Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(11): e0260038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34813610

RESUMO

At present, global immunity to SARS-CoV-2 resides within a heterogeneous combination of susceptible, naturally infected and vaccinated individuals. The extent to which viral shedding and transmission occurs on re-exposure to SARS-CoV-2 is an important determinant of the rate at which COVID-19 achieves endemic stability. We used Sialodacryoadenitis Virus (SDAV) in rats to model the extent to which immune protection afforded by prior natural infection via high risk (inoculation; direct contact) or low risk (fomite) exposure, or by vaccination, influenced viral shedding and transmission on re-exposure. On initial infection, we confirmed that amount, duration and consistency of viral shedding, and seroconversion rates were correlated with exposure risk. Animals were reinfected after 3.7-5.5 months using the same exposure paradigm. 59% of seropositive animals shed virus, although at lower amounts. Previously exposed seropositive reinfected animals were able to transmit virus to 25% of naive recipient rats after 24-hour exposure by direct contact. Rats vaccinated intranasally with a related virus (Parker's Rat Coronavirus) were able to transmit SDAV to only 4.7% of naive animals after a 7-day direct contact exposure, despite comparable viral shedding. Cycle threshold values associated with transmission in both groups ranged from 29-36 cycles. Observed shedding was not a prerequisite for transmission. Results indicate that low-level shedding in both naturally infected and vaccinated seropositive animals can propagate infection in susceptible individuals. Extrapolated to COVID-19, our results suggest that continued propagation of SARS-CoV-2 by seropositive previously infected or vaccinated individuals is possible.


Assuntos
COVID-19/transmissão , Infecções por Coronaviridae/veterinária , Coronavirus do Rato/fisiologia , Modelos Biológicos , Modelos Estatísticos , Doenças dos Roedores/transmissão , Eliminação de Partículas Virais , Animais , COVID-19/virologia , Infecções por Coronaviridae/transmissão , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , SARS-CoV-2/fisiologia , Soroconversão
2.
J Gen Virol ; 95(Pt 3): 578-590, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24323639

RESUMO

Polymorphonuclear neutrophils (PMN) infiltrate the respiratory tract early after viral infection and can contribute to both host defence and pathology. Coronaviruses are important causes of respiratory tract infections, ranging from mild to severe depending on the viral strain. This study evaluated the role of PMN during a non-fatal pulmonary coronavirus infection in the natural host. Rat coronavirus (RCoV) causes respiratory disease in adult rats, characterized by an early PMN response, viral replication and inflammatory lesions in the lungs, mild weight loss and effective resolution of infection. To determine their role during RCoV infection, PMN were depleted and the effects on disease progression, viral replication, inflammatory response and lung pathology were analysed. Compared with RCoV infection in control animals, PMN-depleted rats had worsened disease with weight loss, clinical signs, mortality and prolonged pulmonary viral replication. PMN-depleted animals had fewer macrophages and lymphocytes in the respiratory tract, corresponding to lower chemokine levels. Combined with in vitro experiments showing that PMN express cytokines and chemokines in response to RCoV-infected alveolar epithelial cells, these findings support a role for PMN in eliciting an inflammatory response to RCoV infection. Despite their critical role in the protection from severe disease, the presence of PMN was correlated with haemorrhagic lesions, epithelial barrier permeability and cellular inflammation in the lungs. This study demonstrated that while PMN are required for an effective antiviral response, they also contribute to lung pathology during RCoV infection.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus do Rato/imunologia , Neutrófilos/imunologia , Alvéolos Pulmonares/imunologia , Doenças dos Roedores/imunologia , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Coronavirus do Rato/fisiologia , Citocinas/imunologia , Masculino , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , Ratos , Ratos Endogâmicos F344 , Doenças dos Roedores/patologia , Doenças dos Roedores/virologia
3.
J Gen Virol ; 90(Pt 12): 2956-2964, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19741068

