Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Curr Biol ; 33(8): R319-R331, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37098338

RESUMO

The central nervous system (CNS) of chordates, including humans, develops as a hollow tube with ciliated walls containing cerebrospinal fluid. However, most of the animals inhabiting our planet do not use this design and rather build their centralized brains from non-epithelialized condensations of neurons called ganglia, with no traces of epithelialized tubes or liquid-containing cavities. The evolutionary origin of tube-type CNSs stays enigmatic, especially as non-epithelialized ganglionic-type nervous systems dominate the animal kingdom. Here, I discuss recent findings relevant to understanding the potential homologies and scenarios of the origin, histology and anatomy of the chordate neural tube. The nerve cords of other deuterostomes might relate to the chordate neural tube at histological, developmental and cellular levels, including the presence of radial glia, layered stratification, retained epithelial features, morphogenesis via folding and formation of a lumen filled with liquid. Recent findings inspire a new view of hypothetical evolutionary scenarios explaining the tubular epithelialized structure of the CNS. One such idea suggests that early neural tubes were key for improved directional olfaction, which was facilitated by the liquid-containing internal cavity. The later separation of the olfactory portion of the tube led to the formation of the independent olfactory and posterior tubular CNS systems in vertebrates. According to an alternative hypothesis, the thick basiepithelial nerve cords could provide deuterostome ancestors with additional biomechanical support, which later improved by turning the basiepithelial cord into a tube filled with liquid - a hydraulic skeleton.


Assuntos
Cordados , Tubo Neural , Animais , Humanos , Cordados/anatomia & histologia , Evolução Biológica , Vertebrados , Sistema Nervoso Central
2.
Nature ; 609(7927): 541-546, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978194

RESUMO

The early history of deuterostomes, the group composed of the chordates, echinoderms and hemichordates1, is still controversial, not least because of a paucity of stem representatives of these clades2-5. The early Cambrian microscopic animal Saccorhytus coronarius was interpreted as an early deuterostome on the basis of purported pharyngeal openings, providing evidence for a meiofaunal ancestry6 and an explanation for the temporal mismatch between palaeontological and molecular clock timescales of animal evolution6-8. Here we report new material of S. coronarius, which is reconstructed as a millimetric and ellipsoidal meiobenthic animal with spinose armour and a terminal mouth but no anus. Purported pharyngeal openings in support of the deuterostome hypothesis6 are shown to be taphonomic artefacts. Phylogenetic analyses indicate that S. coronarius belongs to total-group Ecdysozoa, expanding the morphological disparity and ecological diversity of early Cambrian ecdysozoans.


Assuntos
Cordados , Filogenia , Animais , Cordados/anatomia & histologia , Fósseis , Boca , Paleontologia
3.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33526593

RESUMO

Changes to feeding structures are a fundamental component of the vertebrate transition from water to land. Classically, this event has been characterized as a shift from an aquatic, suction-based mode of prey capture involving cranial kinesis to a biting-based feeding system utilizing a rigid skull capable of capturing prey on land. Here we show that a key intermediate, Tiktaalik roseae, was capable of cranial kinesis despite significant restructuring of the skull to facilitate biting and snapping. Lateral sliding joints between the cheek and dermal skull roof, as well as independent mobility between the hyomandibula and palatoquadrate, enable the suspensorium of T. roseae to expand laterally in a manner similar to modern alligator gars and polypterids. This movement can expand the spiracular and opercular cavities during feeding and respiration, which would direct fluid through the feeding apparatus. Detailed analysis of the sutural morphology of T. roseae suggests that the ability to laterally expand the cheek and palate was maintained during the fish-to-tetrapod transition, implying that limited cranial kinesis was plesiomorphic to the earliest limbed vertebrates. Furthermore, recent kinematic studies of feeding in gars demonstrate that prey capture with lateral snapping can synergistically combine both biting and suction, rather than trading off one for the other. A "gar-like" stage in early tetrapod evolution might have been an important intermediate step in the evolution of terrestrial feeding systems by maintaining suction-generation capabilities while simultaneously elaborating a mechanism for biting-based prey capture.


