Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.823
Filtrar
1.
Cells ; 13(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38727320

RESUMO

Cardiac arrest survivors suffer the repercussions of anoxic brain injury, a critical factor influencing long-term prognosis. This injury is characterised by profound and enduring metabolic impairment. Ketone bodies, an alternative energetic resource in physiological states such as exercise, fasting, and extended starvation, are avidly taken up and used by the brain. Both the ketogenic diet and exogenous ketone supplementation have been associated with neuroprotective effects across a spectrum of conditions. These include refractory epilepsy, neurodegenerative disorders, cognitive impairment, focal cerebral ischemia, and traumatic brain injuries. Beyond this, ketone bodies possess a plethora of attributes that appear to be particularly favourable after cardiac arrest. These encompass anti-inflammatory effects, the attenuation of oxidative stress, the improvement of mitochondrial function, a glucose-sparing effect, and the enhancement of cardiac function. The aim of this manuscript is to appraise pertinent scientific literature on the topic through a narrative review. We aim to encapsulate the existing evidence and underscore the potential therapeutic value of ketone bodies in the context of cardiac arrest to provide a rationale for their use in forthcoming translational research efforts.


Assuntos
Parada Cardíaca , Corpos Cetônicos , Corpos Cetônicos/metabolismo , Humanos , Parada Cardíaca/metabolismo , Animais , Dieta Cetogênica
2.
Sheng Li Xue Bao ; 76(2): 224-232, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658372

RESUMO

The present study aims to investigate the production of ketone body in the liver of mice after 6 weeks of high-intensity interval training (HIIT) intervention and explore the possible mechanisms. Male C57BL/6J mice (7-week-old) were randomly divided into control and HIIT groups. The control group did not engage in exercise, while the HIIT group underwent a 6-week HIIT (10° slope treadmill exercise). Changes in weight and body composition were recorded, and blood ketone body levels were measured before, immediately after, and 1 h after each HIIT exercise. After 6-week HIIT, the levels of free fatty acids in the liver and serum were detected using reagent kits, and expression levels of regulatory factors and key enzymes of ketone body production in the mouse liver were detected by Western blot and qPCR. The results showed that, the blood ketone body levels in the HIIT group significantly increased immediately after a single HIIT and 1 h after HIIT, compared with that before HIIT. The body weight of the control group gradually increased within 6 weeks, while the HIIT group mice did not show significant weight gain. After 6-week HIIT, compared with the control group, the HIIT group showed decreased body fat ratio, increased lean body weight ratio, and increased free fatty acid levels in liver and serum. Liver carnitine palmitoyl transferase-I (CPT-I), peroxisome proliferator activated receptor α (PPARα), and fibroblast growth factor 21 (FGF21) protein expression levels were up-regulated, whereas mammalian target of rapamycin complex 1 (mTORC1) protein expression level was significantly down-regulated in the HIIT group, compared with those in the control group. These results suggest that HIIT induces hepatic ketone body production through altering mTORC1, PPARα and FGF21 expression in mice.


Assuntos
Fatores de Crescimento de Fibroblastos , Treinamento Intervalado de Alta Intensidade , Corpos Cetônicos , Fígado , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , PPAR alfa , Condicionamento Físico Animal , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/sangue , Masculino , Camundongos , PPAR alfa/metabolismo , Corpos Cetônicos/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fígado/metabolismo , Condicionamento Físico Animal/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/metabolismo
3.
Gen Comp Endocrinol ; 352: 114514, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582175

