Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 366(24)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960895

RESUMO

Marine fungi are part of the huge and understudied biodiversity hosted in the sea. To broaden the knowledge on fungi inhabiting the Mediterranean Sea and their role in sponge holobiont, three sponges namely Aplysina cavernicola, Crambe crambe and Phorbas tenacior were collected in Villefranche sur Mer, (France) at about 25 m depth. The fungal communities associated with the sponges were isolated using different techniques to increase the numbers of fungi isolated. All fungi were identified to species level giving rise to 19, 13 and 3 species for P. tenacior, A. cavernicola and C. crambe, respectively. Of note, 35.7% and 50.0% of the species detected were either reported for the first time in the marine environment or in association with sponges. The mini-satellite analysis confirmed the uniqueness of the mycobiota of each sponge, leading to think that the sponge, with its metabolome, may shape the microbial community.


Assuntos
Crambe (Esponja)/microbiologia , Microbiota , Animais , Biodiversidade , Fungos/isolamento & purificação , Mar Mediterrâneo , Filogenia , Poríferos/microbiologia , Água do Mar/microbiologia
2.
FEMS Microbiol Lett ; 364(11)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28520957

RESUMO

Marine sponges have been shown to harbor diverse microbial symbiont communities that play key roles in host functioning, yet little is known about how anthropogenic disturbances impact sponge-microbe interactions. The Mediterranean sponge Crambe crambe is known to accumulate heavy metals in polluted harbors. In this study, we investigated whether the microbiome of C. crambe differed between sponges inhabiting a polluted harbor in Blanes (Spain) and a nearby (<1 km) natural environment. Triplicate sponge and ambient seawater samples were collected from each site and the microbial composition of each sample was determined by 16S rRNA gene sequence analysis (Illumina Hi-Seq platform). No significant differences in the diversity or structure of microbial communities in C. crambe were detected between habitats, while a significant difference in community structure was observed in ambient seawater inside and outside of the polluted harbor. The microbiome of C. crambe was clearly differentiated from free-living seawater microbes and dominated by Proteobacteria, specifically a single betaproteobacterium that accounted for >86% of all sequence reads. These results indicate that sponge microbiomes exhibit greater stability and pollution tolerance than their free-living microbial counterparts, potentially mitigating the effects of pollutants on coastal marine communities.


Assuntos
Betaproteobacteria/isolamento & purificação , Crambe (Esponja)/microbiologia , Microbiota/genética , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Betaproteobacteria/classificação , DNA Bacteriano/genética , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Espanha , Microbiologia da Água
3.
Sci Rep ; 3: 2780, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24071658

RESUMO

Sponges harbour microbial communities that contribute to the genetic and metabolic potential of their host. Among metabolites produced by sponge-associated microbial communities, halogenated compounds are of special interest because of their biotechnological potential. In this study, we have examined the diversity of the cultivable fraction of the marine demosponge Crambe crambe microbiota. Application of complementary cultivation methods yielded 107 bacterial isolates, some of which may be sponge-specific based on their phylogenetic analysis. Among these, Psychrobacter sp. was found to contain a putative halogenase gene. In addition to the culture-dependent approach for discovering halogenase genes, a cDNA library was constructed to determine the diversity of halogenase genes expressed in situ by the C. crambe microbiota. To this end, seventeen putative tryptophan halogenase cDNA sequences were identified, most of which were only remotely related to known halogenase genes, indicating the potential for novel bioactive compounds being produced by the C. crambe microbiota.


Assuntos
Bactérias/genética , Crambe (Esponja)/microbiologia , Microbiota , Animais , Bactérias/classificação , Bactérias/enzimologia , Variação Genética , Dados de Sequência Molecular , Oxirredutases/genética , Filogenia , RNA Bacteriano , RNA Ribossômico 16S
4.
Sci Rep ; 3: 2583, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24002533

RESUMO

Crambe crambe is a marine sponge that produces high concentrations of the pharmacologically significant pentacyclic guanidine alkaloids (PGAs), Crambescines and Crambescidines. Although bio-mimetic chemical synthesis of PGAs suggests involvement of microorganisms in their biosynthesis, there are conflicting reports on whether bacteria are associated with this sponge or not. Using 16S rRNA gene pyrosequencing we show that the associated bacterial community of C. crambe is dominated by a single bacterial species affiliated to the Betaproteobacteria. Microscopy analysis of sponge tissue sections using a specific probe and in situ hybridization confirmed its dominance in the sponge mesohyl and a single microbial morphology was observed by transmission electron microscopy. If confirmed the presence of a simple bacteria community in C. crambe makes this association a very pertinent model to study sponge-bacteria interactions and should allow further research into the possible implication of bacteria in PGA biosynthesis.


Assuntos
Betaproteobacteria/fisiologia , Crambe (Esponja)/metabolismo , Crambe (Esponja)/microbiologia , Microbiota , Compostos de Espiro/metabolismo , Animais , Betaproteobacteria/classificação , Betaproteobacteria/genética , Biodiversidade , Crambe (Esponja)/ultraestrutura , Filogenia , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...