Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 14(1): 323-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25998013

RESUMO

High oleic oil is an important industrial feedstock that has been one of the main targets for oil improvement in a number of oil crops. Crambe (Crambe abyssinica) is a dedicated oilseed crop, suitable for industrial oil production. In this study, we down-regulated the crambe fatty acid desaturase (FAD) and fatty acid elongase (FAE) genes for creating high oleic seed oil. We first cloned the crambe CaFAD2, CaFAD3 and CaFAE1 genes. Multiple copies of each of these genes were isolated, and the highly homologous sequences were used to make RNAi constructs. These constructs were first tested in Arabidopsis, which led to the elevated oleic or linoleic levels depending on the genes targeted, indicating that the RNAi constructs were effective in regulating the expression of the target genes in nonidentical but closely related species. Furthermore, down-regulation of CaFAD2 and CaFAE1 in crambe with the FAD2-FAE1 RNAi vector resulted in even more significant increase in oleic acid level in the seed oil with up to 80% compared to 13% for wild type. The high oleic trait has been stable in subsequent five generations and the GM line grew normally in greenhouse. This work has demonstrated the great potential of producing high oleic oil in crambe, thus contributing to its development into an oil crop platform for industrial oil production.


Assuntos
Acetiltransferases/metabolismo , Arabidopsis/genética , Crambe (Planta)/enzimologia , Regulação para Baixo , Ácidos Graxos Dessaturases/metabolismo , Ácido Oleico/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Southern Blotting , Segregação de Cromossomos/genética , Elongases de Ácidos Graxos , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade da Espécie
2.
Lipids ; 50(4): 407-16, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25753896

RESUMO

The aim of this study was to evaluate the importance of three enzymes, LPCAT, PDCT and PDAT, involved in acyl turnover in phosphatidylcholine in order to explore the possibility of further increasing erucic acid (22:1) content in Crambe seed oil. The complete coding sequences of LPCAT1-1 and LPCAT1-2 encoding lysophosphatidylcholine acyltransferase (LPCAT), PDCT1 and PDCT2 encoding phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), and PDAT encoding phospholipid:diacylglycerol acyltransferase (PDAT) were cloned from developing Crambe seeds. The alignment of deduced amino acid sequences displayed a high similarity to the Arabidopsis homologs. Transgenic lines expressing RNA interference (RNAi) targeting either single or double genes showed significant changes in the fatty acid composition of seed oil. An increase in oleic acid (18:1) was observed, to varying degrees, in all of the transgenic lines, and a cumulative effect of increased 18:1 was shown in the LPCAT-PDCT double-gene RNAi. However, LPCAT single-gene RNAi led to a decrease in 22:1 accumulation, while PDCT or PDAT single-gene RNAi had no obvious effect on the level of 22:1. In agreement with the abovementioned oil phenotypes, the transcript levels of the target genes in these transgenic lines were generally reduced compared to wild-type levels. In this paper, we discuss the potential to further increase the 22:1 content in Crambe seed oil through downregulation of these genes in combination with fatty acid elongase and desaturases.


Assuntos
Crambe (Planta)/enzimologia , Crambe (Planta)/genética , Ácidos Erúcicos/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Interferência de RNA , 1-Acilglicerofosfocolina O-Aciltransferase/química , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Aciltransferases/química , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Crambe (Planta)/química , Crambe (Planta)/metabolismo , Ácidos Erúcicos/análise , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/metabolismo , Sementes/química , Sementes/enzimologia , Sementes/genética , Sementes/metabolismo , Alinhamento de Sequência , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
3.
Lipids ; 49(4): 327-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24578031

RESUMO

The triacylglycerol of Crambe abyssinica seeds consist of 95% very long chain (>18 carbon) fatty acids (86% erucic acid; 22:1∆13) in the sn-1 and sn-3 positions. This would suggest that C. abyssinica triacylglycerols are not formed by the action of the phospholipid:diacylglycerol acyltransferase (PDAT), but are rather the results of acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. However, measurements of PDAT and DGAT activities in microsomal membranes showed that C. abyssinica has significant PDAT activity, corresponding to about 10% of the DGAT activity during periods of rapid seed oil accumulation. The specific activity of DGAT for erucoyl-CoA had doubled at 19 days after flowering compared to earlier developmental stages, and was, at that stage, the preferred acyl donor, whereas the activities for 16:0-CoA and 18:1-CoA remained constant. This indicates that an expression of an isoform of DGAT with high specificity for erucoyl-CoA is induced at the onset of rapid erucic acid and oil accumulation in the C. abyssinica seeds. Analysis of the composition of the acyl-CoA pool during different stages of seed development showed that the percentage of erucoyl groups in acyl-CoA was much higher than in complex lipids at all stages of seed development except in the desiccation phase. These results are in accordance with published results showing that the rate limiting step in erucic acid accumulation in C. abyssinica oil is the utilization of erucoyl-CoA by the acyltransferases in the glycerol-3-phosphate pathway.