RESUMO

Hormonal influence on hepatic function is a critical aspect of whole-body energy balance in vertebrates. Catecholamines and corticosteroids both influence hepatic energy balance via metabolite mobilization through glycogenolysis and gluconeogenesis. Elasmobranchs have a metabolic organization that appears to prioritize the mobilization of hepatic lipid as ketone bodies (e.g. 3-hydroxybutyrate [3-HB]), which adds complexity in determining the hormonal impact on hepatic energy balance in this taxon. Here, a liver perfusion was used to investigate catecholamine (epinephrine [E]) and corticosteroid (corticosterone [B] and 11-deoxycorticosterone [DOC]) effects on the regulation of hepatic glucose and 3-HB balance in the North Pacific Spiny dogfish, Squalus suckleyi. Further, hepatic enzyme activity involved in ketogenesis (3-hydroxybutyrate dehydrogenase), glycogenolysis (glycogen phosphorylase), and gluconeogenesis (phosphoenolpyruvate carboxykinase) were assessed in perfused liver tissue following hormonal application to discern effects on hepatic energy flux. mRNA transcript abundance key transporters of glucose (glut1 and glut4) and ketones (mct1 and mct2) and glucocorticoid function (gr, pepck, fkbp5, and 11ßhsd2) were also measured to investigate putative cellular components involved in hepatic responses. There were no changes in the arterial-venous difference of either metabolite in all hormone perfusions. However, perfusion with DOC increased gr transcript abundance and decreased flow rate of perfusions, suggesting a regulatory role for this corticosteroid. Phosphoenolpyruvate carboxykinase activity increased following all hormone treatments, which may suggest gluconeogenic function; E also increased 3-hydroxybutyrate dehydrogenase activity, suggesting a function in ketogenesis, and decreased pepck and fkbp5 transcript abundance, potentially showing some metabolic regulation. Overall, we demonstrate hormonal control of hepatic energy balance using liver perfusions at various levels of biological organization in an elasmobranch.


Assuntos
Squalus acanthias , Squalus , Animais , Glucose/metabolismo , Squalus/metabolismo , Squalus acanthias/metabolismo , Hidroxibutirato Desidrogenase/metabolismo , Fosfoenolpiruvato/metabolismo , Fígado/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Corpos Cetônicos/metabolismo , Gluconeogênese , Hormônios/metabolismo , Corticosteroides/metabolismo
4.
J Am Heart Assoc ; 13(8): e033628, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563382

RESUMO

BACKGROUND: The ketone body 3-hydroxybutyrate (3-OHB) increases cardiac output (CO) by 35% to 40% in healthy people and people with heart failure. The mechanisms underlying the effects of 3-OHB on myocardial contractility and loading conditions as well as the cardiovascular effects of its enantiomeric forms, D-3-OHB and L-3-OHB, remain undetermined. METHODS AND RESULTS: Three groups of 8 pigs each underwent a randomized, crossover study. The groups received 3-hour infusions of either D/L-3-OHB (racemic mixture), 100% L-3-OHB, 100% D-3-OHB, versus an isovolumic control. The animals were monitored with pulmonary artery catheter, left ventricle pressure-volume catheter, and arterial and coronary sinus blood samples. Myocardial biopsies were evaluated with high-resolution respirometry, coronary arteries with isometric myography, and myocardial kinetics with D-[11C]3-OHB and L-[11C]3-OHB positron emission tomography. All three 3-OHB infusions increased 3-OHB levels (P<0.001). D/L-3-OHB and L-3-OHB increased CO by 2.7 L/min (P<0.003). D-3-OHB increased CO nonsignificantly (P=0.2). Circulating 3-OHB levels correlated with CO for both enantiomers (P<0.001). The CO increase was mediated through arterial elastance (afterload) reduction, whereas contractility and preload were unchanged. Ex vivo, D- and L-3-OHB dilated coronary arteries equally. The mitochondrial respiratory capacity remained unaffected. The myocardial 3-OHB extraction increased only during the D- and D/L-3-OHB infusions. D-[11C]3-OHB showed rapid cardiac uptake and metabolism, whereas L-[11C]3-OHB demonstrated much slower pharmacokinetics. CONCLUSIONS: 3-OHB increased CO by reducing afterload. L-3-OHB exerted a stronger hemodynamic response than D-3-OHB due to higher circulating 3-OHB levels. There was a dissocitation between the myocardial metabolism and hemodynamic effects of the enantiomers, highlighting L-3-OHB as a potent cardiovascular agent with strong hemodynamic effects.


Assuntos
Hidroxibutiratos , Tomografia Computadorizada por Raios X , Humanos , Suínos , Animais , Ácido 3-Hidroxibutírico/farmacologia , Estudos Cross-Over , Hidroxibutiratos/farmacologia , Coração , Corpos Cetônicos/metabolismo
5.
Trends Endocrinol Metab ; 35(2): 125-141, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38577754

RESUMO

Intermittent short-term fasting (ISTF) and ketogenic diets (KDs) exert overlapping but not identical effects on cell metabolism, function, and resilience. Whereas health benefits of KD are largely mediated by the ketone bodies (KBs), ISTF engages additional adaptive physiological responses. KDs act mainly through inhibition of histone deacetylases (HDACs), reduction of oxidative stress, improvement of mitochondria efficiency, and control of inflammation. Mechanisms of action of ISTF include stimulation of autophagy, increased insulin and leptin sensitivity, activation of AMP-activated protein kinase (AMPK), inhibition of the mechanistic target of rapamycin (mTOR) pathway, bolstering mitochondrial resilience, and suppression of oxidative stress and inflammation. Frequent switching between ketogenic and nonketogenic states may optimize health by increasing stress resistance, while also enhancing cell plasticity and functionality.


Assuntos
Dieta Cetogênica , Humanos , Corpos Cetônicos/metabolismo , Jejum , Estresse Oxidativo/fisiologia , Inflamação
6.
Mol Metab ; 83: 101926, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553002

RESUMO

OBJECTIVE: Ketone bodies (such as ß-hydroxybutyrate or BHB) have been recently proposed as signals involved in brain regulation of energy homeostasis and obesity development. However, the precise role of ketone bodies sensing by the brain, and its impact on metabolic disorder development remains unclear. Nevertheless, partial deletion of the ubiquitous ketone bodies transporter MCT1 in mice (HE mice) results in diet-induced obesity resistance, while there is no alteration under normal chow diet. These results suggest that ketone bodies produced during the high fat diet would be important signals involved in obesity onset. METHODS: In the present study we used a specific BHB infusion of the hypothalamus and analyzed the energy homeostasis of WT or HE mice fed a normal chow diet. RESULTS: Our results indicate that high BHB levels sensed by the hypothalamus disrupt the brain regulation of energy homeostasis. This brain control dysregulation leads to peripheral alterations of energy expenditure mechanisms. CONCLUSIONS: Altogether, the changes induced by high ketone bodies levels sensed by the brain increase the risk of obesity onset in mice.


Assuntos
Ácido 3-Hidroxibutírico , Metabolismo Energético , Hipotálamo , Corpos Cetônicos , Camundongos Endogâmicos C57BL , Obesidade , Animais , Hipotálamo/metabolismo , Camundongos , Corpos Cetônicos/metabolismo , Masculino , Obesidade/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Homeostase , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/metabolismo , Simportadores/genética
7.
Am J Physiol Endocrinol Metab ; 326(4): E493-E502, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381399

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation that can progress to inflammation (nonalcoholic steatohepatitis, NASH), and fibrosis. Serum ß-hydroxybutyrate (ß-HB), a product of the ketogenic pathway, is commonly used as a surrogate marker for hepatic fatty acid oxidation (FAO). However, it remains uncertain whether this relationship holds true in the context of NAFLD in humans. We compared fasting serum ß-HB levels with direct measurement of liver mitochondrial palmitate oxidation in humans stratified based on NAFLD severity (n = 142). Patients were stratified based on NAFLD activity score (NAS): NAS = 0 (no disease), NAS = 1-2 (mild), NAS = 3-4 (moderate), and NAS ≥ 5 (advanced). Moderate and advanced NAFLD is associated with reductions in liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), serum ß-HB, but not 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL) mRNA, relative to no disease. Worsening liver mitochondrial complete palmitate oxidation corresponded with lower HMGCS2 mRNA but not total (complete + incomplete) palmitate oxidation. Interestingly, we found that liver HMGCS2 mRNA and serum ß-HB correlated with liver mitochondrial ß-hydroxyacyl-CoA dehydrogenase (ß-HAD) activity and CPT1A mRNA. Also, lower mitochondrial mass and markers of mitochondrial turnover positively correlated with lower HMGCS2 in the liver. These data suggest that liver ketogenesis and FAO occur at comparable rates in individuals with NAFLD. Our findings support the utility of serum ß-HB to serve as a marker of liver injury and hepatic FAO in the context of NAFLD.NEW & NOTEWORTHY Serum ß-hydroxybutyrate (ß-HB) is frequently utilized as a surrogate marker for hepatic fatty acid oxidation; however, few studies have investigated this relationship during states of liver disease. We found that the progression of nonalcoholic fatty liver disease (NAFLD) is associated with reductions in circulating ß-HB and liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2). As well, decreased rates of hepatic fatty acid oxidation correlated with liver HMGCS2 mRNA and serum ß-HB. Our work supports serum ß-HB as a potential marker for hepatic fatty acid oxidation and liver injury during NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Corpos Cetônicos/metabolismo , Biomarcadores/metabolismo , RNA Mensageiro/metabolismo , Palmitatos/metabolismo
8.
Obesity (Silver Spring) ; 32(3): 506-516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258448