Assuntos
Evolução Biológica , Cordados/fisiologia , Ingestão de Alimentos , Fósseis/anatomia & histologia , Crânio/anatomia & histologia , Animais , Cordados/anatomia & histologia , Comportamento Alimentar , Boca/anatomia & histologia
4.
Curr Biol ; 29(13): R647-R662, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287987

RESUMO

The dramatic evolutionary expansion of the neocortex, together with a proliferation of specialized cortical areas, is believed to underlie the emergence of human cognitive abilities. In a broader phylogenetic context, however, neocortex evolution in mammals, including humans, is remarkably conservative, characterized largely by size variations on a shared six-layered neuronal architecture. By contrast, the telencephalon in non-mammalian vertebrates, including reptiles, amphibians, bony and cartilaginous fishes, and cyclostomes, features a great variety of very different tissue structures. Our understanding of the evolutionary relationships of these telencephalic structures, especially those of basally branching vertebrates and invertebrate chordates, remains fragmentary and is impeded by conceptual obstacles. To make sense of highly divergent anatomies requires a hierarchical view of biological organization, one that permits the recognition of homologies at multiple levels beyond neuroanatomical structure. Here we review the origin and diversification of the telencephalon with a focus on key evolutionary innovations shaping the neocortex at multiple levels of organization.


Assuntos
Evolução Biológica , Cordados/anatomia & histologia , Telencéfalo/anatomia & histologia , Animais
5.
J Morphol ; 280(9): 1267-1281, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31241801

RESUMO

The brain endocasts of the late Triassic (Carnian) traversodontids (Eucynodontia: Gomphodontia) Siriusgnathus niemeyerorum and Exaeretodon riograndensis from southern Brazil are described based on virtual models generated using computed tomography scan data. Their skull anatomy resembles that of other non-mammaliaform cynodonts, showing an endocranial cavity that is not fully ossified. A "V-shaped" orbitosphenoid, neither fully developed nor ossified is present in E. riograndensis. The nasal cavity is confluent with the encephalic cavity. Thus, the anterior limit of the olfactory bulbs is not definite. The brain endocast is elongated, being narrow anteriorly and wide posteriorly, with the maximum width at the parafloccular cast. The olfactory bulbs do not present a clear division between their counterparts, due to the absence of a longitudinal sulcus. A longitudinal sulcus in the forebrain delimiting the cerebral hemispheres, the pineal tube, and the parietal foramen are absent in both taxa. The large and well-developed unossified zone is partially separated from the remaining endocast by a notch formed by the supraoccipital. The encephalization quotients, as well as the endocranial volume/body mass relationships of S. niemeyerorum and E. riograndensis are within the range expected for non-mammaliaform Therapsida.


Assuntos
Cordados/anatomia & histologia , Fósseis , Processamento de Imagem Assistida por Computador , Crânio/anatomia & histologia , Animais , Peso Corporal , Encéfalo/anatomia & histologia , Brasil , Imageamento Tridimensional , Bulbo Olfatório/anatomia & histologia , Fatores de Tempo , Tomografia Computadorizada por Raios X
6.
PLoS One ; 12(4): e0174794, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28380002

RESUMO

The taxonomy of Early Devonian placoderm material from the Lochkovian and Pragian of the Prague basin, previously attributed to the genera Radotina and Holopetalichthys, is revised. The Pragian species Radotina tesselata Gross 1958 shares detailed similarities with the holotype of the Lochkovian Radotina kosorensis Gross 1950, which is also the holotype of the genus; the assignation of both species to Radotina is supported. However, the Lochkovian material previously attributed to Radotina kosorensis also contains two unrecognised taxa, distinguishable from Radotina at the generic level: these are here named Tlamaspis and Sudaspis. The disputed genus Holopetalichthys, synonymised with Radotina by some previous authors, is shown to be valid. Furthermore, whereas Radotina, Tlamaspis and Sudaspis can all be assigned to the group Acanthothoracii, on the basis of several features including possession of a projecting prenasal region of the endocranium, Holopetalichthys lacks such a region and is probably not an acanthothoracid. Skull roof patterns and other aspects of morphology vary greatly between these taxa. Radotina has a substantially tesselated skull roof, whereas the skull roofs of Tlamaspis and Holopetalichthys appear to lack tesserae altogether. Tlamaspis has an extremely elongated facial region and appears to lack a premedian plate. Sudaspis has a long prenasal region, but unlike Tlamaspis the postnasal face is not elongated. Past descriptions of the braincase of 'Radotina' and the skull roofs of 'Radotina' and 'Holopetalichthys' incorporate data from more than one taxon, giving rise to spurious characterisations including an apparently extreme degree of skull roof variability. These descriptions should all be disregarded.


