Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 114(2): 231-245, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36843450

RESUMO

Resurrection plants can survive prolonged life without water (anhydrobiosis) in regions with seasonal drying. This desiccation tolerance requires the coordination of numerous cellular processes across space and time, and individual plant tissues face unique constraints related to their function. Here, we analyzed the complex, octoploid genome of the model resurrection plant Craterostigma (C. plantagineum), and surveyed spatial and temporal expression dynamics to identify genetic elements underlying desiccation tolerance. Homeologous genes within the Craterostigma genome have divergent expression profiles, suggesting the subgenomes contribute differently to desiccation tolerance traits. The Craterostigma genome contains almost 200 tandemly duplicated early light-induced proteins, a hallmark trait of desiccation tolerance, with massive upregulation under water deficit. We identified a core network of desiccation-responsive genes across all tissues, but observed almost entirely unique expression dynamics in each tissue during recovery. Roots and leaves have differential responses related to light and photoprotection, autophagy and nutrient transport, reflecting their divergent functions. Our findings highlight a universal set of likely ancestral desiccation tolerance mechanisms to protect cellular macromolecules under anhydrobiosis, with secondary adaptations related to tissue function.


Assuntos
Craterostigma , Craterostigma/fisiologia , Dessecação , Água/metabolismo , Adaptação Fisiológica/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
J Exp Bot ; 73(5): 1566-1580, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34747457

RESUMO

A group of vascular plants called homoiochlorophyllous resurrection plants evolved unique capabilities to protect their photosynthetic machinery against desiccation-induced damage. This study examined whether the ontogenetic status of the resurrection plant Craterostigma pumilum has an impact on how the plant responds to dehydration at the thylakoid membrane level to prepare cells for the desiccated state. Thus, younger plants (<4 months) were compared with their older (>6 months) counterparts. Ultrastructural analysis provided evidence that younger plants suppressed senescence-like programs that are realized in older plants. During dehydration, older plants degrade specific subunits of the photosynthetic apparatus such as the D1 subunit of PSII and subunits of the cytochrome b6f complex. The latter leads to a controlled down-regulation of linear electron transport. In contrast, younger plants increased photoprotective high-energy quenching mechanisms and maintained a high capability to replace damaged D1 subunits. It follows that depending on the ontogenetic state, either more degradation-based or more photoprotective mechanisms are employed during dehydration of Craterostigma pumilum.


Assuntos
Craterostigma , Fotossíntese , Craterostigma/fisiologia , Desidratação/fisiopatologia , Transporte de Elétrons , Fotossíntese/fisiologia , Tilacoides/fisiologia
3.
Plant J ; 107(2): 377-398, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33901322

RESUMO

The resurrection plant Craterostigma plantagineum possesses an extraordinary capacity to survive long-term desiccation. To enhance our understanding of this phenomenon, complementary transcriptome, soluble proteome and targeted metabolite profiling was carried out on leaves collected from different stages during a dehydration and rehydration cycle. A total of 7348 contigs, 611 proteins and 39 metabolites were differentially abundant across the different sampling points. Dynamic changes in transcript, protein and metabolite levels revealed a unique signature characterizing each stage. An overall low correlation between transcript and protein abundance suggests a prominent role for post-transcriptional modification in metabolic reprogramming to prepare plants for desiccation and recovery. The integrative analysis of all three data sets was performed with an emphasis on photosynthesis, photorespiration, energy metabolism and amino acid metabolism. The results revealed a set of precise changes that modulate primary metabolism to confer plasticity to metabolic pathways, thus optimizing plant performance under stress. The maintenance of cyclic electron flow and photorespiration, and the switch from C3 to crassulacean acid metabolism photosynthesis, may contribute to partially sustain photosynthesis and minimize oxidative damage during dehydration. Transcripts with a delayed translation, ATP-independent bypasses, alternative respiratory pathway and 4-aminobutyric acid shunt may all play a role in energy management, together conferring bioenergetic advantages to meet energy demands upon rehydration. This study provides a high-resolution map of the changes occurring in primary metabolism during dehydration and rehydration and enriches our understanding of the molecular mechanisms underpinning plant desiccation tolerance. The data sets provided here will ultimately inspire biotechnological strategies for drought tolerance improvement in crops.