RESUMO

OBJECTIVE: A ketogenic diet (KD) characterized by very low carbohydrate intake and high fat consumption may simultaneously induce weight loss and be cardioprotective. The "thrifty substrate hypothesis" posits that ketone bodies are more energy efficient compared with other cardiac oxidative substrates such as fatty acids. This work aimed to study whether a KD with presumed increased myocardial ketone body utilization reduces cardiac fatty acid uptake and oxidation, resulting in decreased myocardial oxygen consumption (MVO2 ). METHODS: This randomized controlled crossover trial examined 11 individuals with overweight or obesity on two occasions: (1) after a KD and (2) after a standard diet. Myocardial free fatty acid (FFA) oxidation, uptake, and esterification rate were measured using dynamic [11 C]palmitate positron emission tomography (PET)/computed tomography, whereas MVO2 and myocardial external efficiency (MEE) were measured using dynamic [11 C]acetate PET. RESULTS: The KD increased plasma ß-hydroxybutyrate, reduced myocardial FFA oxidation (p < 0.01) and uptake (p = 0.03), and increased FFA esterification (p = 0.03). No changes were observed in MVO2 (p = 0.2) or MEE (p = 0.87). CONCLUSIONS: A KD significantly reduced myocardial FFA uptake and oxidation, presumably by increasing ketone body oxidation. However, this change in cardiac substrate utilization did not improve MVO2 , speaking against the thrifty substrate hypothesis.


Assuntos
Dieta Cetogênica , Humanos , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Corpos Cetônicos/metabolismo , Miocárdio/metabolismo , Sobrepeso/metabolismo , Consumo de Oxigênio , Estudos Cross-Over
9.
Am J Physiol Cell Physiol ; 326(3): C948-C963, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189128

RESUMO

Ketogenic diets (KDs), fasting, or prolonged physical activity elevate serum ketone bodies (KBs) levels, providing an alternative fuel source for the brain and other organs. However, KBs play pleiotropic roles that go beyond their role in energy production. KBs can act as signaling metabolites, influence gene expression, proteins' posttranslational modifications (PTMs), inflammation, and oxidative stress. Here, we explore the impact of KBs on mammalian cell physiology, including aging and tissue regeneration. We also concentrate on KBs and cancer, given the extensive evidence that dietary approaches inducing ketosis, including fasting-mimicking diets (FMDs) and KDs, can prevent cancer and affect tumor progression.


Assuntos
Corpos Cetônicos , Neoplasias , Animais , Humanos , Corpos Cetônicos/metabolismo , Corpos Cetônicos/farmacologia , Neoplasias/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo , Fenômenos Fisiológicos Celulares , Mamíferos/metabolismo
10.
Kidney360 ; 5(2): 320-326, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227425