Assuntos
Cordados/anatomia & histologia , Animais , Biodiversidade , República Tcheca , Fósseis , História Antiga , Paleontologia
7.
PLoS One ; 11(10): e0162945, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27706191

RESUMO

We describe two new cynodonts from the early Late Triassic of southern Brazil. One taxon, Bonacynodon schultzi gen. et sp. nov., comes from the lower Carnian Dinodontosaurus AZ, being correlated with the faunal association at the upper half of the lower member of the Chañares Formation (Ischigualasto-Villa Unión Basin, Argentina). Phylogenetically, Bonacynodon is a closer relative to Probainognathus jenseni than to any other probainognathian, bearing conspicuous canines with a denticulate distal margin. The other new taxon is Santacruzgnathus abdalai gen. et sp. nov. from the Carnian Santacruzodon AZ. Although based exclusively on a partial lower jaw, it represents a probainognathian close to Prozostrodon from the Hyperodapedon AZ and to Brasilodon, Brasilitherium and Botucaraitherium from the Riograndia AZ. The two new cynodonts and the phylogenetic hypothesis presented herein indicate the degree to which our knowledge on probainognathian cynodonts is incomplete and also the relevance of the South American fossil record for understanding their evolutionary significance. The taxonomic diversity and abundance of probainognathians from Brazil and Argentina will form the basis of deep and complex studies to address the evolutionary transformations of cynodonts leading to mammals.


Assuntos
Cordados/anatomia & histologia , Fósseis , Animais , Brasil , Cordados/classificação , Arco Dental/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Filogenia , Crânio/anatomia & histologia
8.
Dev Dyn ; 245(12): 1159-1175, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27649280

RESUMO

BACKGROUND: Head or anterior body part regeneration is commonly associated with protostome, but not deuterostome invertebrates. However, it has been shown that the solitary hemichordate Ptychodera flava possesses the remarkable capacity to regenerate their entire nervous system, including their dorsal neural tube and their anterior head-like structure, or proboscis. Hemichordates, also known as acorn worms, are marine invertebrate deuterostomes that have retained chordate traits that were likely present in the deuterostome ancestor, placing these animals in a vital position to study regeneration and chordate evolution. All acorn worms have a tripartite body plan, with an anterior proboscis, middle collar region, and a posterior trunk. The collar houses a hollow, dorsal neural tube in ptychoderid hemichordates and numerous chordate genes involved in brain and spinal cord development are expressed in a similar anterior-posterior spatial arrangement along the body axis. RESULTS: We have examined anterior regeneration in the hemichordate Ptychodera flava and report the spatial and temporal morphological changes that occur. Additionally, we have sequenced, assembled, and analyzed the transcriptome for eight stages of regenerating P. flava, revealing significant differential gene expression between regenerating and control animals. CONCLUSIONS: Importantly, we have uncovered developmental steps that are regeneration-specific and do not strictly follow the embryonic program. Developmental Dynamics 245:1159-1175, 2016. © 2016 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Assuntos
Cordados/fisiologia , Animais , Evolução Biológica , Cordados/anatomia & histologia , Cordados/classificação , Filogenia , Regeneração/fisiologia
9.
J Morphol ; 277(5): 634-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26968432