Assuntos
Aciltransferases/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Erúcicos/metabolismo , Triglicerídeos/biossíntese , Crambe (Planta)/enzimologia , Flores/enzimologia , Glicerofosfatos/metabolismo , Redes e Vias Metabólicas , Microssomos/enzimologia , Óleos de Plantas/metabolismo , Sementes/enzimologia , Sementes/metabolismo , Triglicerídeos/metabolismo
4.
BMC Plant Biol ; 13: 146, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24083776

RESUMO

BACKGROUND: Crambe abyssinica produces high erucic acid (C22:1, 55-60%) in the seed oil, which can be further increased by reduction of polyunsaturated fatty acid (PUFA) levels. The omega-6 fatty acid desaturase enzyme (FAD2) is known to be involved in PUFA biosynthesis. In crambe, three CaFAD2 genes, CaFAD2-C1, CaFAD2-C2 and CaFAD2-C3 are expressed. RESULTS: The individual effect of each CaFAD2 gene on oil composition was investigated through studying transgenic lines (CaFAD2-RNAi) for differential expression levels in relation to the composition of seed-oil. Six first generation transgenic plants (T1) showed C18:1 increase (by 6% to 10.5%) and PUFA reduction (by 8.6% to 10.2%). The silencing effect in these T1-plants ranged from the moderate silencing (40% to 50% reduction) of all three CaFAD2 genes to strong silencing (95% reduction) of CaFAD2-C3 alone. The progeny of two T1-plants (WG4-4 and WG19-6) was further analysed. Four or five transgene insertions are characterized in the progeny (T2) of WG19-6 in contrast to a single insertion in the T2 progeny of WG4-4. For the individual T2-plants of both families (WG19-6 and WG4-4), seed-specific silencing of CaFAD2-C1 and CaFAD2-C2 was observed in several individual T2-plants but, on average in both families, the level of silencing of these genes was not significant. A significant reduction in expression level (P < 0.01) in both families was only observed for CaFAD2-C3 together with significantly different C18:1 and PUFA levels in oil. CONCLUSIONS: CaFAD2-C3 expression is highly correlated to levels of C18:1 (r = -0.78) and PUFA (r = 0.75), which suggests that CaFAD2-C3 is the most important one for changing the oil composition of crambe.


Assuntos
Crambe (Planta)/enzimologia , Crambe (Planta)/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Proteínas de Plantas/metabolismo , Crambe (Planta)/genética , Ácidos Graxos Dessaturases/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
5.
Plant Biotechnol J ; 10(7): 862-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22642539

RESUMO

Erucic acid (22 : 1) is a major feedstock for the oleochemical industry. In this study, a gene stacking strategy was employed to develop transgenic Crambe abyssinica lines with increased 22 : 1 levels. Through integration of the LdLPAAT, BnFAE1 and CaFAD2-RNAi genes into the crambe genome, confirmed by Southern blot and qRT-PCR, the average levels of 18 : 1, 18 : 2 and 18 : 3 were markedly decreased and that of 22 : 1 was increased from 60% in the wild type to 73% in the best transgenic line of T4 generation. In single seeds of the same line, the 22 : 1 level could reach 76.9%, an increase of 28.0% over the wild type. The trierucin amount was positively correlated to 22 : 1 in the transgenic lines. Unlike high erucic rapeseed, the wild-type crambe contains 22 : 1 in the seed phosphatidylcholine and in the sn-2 position of triacylglycerols (5% and 8%, respectively). The transgenic line with high 22 : 1 had decreased 22 : 1 level in phosphatidylcholine, and this was negatively correlated with the 22 : 1 level at the sn-2 position of TAG. The significances of this study include (i) achieving an unprecedented level of 22 : 1 in an oil crop; (ii) disclosing mechanisms in the channelling of a triacylglycerol-specific unusual fatty acid in oil seeds; (iii) indicating potential limiting factors involved in the erucic acid biosynthesis and paving the way for further increase of this acid and (iv) development of an added value genetically modified oil crop having no risk of gene flow into feed and food crops.