RESUMO

Ketone bodies have a negative image because of ketoacidosis, one of the acute and serious complications in diabetes. The negative image persists despite the fact that ketone bodies are physiologically produced in the liver and serve as an indispensable energy source in extrahepatic organs, particularly during long-term fasting. However, accumulating experimental evidence suggests that ketone bodies exert various health benefits. Particularly in the field of aging research, there is growing interest in the potential organoprotective effects of ketone bodies. In addition, ketone bodies have a potential role in preventing kidney diseases, including diabetic kidney disease (DKD), a diabetic complication caused by prolonged hyperglycemia that leads to a decline in kidney function. Ketone bodies may help alleviate the renal burden from hyperglycemia by being used as an alternative energy source in patients with diabetes. Furthermore, ketone body production may reduce inflammation and delay the progression of several kidney diseases in addition to DKD. Although there is still insufficient research on the use of ketone bodies as a treatment and their effects, their renoprotective effects are being gradually proven. This review outlines the ketone body-mediated renoprotective effects in DKD and other kidney diseases.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Nefropatias Diabéticas , Hiperglicemia , Cetose , Humanos , Corpos Cetônicos/metabolismo , Cetose/metabolismo
11.
Curr Opin Clin Nutr Metab Care ; 27(2): 168-177, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170686

RESUMO

PURPOSE OF REVIEW: Traumatic brain injury (TBI) is a significant public health concern with substantial morbidity and mortality rates in the United States. Current management strategies primarily focus on symptomatic approaches and prevention of secondary complications. However, recent research highlights the potential role of ketone bodies, particularly beta-hydroxybutyrate (BHB), in modulating cellular processes involved in TBI. This article reviews the metabolism of BHB, its effect in TBI, and its potential therapeutic impact in TBI. RECENT FINDINGS: BHB can be produced endogenously through fasting or administered exogenously through ketogenic diets, and oral or intravenous supplements. Studies suggest that BHB may offer several benefits in TBI, including reducing oxidative stress, inflammation, controlling excitotoxicity, promoting mitochondrial respiration, and supporting brain regeneration. Various strategies to modulate BHB levels are discussed, with exogenous ketone preparations emerging as a rapid and effective option. SUMMARY: BHB offers potential therapeutic advantages in the comprehensive approach to improve outcomes for TBI patients. However, careful consideration of safety and efficacy is essential when incorporating it into TBI treatment protocols. The timing, dosage, and long-term effects of ketone use in TBI patients require further investigation to fully understand its potential benefits and limitations.


Assuntos
Lesões Encefálicas Traumáticas , Dieta Cetogênica , Humanos , Ácido 3-Hidroxibutírico/farmacologia , Corpos Cetônicos/metabolismo , Estresse Oxidativo , Dieta Cetogênica/métodos
12.
J Biol Chem ; 300(2): 105617, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176653

RESUMO

Liver can sense the nutrient status and send signals to other organs to regulate overall metabolic homoeostasis. Herein, we demonstrate that ketone bodies act as signals released from the liver that specifically determine the distribution of excess lipid in epididymal white adipose tissue (eWAT) when exposed to a ketogenic diet (KD). An acute KD can immediately result in excess lipid deposition in the liver. Subsequently, the liver sends the ketone body ß-hydroxybutyrate (BHB) to regulate white adipose expansion, including adipogenesis and lipogenesis, to alleviate hepatic lipid accumulation. When ketone bodies are depleted by deleting 3-hydroxy-3-methylglutaryl-CoA synthase 2 gene in the liver, the enhanced lipid deposition in eWAT but not in inguinal white adipose tissue is preferentially blocked, while lipid accumulation in liver is not alleviated. Mechanistically, ketone body BHB can significantly decrease lysine acetylation of peroxisome proliferator-activated receptor gamma in eWAT, causing enhanced activity of peroxisome proliferator-activated receptor gamma, the key adipogenic transcription factor. These observations suggest that the liver senses metabolic stress first and sends a corresponding signal, that is, ketone body BHB, to specifically promote eWAT expansion to adapt to metabolic challenges.