RESUMO

Bone ornamentation, in the form of rounded pits framed by a network of ridges, is a frequent feature among a great diversity of gnathostome taxa. However, the basic osteogenic processes controlling the differentiation and development of these reliefs remain controversial. The present study is a broad comparative survey of this question with the classical methods used in hard tissue histology and paleohistology. Distinct processes, unevenly distributed among taxa, are involved in the creation and growth of pits and ridges. The simplest one is mere differential growth between pit bottom (slow growth) and ridge top (faster growth). The involvement of several complex remodeling processes, with the local succession of resorption and reconstruction cycles, is frequent and occurs in all major gnathostome clades. Some broad, inclusive clades (e.g., Temnospondyli) display consistency in the mechanisms controlling ornamentation, whereas other clades (e.g., Actinopterygii) are characterized by the diversity of the mechanisms involved. If osteogenic mechanisms are taken into account, bone ornamentation should be considered as a character extremely prone to homoplasy. Maximum likelihood (ML) optimizations reveal that the plesiomorphic mechanism creating ornamentation is differential apposition rate over pits (slow growth) and ridges (faster growth). In some taxas e.g., temnospondyls vs lissamphibians or pseudosuchians, bone ornamentation is likely to be a homoplastic feature due to a convergence process driven by similar selective pressures. ML models of character evolution suggest that the presence of resorption in the development of ornamentation may be selectively advantageous, although support for this conclusion is only moderate.


Assuntos
Evolução Biológica , Desenvolvimento Ósseo/fisiologia , Cordados/anatomia & histologia , Cordados/crescimento & desenvolvimento , Morfogênese/fisiologia , Animais , Osso e Ossos
10.
PLoS One ; 11(1): e0146155, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26727370

RESUMO

Quaking (QKI) is an RNA-binding protein involved in post-transcriptional mRNA processing. This gene is found to be associated with several human neurological disorders. Early expression of QKI proteins in the developing mouse neuroepithelium, together with neural tube defects in Qk mouse mutants, suggest the functional requirement of Qk for the establishment of the nervous system. As a knockout of Qk is embryonic lethal in mice, other model systems like the zebrafish could serve as a tool to study the developmental functions of qki. In the present study we sought to characterize the evolutionary relationship and spatiotemporal expression of qkia, qki2, and qkib; zebrafish homologs of human QKI. We found that qkia is an ancestral paralog of the single tetrapod Qk gene that was likely lost during the fin-to-limb transition. Conversely, qkib and qki2 are orthologs, emerging at the root of the vertebrate and teleost lineage, respectively. Both qki2 and qkib, but not qkia, were expressed in the progenitor domains of the central nervous system, similar to expression of the single gene in mice. Despite having partially overlapping expression domains, each gene has a unique expression pattern, suggesting that these genes have undergone subfunctionalization following duplication. Therefore, we suggest the zebrafish could be used to study the separate functions of qki genes during embryonic development.


Assuntos
Proteínas de Ligação a RNA/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Cordados/anatomia & histologia , Cordados/genética , Sequência Conservada , Evolução Molecular , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização in Situ Fluorescente , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Tubo Neural/metabolismo , Filogenia , Proteínas de Ligação a RNA/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Homologia de Sequência , Especificidade da Espécie , Sintenia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/biossíntese
11.
Philos Trans R Soc Lond B Biol Sci ; 370(1684)2015 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-26554041

RESUMO

In the past 40 years, comparisons of developmental gene expression and mechanisms of development (evodevo) joined comparative morphology as tools for reconstructing long-extinct ancestral forms. Unfortunately, both approaches typically give congruent answers only with closely related organisms. Chordate nervous systems are good examples. Classical studies alone left open whether the vertebrate brain was a new structure or evolved from the anterior end of an ancestral nerve cord like that of modern amphioxus. Evodevo plus electron microscopy showed that the amphioxus brain has a diencephalic forebrain, small midbrain, hindbrain and spinal cord with parts of the genetic mechanisms for the midbrain/hindbrain boundary, zona limitans intrathalamica and neural crest. Evodevo also showed how extra genes resulting from whole-genome duplications in vertebrates facilitated evolution of new structures like neural crest. Understanding how the chordate central nervous system (CNS) evolved from that of the ancestral deuterostome has been truly challenging. The majority view is that this ancestor had a CNS with a brain that gave rise to the chordate CNS and, with loss of a discrete brain, to one of the two hemichordate nerve cords. The minority view is that this ancestor had no nerve cord; those in chordates and hemichordates evolved independently. New techniques such as phylostratigraphy may help resolve this conundrum.