Assuntos
Craterostigma/metabolismo , Craterostigma/anatomia & histologia , Craterostigma/fisiologia , Desidratação , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/fisiologia , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteômica
4.
Plant J ; 100(4): 661-676, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31350933

RESUMO

Craterostigma plantagineum belongs to the desiccation-tolerant angiosperm plants. Upon dehydration, leaves fold and the cells shrink which is reversed during rehydration. To understand this process changes in cell wall pectin composition, and the role of the apoplastic glycine-rich protein 1 (CpGRP1) were analysed. Cellular microstructural changes in hydrated, desiccated and rehydrated leaf sections were analysed using scanning electron microscopy. Pectin composition in different cell wall fractions was analysed with monoclonal antibodies against homogalacturonan, rhamnogalacturonan I, rhamnogalacturonan II and hemicellulose epitopes. Our data demonstrate changes in pectin composition during dehydration/rehydration which is suggested to affect cell wall properties. Homogalacturonan was less methylesterified upon desiccation and changes were also demonstrated in the detection of rhamnogalacturonan I, rhamnogalacturonan II and hemicelluloses. CpGRP1 seems to have a central role in cell adaptations to water deficit, as it interacts with pectin through a cluster of arginine residues and de-methylesterified pectin presents more binding sites for the protein-pectin interaction than to pectin from hydrated leaves. CpGRP1 can also bind phosphatidic acid (PA) and cardiolipin. The binding of CpGRP1 to pectin appears to be dependent on the pectin methylesterification status and it has a higher affinity to pectin than its binding partner CpWAK1. It is hypothesised that changes in pectin composition are sensed by the CpGRP1-CpWAK1 complex therefore leading to the activation of dehydration-related responses and leaf folding. PA might participate in the modulation of CpGRP1 activity.


Assuntos
Parede Celular/química , Craterostigma/fisiologia , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Arginina/metabolismo , Parede Celular/metabolismo , Craterostigma/citologia , Desidratação , Ácidos Fosfatídicos/metabolismo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética
5.
Sci Rep ; 9(1): 3049, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816196

RESUMO

Haberlea rhodopensis is a resurrection plant with an extremely high desiccation tolerance. Even after long periods of almost full desiccation, its physiological functions are recovered shortly upon re-watering. In order to identify physiological strategies which contribute to its remarkable drought stress tolerance we used near infrared spectroscopy to investigate the state of water in the leaves of this plant and compared it to its relative, non-resurrection plant species Deinostigma eberhardtii. Here we show, using a novel aquaphotomics spectral analysis, that H. rhodopensis performs a dynamic regulation of water molecular structure during dehydration directed at drastic decrease of free water molecules, increase of water molecules with 4 hydrogen bonds, and a massive accumulation of water dimers in the full desiccation stage. Our findings suggest that changes in water structure mirror the changes in major metabolites and antioxidants which together constitute a robust defense system underlying the desiccation tolerance of the resurrection plant, while the water dimer may hold special importance for the "drying without dying" ability.


Assuntos
Aclimatação/fisiologia , Craterostigma/fisiologia , Secas , Água/química , Craterostigma/química , Dessecação , Dimerização , Estrutura Molecular , Folhas de Planta/química , Folhas de Planta/fisiologia , Análise Espectral , Água/análise
6.
J Exp Bot ; 69(15): 3773-3784, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29757404