Assuntos
Tecido Adiposo Branco , Dieta Cetogênica , Fígado Gorduroso , Corpos Cetônicos , Humanos , Tecido Adiposo Branco/metabolismo , Fígado Gorduroso/metabolismo , Corpos Cetônicos/metabolismo , Lipídeos , Fígado/metabolismo , PPAR gama/metabolismo
13.
Trends Endocrinol Metab ; 35(2): 107-124, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37940485

RESUMO

Fasting is part of many weight management and health-boosting regimens. Fasting causes substantial metabolic adaptations in the liver that include the stimulation of fatty acid oxidation and ketogenesis. The induction of fatty acid oxidation and ketogenesis during fasting is mainly driven by interrelated changes in plasma levels of various hormones and an increase in plasma nonesterified fatty acid (NEFA) levels and is mediated transcriptionally by the peroxisome proliferator-activated receptor (PPAR)α, supported by CREB3L3 (cyclic AMP-responsive element-binding protein 3 like 3). Compared with men, women exhibit higher ketone levels during fasting, likely due to higher NEFA availability, suggesting that the metabolic response to fasting shows sexual dimorphism. Here, we synthesize the current molecular knowledge on the impact of fasting on hepatic fatty acid oxidation and ketogenesis.


Assuntos
Ácidos Graxos não Esterificados , Ácidos Graxos , Masculino , Feminino , Humanos , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Corpos Cetônicos/metabolismo , Jejum/metabolismo , Oxirredução , PPAR alfa/metabolismo
14.
Am J Physiol Cell Physiol ; 326(1): C143-C160, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982172

RESUMO

Over the last decade, there has been a growing interest in the use of ketone supplements to improve athletic performance. These ketone supplements transiently elevate the concentrations of the ketone bodies acetoacetate (AcAc) and d-ß-hydroxybutyrate (ßHB) in the circulation. Early studies showed that ketone bodies can improve energetic efficiency in striated muscle compared with glucose oxidation and induce a glycogen-sparing effect during exercise. As such, most research has focused on the potential of ketone supplementation to improve athletic performance via ingestion of ketones immediately before or during exercise. However, subsequent studies generally observed no performance improvement, and particularly not under conditions that are relevant for most athletes. However, more and more studies are reporting beneficial effects when ketones are ingested after exercise. As such, the real potential of ketone supplementation may rather be in their ability to enhance postexercise recovery and training adaptations. For instance, recent studies observed that postexercise ketone supplementation (PEKS) blunts the development of overtraining symptoms, and improves sleep, muscle anabolic signaling, circulating erythropoietin levels, and skeletal muscle angiogenesis. In this review, we provide an overview of the current state-of-the-art about the impact of PEKS on aspects of exercise recovery and training adaptation, which is not only relevant for athletes but also in multiple clinical conditions. In addition, we highlight the underlying mechanisms by which PEKS may improve exercise recovery and training adaptation. This includes epigenetic effects, signaling via receptors, modulation of neurotransmitters, energy metabolism, and oxidative and anti-inflammatory pathways.


Assuntos
Corpos Cetônicos , Cetonas , Humanos , Corpos Cetônicos/metabolismo , Exercício Físico/fisiologia , Ácido 3-Hidroxibutírico , Suplementos Nutricionais
15.
Metab Brain Dis ; 39(1): 129-146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37823968

RESUMO

Alzheimer's disease (AD) lacks effective clinical treatments. As the disease progresses, the cerebral glucose hypometabolism that appears in the preclinical phase of AD gradually worsens, leading to increasingly severe brain energy disorders. This review analyzes the brain energy deficit in AD and its etiology, brain energy rescue strategies based on ketone intervention, the effects and mechanisms of IF, the differences in efficacy between IF and ketogenic diet and the duality of IF. The evidence suggests that brain energy deficits lead to the development and progression of AD pathology. IF, which improves brain energy impairments by promoting ketone metabolism, thus has good therapeutic potential for AD.