Assuntos
Evolução Biológica , Sistema Nervoso Central/anatomia & histologia , Cordados/anatomia & histologia , Cordados/genética , Animais
12.
J Exp Zool B Mol Dev Evol ; 324(8): 647-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26227807

RESUMO

Metameric gill slits are mysterious structures, unique for Chordata and Hemichordata, and also, perhaps, for the extinct Cambrian Calcichordata. There is a discussed hypothesis of the gill slits origin from the metameric nephridia. According to the hypothesis, the hypothetical metameric deuterostome ancestor had in each segment a pair of coelomoducts and a pair of intestinal pockets. In the anterior segments, the coelomoducts have fused with the intestinal pockets. As a result, each nephridium opened both into the gut and into the environment. Then the dissepiments and funnels reduced in all segments except the collar one. Thus, in recent enteropneusts, only the first pair of gill slits keeps the ancestral arrangement communicating at the same time with the gut, with the environment, and with the coelom of the preceding (collar) segment. In the anterior part of the branchio-genital trunk region of enteropneusts, the metameric intestinal pockets remained, as well as the metameric coelomoducts functioning as the ducts of the metameric gonads, i.e., as the gonoducts. The consequence of the hypothesis is that the metameric gill pores originate from the metameric excreting pores, and the metameric branchial sacs originate from the metameric endodermal pockets of the gut fused with the coelomoducts. The metameric gill slits by themselves correspond with metameric openings connecting the gut with metameric intestinal pockets. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 647-652, 2015. © 2015 Wiley Periodicals, Inc.


Assuntos
Cordados/anatomia & histologia , Brânquias/anatomia & histologia , Animais , Evolução Biológica , Fósseis
13.
Nature ; 520(7548): 456-65, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25903627

RESUMO

Our understanding of vertebrate origins is powerfully informed by comparative morphology, embryology and genomics of chordates, hemichordates and echinoderms, which together make up the deuterostome clade. Striking body-plan differences among these phyla have historically hindered the identification of ancestral morphological features, but recent progress in molecular genetics and embryology has revealed deep similarities in body-axis formation and organization across deuterostomes, at stages before morphological differences develop. These developmental genetic features, along with robust support of pharyngeal gill slits as a shared deuterostome character, provide the foundation for the emergence of chordates.


Assuntos
Cordados/anatomia & histologia , Cordados/embriologia , Filogenia , Animais , Padronização Corporal , Cordados/classificação , Endoderma/embriologia , Brânquias/anatomia & histologia , Brânquias/embriologia , Mesoderma/embriologia
14.
Nature ; 520(7548): 483-9, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25903630

RESUMO

The interrelationships between major living vertebrate, and even chordate, groups are now reasonably well resolved thanks to a large amount of generally congruent data derived from molecular sequences, anatomy and physiology. But fossils provide unexpected combinations of characters that help us to understand how the anatomy of modern groups was progressively shaped over millions of years. The dawn of vertebrates is documented by fossils that are preserved as either soft-tissue imprints, or minute skeletal fragments, and it is sometimes difficult for palaeontologists to tell which of them are reliable vertebrate remains and which merely reflect our idea of an ancestral vertebrate.


Assuntos
Cordados/anatomia & histologia , Cordados/classificação , Fósseis , Filogenia , Vertebrados/anatomia & histologia , Vertebrados/classificação , Animais
15.
J Exp Biol ; 218(Pt 4): 637-45, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25696827

RESUMO

Understanding the evolution of deuterostome nervous systems has been complicated by the by the ambiguous phylogenetic position of the Xenocoelomorpha (Xenoturbellids, acoel flat worms, nemertodermatids), which has been placed either as basal bilaterians, basal deuterostomes or as a sister group to the hemichordate/echinoderm clade (Ambulacraria), which is a sister group of the Chordata. None of these groups has a single longitudinal nerve cord and a brain. A further complication is that echinoderm nerve cords are not likely to be evolutionarily related to the chordate central nervous system. For hemichordates, opinion is divided as to whether either one or none of the two nerve cords is homologous to the chordate nerve cord. In chordates, opposition by two secreted signaling proteins, bone morphogenetic protein (BMP) and Nodal, regulates partitioning of the ectoderm into central and peripheral nervous systems. Similarly, in echinoderm larvae, opposition between BMP and Nodal positions the ciliary band and regulates its extent. The apparent loss of this opposition in hemichordates is, therefore, compatible with the scenario, suggested by Dawydoff over 65 years ago, that a true centralized nervous system was lost in hemichordates.