RESUMO

Reproductive structures of plants (e.g. seeds) and vegetative tissues of resurrection plants can tolerate desiccation. Many genes encoding desiccation-related proteins (DRPs) have been identified in the resurrection plant Craterostigma plantagineum, but the function of these genes remains mainly hypothetical. Here, the importance of the DRP gene pcC13-62 for desiccation tolerance is evaluated by analysing its expression in C. plantagineum and in the closely related desiccation-tolerant species Lindernia brevidens and the desiccation-sensitive species Lindernia subracemosa. Quantitative analysis revealed that pcC13-62 transcripts accumulate at a much lower level in desiccation-sensitive species than in desiccation-tolerant species. The study of pcC13-62 promoters from these species demonstrated a correlation between promoter activity and gene expression levels, suggesting transcriptional regulation of gene expression. Comparison of promoter sequences identified a dehydration-responsive element motif in the promoters of tolerant species that is required for dehydration-induced ß-glucuronidase (GUS) accumulation. We hypothesize that variations in the regulatory sequences of the pcC13-62 gene occurred to establish pcC13-62 expression in vegetative tissues, which might be required for desiccation tolerance. The pcC13-62 promoters could also be activated by salt stress in Arabidopsis thaliana plants stably transformed with promoter::GUS constructs.


Assuntos
Craterostigma/genética , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Craterostigma/fisiologia , Dessecação , Genes Reporter , Variação Genética , Proteínas de Plantas/genética , Salinidade , Estresse Fisiológico
7.
J Exp Bot ; 69(5): 975-981, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29325054

RESUMO

Dehydration survival under drought stress is defined in this review as the transition from plant activity into a quiescent state of life preservation, which will be terminated by either recovery or death, depending on the stress regime and the plant's resilience. Dehydration survival is a popular phenotype by which functional genomics attempts to test gene function in drought resistance and survival. The available reports on phenotyping and genotyping of dehydration survival in genomic studies indicate that the measurement of this trait is often biased to the extent that misguided interpretations are likely to occur. This review briefly discusses the physiological basis of dehydration survival in resurrection plants and crop plants, and concludes that in phenotyping dehydration survival there is a need to distinguish between dehydration avoidance and dehydration tolerance (also termed desiccation tolerance) in affecting survival and recovery. Without this distinction, functional genomics studies of the trait might be biased. Survival due to dehydration avoidance is expressed by the capacity to maintain a relatively high plant water status as the plant is desiccated. Survival due to dehydration tolerance is expressed by delayed mortality (mortality at a relatively low plant water status) as affected by the resilience of plant metabolism. The common test of dehydration survival, using the relative recovery after a given number of stress days, is therefore insufficient because it is mainly driven by dehydration avoidance and so ignores a possible role for dehydration tolerance. Conceivable methods for more accurate phenotyping of the two components of dehydration survival are proposed and discussed.


Assuntos
Craterostigma/fisiologia , Produtos Agrícolas/fisiologia , Dessecação , Água/metabolismo , Dessecação/métodos
8.
Plant Cell Environ ; 40(10): 2292-2306, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28730594

RESUMO

Resurrection plants desiccate during periods of prolonged drought stress, then resume normal cellular metabolism upon water availability. Desiccation tolerance has multiple origins in flowering plants, and it likely evolved through rewiring seed desiccation pathways. Oropetium thomaeum is an emerging model for extreme drought tolerance, and its genome, which is the smallest among surveyed grasses, was recently sequenced. Combining RNA-seq, targeted metabolite analysis and comparative genomics, we show evidence for co-option of seed-specific pathways during vegetative desiccation. Desiccation-related gene co-expression clusters are enriched in functions related to seed development including several seed-specific transcription factors. Across the metabolic network, pathways involved in programmed cell death inhibition, ABA signalling and others are activated during dehydration. Oleosins and oil bodies that typically function in seed storage are highly abundant in desiccated leaves and may function for membrane stability and storage. Orthologs to seed-specific LEA proteins from rice and maize have neofunctionalized in Oropetium with high expression during desiccation. Accumulation of sucrose, raffinose and stachyose in drying leaves mirrors sugar accumulation patterns in maturing seeds. Together, these results connect vegetative desiccation with existing seed desiccation and drought responsive pathways and provide some key candidate genes for engineering improved drought tolerance in crop plants.