Assuntos
Biotecnologia/métodos , Crambe (Planta)/metabolismo , Produtos Agrícolas/metabolismo , Ácidos Erúcicos/metabolismo , Óleos Industriais/análise , Óleos de Plantas/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Brassica napus/enzimologia , Crambe (Planta)/enzimologia , Crambe (Planta)/genética , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Regulação da Expressão Gênica de Plantas , Hibridização Genética , Padrões de Herança/genética , Fosfatidilcolinas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/genética , Transformação Genética , Transgenes/genética , Triglicerídeos/metabolismo
6.
Plant Biotechnol J ; 5(5): 636-45, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17565584

RESUMO

A genomic fatty acid elongation 1 (FAE1) clone was isolated from Crambe abyssinica. The genomic clone corresponds to a 1521-bp open reading frame, which encodes a protein of 507 amino acids. In yeast cells expression of CrFAE led to production of new very long chain monounsaturated fatty acids such as eicosenoic (20:1(delta11)) and erucic (22:1(delta13)) acids. Seed-specific expression in Arabidopsis thaliana resulted in up to a 12-fold increase in the proportion of erucic acid. On the other hand, in transgenic high-erucic Brassica carinata plants, the proportion of erucic acid was as high as 51.9% in the best transgenic line, a net increase of 40% compared to wild type. These results indicate that the CrFAE gene encodes a condensing enzyme involved in the biosynthesis of very long-chain fatty acids utilizing monounsaturated and saturated acyl substrates, with a strong capability for improving the erucic acid content.


Assuntos
Acetiltransferases/genética , Crambe (Planta)/genética , Proteínas de Plantas/genética , Acetiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/genética , Brassica/metabolismo , Clonagem Molecular , Crambe (Planta)/enzimologia , Crambe (Planta)/metabolismo , DNA de Plantas/química , DNA de Plantas/genética , Ácidos Erúcicos/metabolismo , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA
7.
Genome ; 47(4): 724-31, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15284877

RESUMO

Sexual progenies of asymmetric somatic hybrids between Brassica napus and Crambe abyssinica were analyzed with respect to chromosomal behavior, fae1 gene introgression, fertility, and fatty-acid composition of the seed. Among 24 progeny plants investigated, 11 plants had 38 chromosomes and were characterized by the occurrence of normal meiosis with 19 bivalents. The other 13 plants had more than 38 chromosomes, constituting a complete chromosomal set from B. napus plus different numbers of additional chromosomes from C. abyssinica. The chromosomes of B. napus and C. abyssinica origin could be clearly discriminated by genomic in situ hybridization (GISH) in mitotic and meiotic cells. Furthermore, meiotic GISH enabled identification of intergenomic chromatin bridges and of asynchrony between the B. napus and C. abyssinca meiotic cycles. Lagging, bridging and late disjunction of univalents derived from C. abyssinica were observed. Analysis of cleaved amplified polymorphic sequence (CAPS) markers derived from the fae1 gene showed novel patterns different from the B. napus recipient in some hybrid offspring. Most of the progeny plants had a high pollen fertility and seed set, and some contained significantly greater amounts of seed erucic acid than the B. napus parent. This study demonstrates that a part of the C. abyssinica genome can be transferred into B. napus via asymmetric hybridization and maintained in sexual progenies of the hybrids. Furthermore, it confirms that UV irradiation improves the fertility of the hybrid and of its sexual progeny via chromosomal elimination and facilitates the introgression of exotic genetic material into crop species.


Assuntos
Acetiltransferases/genética , Brassica napus/enzimologia , Brassica napus/genética , Crambe (Planta)/enzimologia , Crambe (Planta)/genética , Genes de Plantas , Cromossomos de Plantas/genética , Citogenética , Ácidos Erúcicos/análise , Elongases de Ácidos Graxos , Fertilidade/genética , Variação Genética , Hibridização Genética/efeitos da radiação , Hibridização in Situ Fluorescente , Especificidade da Espécie , Raios Ultravioleta
8.
J Agric Food Chem ; 51(9): 2737-44, 2003 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-12696966

RESUMO

On the basis of previous studies on the mechanism-based inhibition, activation, and active site structure of myrosinase(s) isolated from Sinapis alba and other cruciferous seeds, crambe myrosinase shows uncommon properties and behavior. For this reason homogeneous crambe myrosinase was isolated and investigated to establish the most important physicochemical features, including kinetic properties determined with the epimers progoitrin (R) and epi-progoitrin (S) as substrates, with and without ascorbate as an activator. The results of this study demonstrate that crambe myrosinase is highly specific for epi-progoitrin due to a better stabilization of the enzyme-substrate complex. This stabilization is caused by additional hydrogen bonding that only epi-progoitrin can set up between its hydroxyl group and a suitable residue in the hydrophobic pocket where the "docking" of the glucosinolates side chain takes place.


Assuntos
Crambe (Planta)/enzimologia , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/isolamento & purificação , Sementes/enzimologia , Ácido Ascórbico/farmacologia , Glucosinolatos/farmacocinética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...