Assuntos
Cordados/anatomia & histologia , Equinodermos/anatomia & histologia , Sistema Nervoso/anatomia & histologia , Animais , Evolução Biológica , Cordados/genética , Equinodermos/genética , Expressão Gênica , Larva/anatomia & histologia , Filogenia
16.
Mol Biol Evol ; 32(2): 299-312, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25415965

RESUMO

An elaborated tripartite brain is considered one of the important innovations of vertebrates. Other extant chordate groups have a more basic brain organization. For instance, cephalochordates possess a relatively simple brain possibly homologous to the vertebrate forebrain and hindbrain, whereas tunicates display the tripartite organization, but without the specialized brain centers. The difference in anatomical complexity is even more pronounced if one compares chordates with other deuterostomes that have only a diffuse nerve net or alternatively a rather simple central nervous system. To gain a new perspective on the evolutionary roots of the complex vertebrate brain, we made here a phylostratigraphic analysis of gene expression patterns in the developing zebrafish (Danio rerio). The recovered adaptive landscape revealed three important periods in the evolutionary history of the zebrafish brain. The oldest period corresponds to preadaptive events in the first metazoans and the emergence of the nervous system at the metazoan-eumetazoan transition. The origin of chordates marks the next phase, where we found the overall strongest adaptive imprint in almost all analyzed brain regions. This finding supports the idea that the vertebrate brain evolved independently of the brains within the protostome lineage. Finally, at the origin of vertebrates we detected a pronounced signal coming from the dorsal telencephalon, in agreement with classical theories that consider this part of the cerebrum a genuine vertebrate innovation. Taken together, these results reveal a stepwise adaptive history of the vertebrate brain where most of its extant organization was already present in the chordate ancestor.


Assuntos
Encéfalo/anatomia & histologia , Cordados/anatomia & histologia , Animais , Evolução Biológica , Cordados/classificação , Cordados não Vertebrados/anatomia & histologia , Cordados não Vertebrados/classificação , Filogeografia , Vertebrados/anatomia & histologia , Vertebrados/classificação , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/classificação
17.
PLoS One ; 9(12): e113911, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517726

RESUMO

The mobility of ray I was analysed in seventy-eight Early Permian to Late Cretaceous specimens of non-mammalian Synapsida and one extant mammal. In all non-mammaliamorph Synapsida investigated, ray I formed a digital arcade. The first phalanx was maximally extendable to the zero position in the metapodiophalangeal joint I. Metapodiale I was the functional equivalent to a basal phalanx of digits II-V. In contrast, there was no digital arcade in ray I in Mesozoic Mammaliamorpha. Phalanx 1 I was dorsally extendable and metapodiale I was functionally part of the metapodium. During the propulsion phase, autopodial rotation occurred in the majority of Synapsida with abducted limb posture. Regarding ray I, the reduction of autopodial rotation can be estimated, e.g., from the decrease of lateral rotation and medial abduction of the first phalanx in the metapodiophalangeal joint I. Autopodial rotation was high in Titanophoneus and reduced in derived Cynodontia. In Mammaliamorpha the mobility of the first ray suggests autopodial rolling in an approximately anterior direction. Most non-mammaliamorph Therapsida and probably some Mesozoic Mammaliamorpha had prehensile autopodia with an opposable ray I. In forms with a pronounced relief of the respective joints, ray I could be opposed to 90° against ray III. A strong transverse arch in the row of distalia supported the opposition movement of ray I and resulted in a convergence of the claws of digits II-V just by flexing those digits. A tight articular coherence in the digital joints of digits II-V during strong flexion supported a firm grip capacity. Usually the grip capacity was more pronounced in the manus than in the pes. Prehensile autopodia of carnivorous Therapsida may have been utilized to hold prey while biting, thus helping to avoid fractures of the laterally compressed fangs.


