (ICEPflCDM8). Summing up, our results provided a better understanding of the bactericidal mechanism of P. flavipulchra and highlighted the role of SXT/R391-like ICEs in conferring multidrug resistance phenotype of probiotic P. flavipulchra candidates.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Conjugação Genética/genética , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana Múltipla/genética , Pseudoalteromonas/efeitos dos fármacos , Pseudoalteromonas/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Conjugação Genética/efeitos dos fármacos , DNA Bacteriano/genética , Testes de Sensibilidade Microbiana , Probióticos , Pseudoalteromonas/fisiologia , Vibrio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...