Assuntos
Craterostigma/fisiologia , Dessecação , Sementes/fisiologia , Adaptação Fisiológica/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Craterostigma/genética , Craterostigma/ultraestrutura , Desidratação , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/ultraestrutura , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Estresse Fisiológico , Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Água
9.
Trends Plant Sci ; 22(8): 705-717, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28622918

RESUMO

Desiccation tolerance (DT) in angiosperms is present in the small group of resurrection plants and in seeds. DT requires the presence of protective proteins, specific carbohydrates, restructuring of membrane lipids, and regulatory mechanisms directing a dedicated gene expression program. Many components are common to resurrection plants and seeds; however, some are specific for resurrection plants. Understanding how each component contributes to DT is challenging. Recent transcriptome analyses and genome sequencing indicate that increased expression is essential of genes encoding protective components, recently evolved, species-specific genes and non-protein-coding RNAs. Modification and reshuffling of existing cis-regulatory promoter elements seems to play a role in the rewiring of regulatory networks required for increased expression of DT-related genes in resurrection species.


Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Magnoliopsida/genética , Transcriptoma , Sequência de Bases , Craterostigma/genética , Craterostigma/fisiologia , Dessecação , Perfilação da Expressão Gênica , Magnoliopsida/fisiologia , Pressão Osmótica , Sementes/genética , Sementes/fisiologia , Especificidade da Espécie
10.
Plant J ; 87(6): 664-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27258321

RESUMO

The group of homoiochlorophyllous resurrection plants evolved the unique capability to survive severe drought stress without dismantling the photosynthetic machinery. This implies that they developed efficient strategies to protect the leaves from reactive oxygen species (ROS) generated by photosynthetic side reactions. These strategies, however, are poorly understood. Here, we performed a detailed study of the photosynthetic machinery in the homoiochlorophyllous resurrection plant Craterostigma pumilum during dehydration and upon recovery from desiccation. During dehydration and rehydration, C. pumilum deactivates and activates partial components of the photosynthetic machinery in a specific order, allowing for coordinated shutdown and subsequent reinstatement of photosynthesis. Early responses to dehydration are the closure of stomata and activation of electron transfer to oxygen accompanied by inactivation of the cytochrome b6 f complex leading to attenuation of the photosynthetic linear electron flux (LEF). The decline in LEF is paralleled by a gradual increase in cyclic electron transport to maintain ATP production. At low water contents, inactivation and supramolecular reorganization of photosystem II becomes apparent, accompanied by functional detachment of light-harvesting complexes and interrupted access to plastoquinone. This well-ordered sequence of alterations in the photosynthetic thylakoid membranes helps prepare the plant for the desiccated state and minimize ROS production.


Assuntos
Craterostigma/fisiologia , Fotossíntese/fisiologia , Dióxido de Carbono/metabolismo , Complexo Citocromos b6f/metabolismo , Desidratação , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Estômatos de Plantas/fisiologia , Tilacoides/metabolismo
11.
Planta ; 243(3): 767-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26687373

RESUMO

MAIN CONCLUSION: The hormone ABA regulates the oxidative stress state under desiccation in seaweed species; an environmental condition generated during daily tidal changes. Desiccation is one of the most important factors that determine the distribution pattern of intertidal seaweeds. Among most tolerant seaweed is Pyropia orbicularis, which colonizes upper intertidal zones along the Chilean coast. P. orbicularis employs diverse mechanisms of desiccation tolerance (DT) (among others, e.g., antioxidant activation, photoinhibition, and osmo-compatible solute overproduction) such as those used by resurrection plants and bryophytes. In these organisms, the hormone abscisic acid (ABA) plays an important role in regulating responses to water deficit, including gene expression and the activity of antioxidant enzymes. The present study determined the effect of ABA on the activation of antioxidant responses during desiccation in P. orbicularis and in the sensitive species Mazzaella laminarioides and Lessonia spicata. Changes in endogenous free and conjugated ABA, water content during the hydration-desiccation cycle, enzymatic antioxidant activities [ascorbate peroxidase (AP), catalase (CAT) and peroxiredoxine (PRX)], and levels of lipid peroxidation and cell viability were evaluated. The results showed that P. orbicularis had free ABA levels 4-7 times higher than sensitive species, which was overproduced during water deficit. Using two ABA inhibitors (sodium tungstate and ancymidol), ABA was found to regulate the activation of the antioxidant enzymes activities during desiccation. In individuals exposed to exogenous ABA the enzyme activity increased, concomitant with low lipid peroxidation and high cell viability. These results demonstrate the participation of ABA in the regulation of DT in seaweeds, and suggest that regulatory mechanisms with ABA signaling could be of great importance for the adaptation of these organisms to dehydration.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Algas/metabolismo , Craterostigma/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Rodófitas/fisiologia , Adaptação Fisiológica , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Craterostigma/citologia , Dessecação , Peroxidação de Lipídeos , Estresse Oxidativo/efeitos dos fármacos , Rodófitas/citologia , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Água/fisiologia
12.
Planta ; 242(2): 407-26, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25998524