Assuntos
Cordados/anatomia & histologia , Cordados/fisiologia , Pé/fisiologia , Membro Anterior/fisiologia , Amplitude de Movimento Articular , Animais , Pé/anatomia & histologia , Membro Anterior/anatomia & histologia , Fósseis , Articulações/anatomia & histologia , Articulações/fisiologia , Osteologia , Paleontologia
18.
Genesis ; 52(12): 925-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25303744

RESUMO

As a group closely related to chordates, hemichordate acorn worms are in a key phylogenic position for addressing hypotheses of chordate origins. The stomochord of acorn worms is an anterior outgrowth of the pharynx endoderm into the proboscis. In 1886 Bateson proposed homology of this organ to the chordate notochord, crowning this animal group "hemichordates." Although this proposal has been debated for over a century, the question still remains unresolved. Here we review recent progress related to this question. First, the developmental mode of the stomochord completely differs from that of the notochord. Second, comparison of expression profiles of genes including Brachyury, a key regulator of notochord formation in chordates, does not support the stomochord/notochord homology. Third, FoxE that is expressed in the stomochord-forming region in acorn worm juveniles is expressed in the club-shaped gland and in the endostyle of amphioxus, in the endostyle of ascidians, and in the thyroid gland of vertebrates. Based on these findings, together with the anterior endodermal location of the stomochord, we propose that the stomochord has evolutionary relatedness to chordate organs deriving from the anterior pharynx rather than to the notochord.


Assuntos
Evolução Biológica , Cordados/anatomia & histologia , Cordados/genética , Notocorda/crescimento & desenvolvimento , Faringe/crescimento & desenvolvimento , Animais , Cordados/classificação , Endoderma/metabolismo , Proteínas Fetais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Mucosa Gástrica/metabolismo , Notocorda/metabolismo , Faringe/metabolismo , Proteínas com Domínio T/metabolismo
19.
BMC Evol Biol ; 14: 214, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25273382

RESUMO

BACKGROUND: Vetulicolians are one of the most problematic and controversial Cambrian fossil groups, having been considered as arthropods, chordates, kinorhynchs, or their own phylum. Mounting evidence suggests that vetulicolians are deuterostomes, but affinities to crown-group phyla are unresolved. RESULTS: A new vetulicolian from the Emu Bay Shale Konservat-Lagerstätte, South Australia, Nesonektris aldridgei gen. et sp. nov., preserves an axial, rod-like structure in the posterior body region that resembles a notochord in its morphology and taphonomy, with notable similarity to early decay stages of the notochord of extant cephalochordates and vertebrates. Some of its features are also consistent with other structures, such as a gut or a coelomic cavity. CONCLUSIONS: Phylogenetic analyses resolve a monophyletic Vetulicolia as sister-group to tunicates (Urochordata) within crown Chordata, and this holds even if they are scored as unknown for all notochord characters. The hypothesis that the free-swimming vetulicolians are the nearest relatives of tunicates suggests that a perpetual free-living life cycle was primitive for tunicates. Characters of the common ancestor of Vetulicolia + Tunicata include distinct anterior and posterior body regions - the former being non-fusiform and used for filter feeding and the latter originally segmented - plus a terminal mouth, absence of pharyngeal bars, the notochord restricted to the posterior body region, and the gut extending to the end of the tail.


Assuntos
Cordados/classificação , Cordados/genética , Fósseis , Animais , Austrália , Evolução Biológica , Cordados/anatomia & histologia , Brânquias/anatomia & histologia , Filogenia , Urocordados/classificação , Urocordados/genética
20.
Proc Natl Acad Sci U S A ; 111(46): 16419-24, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25331898

RESUMO

Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models.


Assuntos
Biodiversidade , Extinção Biológica , Fósseis/anatomia & histologia , Especiação Genética , Animais , Artrópodes/anatomia & histologia , Artrópodes/classificação , Artrópodes/genética , Cordados/anatomia & histologia , Cordados/classificação , Cordados/genética , Simulação por Computador , Equinodermos/anatomia & histologia , Equinodermos/classificação , Equinodermos/genética , Invertebrados/anatomia & histologia , Invertebrados/classificação , Invertebrados/genética , Modelos Genéticos , Moluscos/anatomia & histologia , Moluscos/classificação , Moluscos/genética , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...