Assuntos
Doença de Alzheimer , Dieta Cetogênica , Humanos , Doença de Alzheimer/metabolismo , Corpos Cetônicos/metabolismo , Jejum Intermitente , Encéfalo/metabolismo , Cetonas/metabolismo
16.
Exp Hematol ; 129: 104124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898316

RESUMO

Erythroid terminal differentiation and maturation depend on an enormous energy supply. During periods of fasting, ketone bodies from the liver are transported into circulation and utilized as crucial fuel for peripheral tissues. However, the effects of fasting or ketogenesis on erythroid behavior remain unknown. Here, we generated a mouse model with insufficient ketogenesis by conditionally knocking out the gene encoding the hepatocyte-specific ketogenic enzyme hydroxymethylglutary-CoA synthase 2 (Hmgcs2 KO). Intriguingly, erythroid maturation was enhanced with boosted fatty acid synthesis in the bone marrow of a hepatic Hmgcs2 KO mouse under fasting conditions, suggesting that systemic ketogenesis has a profound effect on erythropoiesis. Moreover, we observed significantly activated fatty acid synthesis and mevalonate pathways along with reduced histone acetylation in immature erythrocytes under a less systemic ketogenesis condition. Our findings revealed a new insight into erythroid differentiation, in which metabolic homeostasis and histone acetylation mediated by ketone bodies are essential factors in adaptation toward nutrient deprivation and stressed erythropoiesis.


Assuntos
Histonas , Hidroximetilglutaril-CoA Sintase , Camundongos , Animais , Histonas/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Corpos Cetônicos/genética , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Jejum/fisiologia , Ácidos Graxos/metabolismo
17.
Redox Biol ; 69: 103010, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160540

RESUMO

Ketone bodies are considered as an alternative energy source for diabetic cardiomyopathy (DCM) and can improve the energy supply of the heart muscle, suggesting that it may be an important area of research and development as a therapeutic target for DCM. Cumulative cardiovascular trials have shown that sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular events in diabetic populations. Whether SGLT2 inhibitors improve DCM by enhancing ketone body metabolism remains and whether they help prevent oxidative damage remains to be clarified. Here, we present the combined results of nine GSE datasets for diabetic cardiomyopathy (GSE215979, GSE161931, GSE145294, GSE161052, GSE173384, GSE123975, GSE161827, GSE210612, and GSE5606). We found significant up-regulated gene 3-hydroxymethylglutaryl CoA synthetase 2 (HMGCS2) and down-regulated gene 3-hydroxybutyrate dehydrogenase (BDH1) and 3-oxoacid CoA-transferase1 (OXCT1), respectively. Based on the analysis of the constructed protein interaction network, it was found that HMGCS2 was in the core position of the interaction network. In addition, Gene ontology (GO) enrichment analysis mainly focused on redox process, acyl-CoA metabolic process, catalytic activity, redox enzyme activity and mitochondria. The activity of HMGCS2 in DCM heart was increased, while the expression of ketolysis enzymes BDH1 and OXCT1 was inhibited. In vivo, Empagliflozin (Emp) treated DCM group significantly decreased ventricular weight, myocardial cell cross-sectional area, and myocardial fibrosis. In addition, Emp further promoted the activity of BDH1 and OXCT1, increased the utilization of ketone bodies, further promoted the activity of HMGCS2 in DCM, and increased the synthesis of ketone bodies, prevented mitochondrial breakage and dysfunction, increased myocardial ATP to provide sufficient energy, inhibited oxidative stress and apoptosis of cardiac cells ex vivo, and improved the myocardial dysfunction of DCM. Emp can improve mitochondrial dysfunction in diabetic cardiomyopathy by regulating ketone body metabolism and oxidative stress. These findings provide a theoretical basis for evaluating Emp as a treatment for DCM.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus , Cardiomiopatias Diabéticas , Glucosídeos , Doenças Mitocondriais , Humanos , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/genética , Estresse Oxidativo , Miócitos Cardíacos/metabolismo , Corpos Cetônicos/metabolismo , Corpos Cetônicos/uso terapêutico , Doenças Mitocondriais/metabolismo , Diabetes Mellitus/metabolismo
18.
Nat Metab ; 5(12): 2062-2074, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092961

RESUMO

Prospective molecular targets and therapeutic applications for ketone body metabolism have increased exponentially in the past decade. Initially considered to be restricted in scope as liver-derived alternative fuel sources during periods of carbohydrate restriction or as toxic mediators during diabetic ketotic states, ketogenesis and ketone bodies modulate cellular homeostasis in multiple physiological states through a diversity of mechanisms. Selective signalling functions also complement the metabolic fates of the ketone bodies acetoacetate and D-ß-hydroxybutyrate. Here we discuss recent discoveries revealing the pleiotropic roles of ketone bodies, their endogenous sourcing, signalling mechanisms and impact on target organs, and considerations for when they are either stimulated for endogenous production by diets or pharmacological agents or administered as exogenous wellness-promoting agents.