RESUMO

MAIN CONCLUSION: Provides a first comprehensive review of integrated physiological and molecular aspects of desiccation tolerance Xerophyta viscosa. A synopsis of biotechnological studies being undertaken to improve drought tolerance in maize is given. Xerophyta viscosa (Baker) is a monocotyledonous resurrection plant from the family Vellociacea that occurs in summer-rainfall areas of South Africa, Lesotho and Swaziland. It inhabits rocky terrain in exposed grasslands and frequently experiences periods of water deficit. Being a resurrection plant it tolerates the loss of 95% of total cellular water, regaining full metabolic competency within 3 days of rehydration. In this paper, we review some of the molecular and physiological adaptations that occur during various stages of dehydration of X. viscosa, these being functionally grouped into early and late responses, which might be relevant to the attainment of desiccation tolerance. During early drying (to 55% RWC) photosynthesis is shut down, there is increased presence and activity of housekeeping antioxidants and a redirection of metabolism to the increased formation of sucrose and raffinose family oligosaccharides. Other metabolic shifts suggest water replacement in vacuoles proposed to facilitate mechanical stabilization. Some regulatory processes observed include increased presence of a linker histone H1 variant, a Type 2C protein phosphatase, a calmodulin- and an ERD15-like protein. During the late stages of drying (to 10% RWC) there was increased expression of several proteins involved in signal transduction, and retroelements speculated to be instrumental in gene silencing. There was induction of antioxidants not typically found in desiccation-sensitive systems, classical stress-associated proteins (HSP and LEAs), proteins involved in structural stabilization and those associated with changes in various metabolite pools during drying. Metabolites accumulated in this stage are proposed, inter alia, to facilitate subcellular stabilization by vitrification process which can include glass- and ionic liquid formation.


Assuntos
Adaptação Fisiológica , Craterostigma/fisiologia , Dessecação , Biotecnologia , Craterostigma/anatomia & histologia , Craterostigma/classificação , Craterostigma/genética , Estresse Oxidativo , Estresse Fisiológico
13.
Planta ; 242(2): 427-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26002527

RESUMO

MAIN CONCLUSION: The desiccation transcriptome of the resurrection plant C. plantagineum is composed of conserved protein coding transcripts, taxonomically restricted transcripts and recently evolved non-protein coding transcripts. Research in resurrection plants has been hampered by the lack of genome sequence information, but recently introduced sequencing technologies overcome this limitation partially and provide access to the transcriptome of these plants. Transcriptome studies showed that mechanisms involved in desiccation tolerance are conserved in resurrection plants, seeds and pollen. The accumulation of protective molecules such as sugars and LEA proteins are major components in desiccation tolerance. Leaf folding, chloroplast protection and protection during rehydration must involve specific molecular mechanisms, but the basis of such mechanisms is mainly unknown. The study of regulatory regions of a desiccation-induced C. plantagineum gene suggests that cis-regulatory elements may be responsible for expression variations in desiccation tolerant and non-desiccation-tolerant plants. The analysis of the C. plantagineum transcriptome also revealed that part of it is composed of taxonomically restricted genes (TRGs) and non-protein coding RNAs (ncRNAs). TRGs are known to code for new traits required for the adaptation of organisms to particular environmental conditions. Thus the study of TRGs from resurrection plants should reveal species-specific functions related to the desiccation tolerance phenotype. Non-protein coding RNAs can regulate gene expression at epigenetic, transcriptional and post-transcriptional level and thus these RNAs may be key players in the rewiring of regulatory networks of desiccation-related genes in C. plantagineum.


