Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 18(1): 355, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28482802

RESUMO

BACKGROUND: Genetic mapping and quantitative trait locus (QTL) detection are powerful methodologies in plant improvement and breeding. White jute (Corchorus capsularis L.) is an important industrial raw material fiber crop because of its elite characteristics. However, construction of a high-density genetic map and identification of QTLs has been limited in white jute due to a lack of sufficient molecular markers. The specific locus amplified fragment sequencing (SLAF-seq) strategy combines locus-specific amplification and high-throughput sequencing to carry out de novo single nuclear polymorphism (SNP) discovery and large-scale genotyping. In this study, SLAF-seq was employed to obtain sufficient markers to construct a high-density genetic map for white jute. Moreover, with the development of abundant markers, genetic dissection of fiber yield traits such as plant height was also possible. Here, we present QTLs associated with plant height that were identified using our newly constructed genetic linkage groups. RESULTS: An F8 population consisting of 100 lines was developed. In total, 69,446 high-quality SLAFs were detected of which 5,074 SLAFs were polymorphic; 913 polymorphic markers were used for the construction of a genetic map. The average coverage for each SLAF marker was 43-fold in the parents, and 9.8-fold in each F8 individual. A linkage map was constructed that contained 913 SLAFs on 11 linkage groups (LGs) covering 1621.4 cM with an average density of 1.61 cM per locus. Among the 11 LGs, LG1 was the largest with 210 markers, a length of 406.34 cM, and an average distance of 1.93 cM between adjacent markers. LG11 was the smallest with only 25 markers, a length of 29.66 cM, and an average distance of 1.19 cM between adjacent markers. 'SNP_only' markers accounted for 85.54% and were the predominant markers on the map. QTL mapping based on the F8 phenotypes detected 11 plant height QTLs including one major effect QTL across two cultivation locations, with each QTL accounting for 4.14-15.63% of the phenotypic variance. CONCLUSIONS: To our knowledge, the linkage map constructed here is the densest one available to date for white jute. This analysis also identified the first QTL in white jute. The results will provide an important platform for gene/QTL mapping, sequence assembly, genome comparisons, and marker-assisted selection breeding for white jute.


Assuntos
Mapeamento Cromossômico/métodos , Corchorus/anatomia & histologia , Corchorus/genética , Locos de Características Quantitativas/genética , Análise de Sequência de DNA , Corchorus/crescimento & desenvolvimento , Marcadores Genéticos/genética , Técnicas de Genotipagem , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Ann Bot ; 93(2): 211-20, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14707004

RESUMO

BACKGROUND AND AIMS: High lignin content of lignocellulose jute fibre does not favour its utilization in making finer fabrics and other value-added products. To aid the development of low-lignin jute fibre, this study aimed to identify a phloem fibre mutant with reduced lignin. METHODS: An x-ray-induced mutant line (CMU) of jute (Corchorus capsularis) was morphologically evaluated and the accession (CMU 013) with the most undulated phenotype was compared with its normal parent (JRC 212) for its growth, secondary fibre development and lignification of the fibre cell wall. KEY RESULTS: The normal and mutant plants showed similar leaf photosynthetic rates. The mutant grew more slowly, had shorter internodes and yielded much less fibre after retting. The fibre of the mutant contained 50 % less lignin but comparatively more cellulose than that of the normal type. Differentiation of primary and secondary vascular tissues throughout the CMU 013 stem was regular but it did not have secondary phloem fibre bundles as in JRC 212. Instead, a few thin-walled, less lignified fibre cells formed uni- or biseriate radial rows within the phloem wedges of the middle stem. The lower and earliest developed part of the mutant stem had no lignified fibre cells. This developmental deficiency in lignification of fibre cells was correlated to a similar deficiency in phenylalanine ammonia lyase activity, but not peroxidase activity, in the bark tissue along the stem axis. In spite of severe reduction in lignin synthesis in the phloem cells this mutant functioned normally and bred true. CONCLUSIONS: In view of the observations made, the mutant is designated as deficient lignified phloem fibre (dlpf). This mutant may be utilized to engineer low-lignin jute fibre strains and may also serve as a model to study the positional information that coordinates secondary wall thickening of fibre cells.


Assuntos
Corchorus/anatomia & histologia , Corchorus/fisiologia , Lignina/genética , Corchorus/genética , Corchorus/crescimento & desenvolvimento , Deleção de Genes , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...