Assuntos
Dieta , Corpos Cetônicos , Corpos Cetônicos/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Fígado/metabolismo , Homeostase/fisiologia
19.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958519

RESUMO

Altered hepatic mitochondrial fatty acid ß-oxidation and associated tricarboxylic acid (TCA) cycle activity contributes to lifestyle-related diseases, and circulating biomarkers reflecting these changes could have disease prognostic value. This study aimed to determine hepatic and systemic changes in TCA-cycle-related metabolites upon the selective pharmacologic enhancement of mitochondrial fatty acid ß-oxidation in the liver, and to elucidate the mechanisms and potential markers of hepatic mitochondrial activity. Male Wistar rats were treated with 3-thia fatty acids (e.g., tetradecylthioacetic acid (TTA)), which target mitochondrial biogenesis, mitochondrial fatty acid ß-oxidation, and ketogenesis predominantly in the liver. Hepatic and plasma concentrations of TCA cycle intermediates and anaplerotic substrates (LC-MS/MS), plasma ketones (colorimetric assay), and acylcarnitines (HPLC-MS/MS), along with associated TCA-cycle-related gene expression (qPCR) and enzyme activities, were determined. TTA-induced hepatic fatty acid ß-oxidation resulted in an increased ratio of plasma ketone bodies/nonesterified fatty acid (NEFA), lower plasma malonyl-CoA levels, and a higher ratio of plasma acetylcarnitine/palmitoylcarnitine (C2/C16). These changes were associated with decreased hepatic and increased plasma pyruvate concentrations, and increased plasma concentrations of succinate, malate, and 2-hydroxyglutarate. Expression of several genes encoding TCA cycle enzymes and the malate-oxoglutarate carrier (Slc25a11), glutamate dehydrogenase (Gdh), and malic enzyme (Mdh1 and Mdh2) were significantly increased. In conclusion, the induction of hepatic mitochondrial fatty acid ß-oxidation by 3-thia fatty acids lowered hepatic pyruvate while increasing plasma pyruvate, as well as succinate, malate, and 2-hydroxyglutarate.


Assuntos
Malatos , Ácido Pirúvico , Ratos , Animais , Masculino , Ratos Wistar , Malatos/metabolismo , Ácido Pirúvico/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fígado/metabolismo , Ácidos Graxos/metabolismo , Oxirredução , Corpos Cetônicos/metabolismo , Succinatos/metabolismo
20.
Sci Rep ; 13(1): 19664, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952048

RESUMO

The ketogenic diet is an emerging therapeutic approach for refractory epilepsy, as well as certain rare and neurodegenerative disorders. The main ketone body, ß-hydroxybutyrate (BHB), is the primary energy substrate endogenously produced in a ketogenic diet, however, mechanisms of its therapeutic actions remain unknown. Here, we studied the effects of BHB on mitochondrial energetics, both in non-stimulated conditions and during glutamate-mediated hyperexcitation. We found that glutamate-induced hyperexcitation stimulated mitochondrial respiration in cultured cortical neurons, and that this response was greater in cultures supplemented with BHB than with glucose. BHB enabled a stronger and more sustained maximal uncoupled respiration, indicating that BHB enables neurons to respond more efficiently to increased energy demands such as induced during hyperexcitation. We found that cytosolic Ca2+ was required for BHB-mediated enhancement of mitochondrial function, and that this enhancement was independent of the mitochondrial glutamate-aspartate carrier, Aralar/AGC1. Our results suggest that BHB exerts its protective effects against hyperexcitation by enhancing mitochondrial function through a Ca2+-dependent, but Aralar/AGC1-independent stimulation of mitochondrial respiration.


Assuntos
Corpos Cetônicos , Mitocôndrias , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Corpos Cetônicos/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético , Glutamatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...