Assuntos
Craterostigma/genética , Transcriptoma/genética , Adaptação Fisiológica/genética , Craterostigma/fisiologia , Dessecação , Regulação da Expressão Gênica de Plantas , Especificidade da Espécie
14.
Plant Physiol ; 167(4): 1554-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25713340

RESUMO

During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state.


Assuntos
Craterostigma/fisiologia , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Craterostigma/genética , Craterostigma/efeitos da radiação , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Desidratação , Dessecação , Transporte de Elétrons , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Água/fisiologia
15.
PLoS One ; 9(7): e103430, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25068901

RESUMO

Resurrection plants usually grow in specific or extreme habitats and have the capacity to survive almost complete water loss. We characterized the physiological and biochemical responses of Paraisometrum mileense to extreme desiccation and found that it is a resurrection plant. We profiled the changes in lipid molecular species during dehydration and rehydration in P. mileense, and compared these with corresponding changes in the desiccation-sensitive plant Arabidopsis thaliana. One day of desiccation was lethal for A. thaliana but not for P. mileense. After desiccation and subsequent rewatering, A. thaliana showed dramatic lipid degradation accompanied by large increases in levels of phosphatidic acid (PA) and diacylglycerol (DAG). In contrast, desiccation and rewatering of P. mileense significantly decreased the level of monogalactosyldiacylglycerol and increased the unsaturation of membrane lipids, without changing the level of extraplastidic lipids. Lethal desiccation in P. mileense caused massive lipid degradation, whereas the PA content remained at a low level similar to that of fresh leaves. Neither damage nor repair processes, nor increases in PA, occurred during non-lethal desiccation in P. mileense. The activity of phospholipase D, the main source of PA, was much lower in P. mileense than in A. thaliana under control conditions, or after either dehydration or rehydration. It was demonstrated that low rates of phospholipase D-mediated PA formation in P. mileense might limit its ability to degrade lipids to PA, thereby maintaining membrane integrity following desiccation.


Assuntos
Craterostigma/química , Dessecação/métodos , Lipídeos de Membrana/análise , Estresse Fisiológico , Arabidopsis/química , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Clorofila/metabolismo , Craterostigma/metabolismo , Craterostigma/fisiologia , Desidratação , Diglicerídeos/análise , Malondialdeído/metabolismo , Lipídeos de Membrana/metabolismo , Ácidos Fosfatídicos/análise , Fosfolipase D/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Prolina/metabolismo , Especificidade da Espécie , Sacarose/metabolismo , Fatores de Tempo , Água/metabolismo
16.
J Plant Physiol ; 171(12): 998-1002, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24974326

RESUMO

The unique response of desiccation-tolerant, or resurrection plants, to extreme drought is accompanied by major changes in the protein pool, raising the possibility of the involvement of proteases. We detected and characterized proteases present in their active state in leaf extracts of desiccated Ramonda serbica Panc., a resurrection plant from the Balkan Peninsula. Plants desiccated under laboratory conditions and maintained in anhydrobiosis for 4 and 14 months revived upon rehydration. Protease activities were determined spectrophotometrically in solution and by zymography on gels. Several endo- and aminopeptidases were detected and characterized by their pH profiles. Their enzyme class was determined using specific inhibitors. Those with higher activities were a serine endopeptidase active against Bz-Arg-pNA with a pH optimum around 9, and aminopeptidases optimally active at pHs from 7 to 9 against Leu-pNA, Met-pNA, Phe-pNA, Pro-pNA and Ala-pNA. The levels of their activities in leaf extracts from desiccated plants were significantly higher than those from rehydrated plants and from regularly watered plants, implying their involvement in the recovery of vegetative tissues from desiccation.


Assuntos
Adaptação Fisiológica , Craterostigma/fisiologia , Proteólise , Aminopeptidases/metabolismo , Craterostigma/enzimologia , Dessecação , Extratos Vegetais/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia
17.
Physiol Plant ; 152(4): 675-87, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24735127

RESUMO

Desiccation tolerance is among the most important parameters for crop improvement under changing environments. Resurrection plants are useful models for both theoretical and practical studies. We performed metabolite profiling via gas chromatography coupled with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) and analyzed the antioxidant capacity of the endemic resurrection plant Haberlea rhodopensis at desiccation and recovery. More than 100 compounds were evaluated. Stress response included changes in both primary and secondary metabolic pathways. The high amounts of the specific glycoside myconoside and some phenolic acids - e.g. syringic and dihydrocaffeic acid under normal conditions tend to show their importance for the priming of H. rhodopensis to withstand severe desiccation and oxidative stress. The accumulation of sucrose (resulting from starch breakdown), total phenols, ß-aminoisobutyric acid, ß-sitosterol and α-tocopherol increased up to several times at later stages of desiccation. Extracts of H. rhodopensis showed high antioxidant capacity at stress and normal conditions. Myconoside was with the highest antioxidant properties among tested phenolic compounds. Probably, the evolution of resurrection plants under various local environments has resulted in unique desiccation tolerance with specific metabolic background. In our case, it includes the accumulation of a relatively rare compound (myconoside) that contributes alone and together with other common metabolites. Further systems biology studies on the involvement of carbohydrates, phenolic acids and glycosides in the desiccation tolerance and antioxidant capacity of H. rhodopensis will definitely help in achieving the final goal - improving crop drought tolerance.


Assuntos
Antioxidantes/metabolismo , Magnoliopsida/fisiologia , Metabolômica , Estresse Fisiológico , Água/fisiologia , Ácidos Aminoisobutíricos/metabolismo , Craterostigma/fisiologia , Dessecação , Fenóis/metabolismo , Folhas de Planta/metabolismo , Sitosteroides/metabolismo , alfa-Tocoferol/metabolismo
18.
Plant J ; 75(5): 726-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23672245

RESUMO

Dehydration leads to different physiological and biochemical responses in plants. We analysed the lipid composition and the expression of genes involved in lipid biosynthesis in the desiccation-tolerant plant Craterostigma plantagineum. A comparative approach was carried out with Lindernia brevidens (desiccation tolerant) and two desiccation-sensitive species, Lindernia subracemosa and Arabidopsis thaliana. In C. plantagineum the total lipid content remained constant while the lipid composition underwent major changes during desiccation. The most prominent change was the removal of monogalactosyldiacylglycerol (MGDG) from the thylakoids. Analysis of molecular species composition revealed that around 50% of 36:x (number of carbons in the acyl chains: number of double bonds) MGDG was hydrolysed and diacylglycerol (DAG) used for phospholipid synthesis, while another MGDG fraction was converted into digalactosyldiacylglycerol via the DGD1/DGD2 pathway and subsequently into oligogalactolipids by SFR2. 36:x-DAG was also employed for the synthesis of triacylglycerol. Phosphatidic acid (PA) increased in C. plantagineum, L. brevidens, and L. subracemosa, in agreement with a role of PA as an intermediate of lipid turnover and of phospholipase D in signalling during desiccation. 34:x-DAG, presumably derived from de novo assembly, was converted into phosphatidylinositol (PI) in C. plantagineum and L. brevidens, but not in desiccation-sensitive plants, suggesting that PI is involved in acquisition of desiccation tolerance. The accumulation of oligogalactolipids and PI in the chloroplast and extraplastidial membranes, respectively, increases the concentration of hydroxyl groups and enhances the ratio of bilayer- to non-bilayer-forming lipids, thus contributing to protein and membrane stabilization.


Assuntos
Craterostigma/metabolismo , Dessecação , Metabolismo dos Lipídeos , Estresse Fisiológico , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Craterostigma/fisiologia , Embriófitas/metabolismo , Embriófitas/fisiologia , Galactolipídeos/metabolismo , Hidrólise , Espectrometria de Massas em Tandem
19.
Cell Mol Life Sci ; 70(4): 689-709, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22996258

RESUMO

Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation sequencing revealed a drought-induced reprogramming, which redirected resources from growth towards cell protection. Repression of photosynthetic and growth-related genes during water deficiency was concomitant with induction of transcription factors (members of the NAC, NF-YA, MADS box, HSF, GRAS, and WRKY families) presumably acting as master switches of the genetic reprogramming, as well as with an upregulation of genes related to sugar metabolism, signaling, and genes encoding early light-inducible (ELIP), late embryogenesis abundant (LEA), and heat shock (HSP) proteins. At the same time, genes encoding other LEA, HSP, and stress protective proteins were constitutively expressed at high levels even in unstressed controls. Genes normally involved in tolerance to salinity, chilling, and pathogens were also highly induced, suggesting a possible cross-tolerance against a number of abiotic and biotic stress factors. A notable percentage of the genes highly regulated in dehydration and subsequent rehydration were novel, with no sequence homology to genes from other plant genomes. Additionally, an extensive antioxidant gene network was identified with several gene families possessing a greater number of antioxidant genes than most other species with sequenced genomes. Two of the transcripts most abundant during all conditions encoded catalases and five more catalases were induced in water-deficient samples. Using the pharmacological inhibitor 3-aminotriazole (AT) to compromise catalase activity resulted in increased sensitivity to desiccation. Metabolome analysis by GC or LC-MS revealed accumulation of sucrose, verbascose, spermidine, and γ-aminobutyric acid during drought, as well as particular secondary metabolites accumulating during rehydration. This observation, together with the complex antioxidant system and the constitutive expression of stress protective genes suggests that both constitutive and inducible mechanisms contribute to the extreme desiccation tolerance of H. rhodopensis.


Assuntos
Craterostigma/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Aclimatação , Catalase/genética , Craterostigma/genética , Dessecação , Secas , Perfilação da Expressão Gênica , Metaboloma , Estresse Oxidativo , Água/metabolismo
20.
Planta ; 237(3): 739-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23117392

RESUMO

A variety of Southern African resurrection plants were surveyed using high-throughput cell wall profiling tools. Species evaluated were the dicotyledons, Myrothamnus flabellifolia and Craterostigma plantagineum; the monocotyledons, Xerophyta viscosa, Xerophyta schlecterii, Xerophyta humilis and the resurrection grass Eragrostis nindensis, as well as a pteridophyte, the resurrection fern, Mohria caffrorum. Comparisons were made between hydrated and desiccated leaf and frond material, with respect to cell wall composition and polymer abundance, using monosaccharide composition analysis, FT-IR spectroscopy and comprehensive microarray polymer profiling in combination with multivariate data analysis. The data obtained suggest that three main functional strategies appear to have evolved to prepare plant cell walls for desiccation. Arabinan-rich pectin and arabinogalactan proteins are found in the resurrection fern M. caffrorum and the basal angiosperm M. flabellifolia where they appear to act as 'pectic plasticizers'. Dicotyledons with pectin-rich walls, such as C. plantagineum, seem to use inducible mechanisms which consist of up-regulating wall proteins and osmoprotectants. The hemicellulose-rich walls of the grass-like Xerophyta spp. and the resurrection grass E. nindensis were found to contain highly arabinosylated xylans and arabinogalactan proteins. These data support a general mechanism of 'plasticising' the cell walls of resurrection plants to desiccation and implicate arabinose-rich polymers (pectin-arabinans, arabinogalactan proteins and arabinoxylans) as the major contributors in ensuring flexibility is maintained and rehydration is facilitated in these plants.


Assuntos
Arabinose/metabolismo , Evolução Biológica , Biopolímeros/metabolismo , Parede Celular/metabolismo , Craterostigma/citologia , Craterostigma/fisiologia , Dessecação , Análise por Conglomerados , Análise em Microsséries , Folhas de Planta/química , Análise de Componente Principal , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...