RESUMO

The rat coronavirus sialodacryoadenitis virus (SDAV) causes respiratory infection and provides a system for investigating respiratory coronaviruses in a natural host. A viral suspension in the form of a microspray aerosol was delivered by intratracheal instillation into the distal lung of 6-8-week-old Fischer 344 rats. SDAV inoculation produced a 7 % body weight loss over a 5 day period that was followed by recovery over the next 7 days. SDAV caused focal lesions in the lung, which were most severe on day 4 post-inoculation (p.i.). Immunofluorescent staining showed that four cell types supported SDAV virus replication in the lower respiratory tract, namely Clara cells, ciliated cells in the bronchial airway and alveolar type I and type II cells in the lung parenchyma. In bronchial alveolar lavage fluid (BALF) a neutrophil influx increased the population of neutrophils to 45 % compared with 6 % of the cells in control samples on day 2 after mock inoculation. Virus infection induced an increase in surfactant protein SP-D levels in BALF of infected rats on days 4 and 8 p.i. that subsided by day 12. The concentrations of chemokines MCP-1, LIX and CINC-1 in BALF increased on day 4 p.i., but returned to control levels by day 8. Intratracheal instillation of rats with SDAV coronavirus caused an acute, self-limited infection that is a useful model for studying the early events of the innate immune response to respiratory coronavirus infections in lungs of the natural virus host.


Assuntos
Infecções por Coronavirus , Coronavirus do Rato/patogenicidade , Células Epiteliais/virologia , Pulmão/virologia , Alvéolos Pulmonares/virologia , Replicação Viral , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Coronavirus do Rato/fisiologia , Citocinas/metabolismo , Imunidade Inata , Pulmão/citologia , Masculino , Alvéolos Pulmonares/citologia , Surfactantes Pulmonares/metabolismo , Ratos , Ratos Endogâmicos F344 , Redução de Peso
4.
Trends Microbiol ; 4(7): 264-9, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8829334

RESUMO

The replication of JHM, a murine coronavirus, provides a useful model of the assembly and dissemination of viral components in neuronal cells. Involvement of microtubules in virus trafficking is an important feature which may explain dissemination of the infection from primary cell targets at olfactory, hippocampal and cerebellar sites within the central nervous system, resulting in severe neuropathies.


Assuntos
Doenças do Sistema Nervoso Central/virologia , Infecções por Coronavirus/virologia , Coronavirus do Rato/fisiologia , Proteínas Virais/biossíntese , Fatores Etários , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Doenças do Sistema Nervoso Central/patologia , Infecções por Coronavirus/transmissão , Imuno-Histoquímica , Camundongos , Microtúbulos/virologia , Ratos , Homologia de Sequência , Tropismo , Proteínas Virais/genética , Montagem de Vírus
5.
Lab Anim Sci ; 46(2): 159-66, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8723231

RESUMO

Murine coronavirus (MHV) and rat coronavirus (RCV) are antigenically related viruses that have different natural rodent hosts. Both MHV and RCV can be propagated in the L2(Percy) and CMT-93 mouse cell lines. In these cell lines MHV uses the MHV receptor (MHVR or Bgp1a) and several related murine Bgp glycoproteins in the immunoglobulin superfamily as receptors. To determine whether RCV also uses these murine glycoproteins as receptors, we characterized the envelope glycoproteins of two strains of RCV and compared the effects of anti-MHVR monoclonal antibody on susceptibility of the mouse cells to MHV and RCV. The Parker (RCV-P) and sialodacryoadenitis (RCV-SDAV) strains of RCV expressed the spike glycoprotein S, but only RCV-P expressed a hemagglutinin-esterase glycoprotein that had acetylesterase activity. Therefore RCV-SDAV must bind to cellular receptors by the viral S glycoprotein, whereas RCV-P might bind to cells by its hemagglutinin-esterase glycoprotein as well as by S. Pretreatment of L2(Percy) 41.a or CMT-93 cells with anti-MHVR monoclonal antibody blocked infection with MHV-A59 but did not prevent infection of these murine cells with RCV-P or RCV-SDAV. Baby hamster kidney cells transfected with cDNAs encoding MHVR (Bgp1a) or Bgp2 were susceptible to MHV-A59 but not to RCV-P or RCV-SDAV. Thus the RCV strains cannot use these murine coronavirus receptors and must be infecting murine cells by another, as yet unknown, receptor.


Assuntos
Anticorpos Monoclonais/farmacologia , Coronavirus do Rato/fisiologia , Glicoproteínas/metabolismo , Receptores Virais/metabolismo , Proteínas Virais de Fusão , Animais , Antígenos CD , Moléculas de Adesão Celular , Linhagem Celular , Coronavirus do Rato/genética , Coronavirus do Rato/crescimento & desenvolvimento , Cricetinae , DNA Complementar/genética , Glicoproteínas/genética , Hemaglutininas Virais/metabolismo , Immunoblotting , Rim , Camundongos , Camundongos Endogâmicos C3H , Ratos , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Transfecção , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA