Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 24(5): 425-435, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828802

RESUMO

Tomato chlorosis virus (ToCV) is a member of the genus Crinivirus in the family Closteroviridae. It has a wide host range and wide distribution, causing serious harm to the vegetable industry. The autophagy pathway plays an important role in plant resistance to virus infection. Viruses and plant hosts coevolve in defence and antidefence processes around autophagy. In this study, the interaction between ToCV p22 and Nicotiana benthamiana B-cell lymphoma2-associated athanogenes5 Nicotiana benthamiana (NbBAG5) was examined. Through overexpression and down-regulation of NbBAG5, results showed that NbBAG5 could negatively regulate ToCV infection. NbBAG5 was found to be localized in mitochondria and can change the original localization of ToCV p22, which is colocalized in mitochondria. NbBAG5 inhibited the expression of mitophagy-related genes and the number of autophagosomes, thereby regulating viral infection by affecting mitophagy. In summary, this study demonstrated that ToCV p22 affects autophagy by interacting with NbBAG5, established the association between viral infection, BAG proteins family, and the autophagy pathway, and explained the molecular mechanism by which ToCV p22 interacts with NbBAG5 to inhibit autophagy to regulate viral infection.


Assuntos
Crinivirus , Nicotiana , Proteínas de Plantas , Proteínas Virais , Autofagia , Crinivirus/metabolismo , Doenças das Plantas , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Proteínas Virais/metabolismo
2.
Int J Biol Macromol ; 226: 1154-1165, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36427615

RESUMO

Specificity and efficiency of plant virus transmission depend largely on protein-protein interactions of vectors and viruses. Cucurbit chlorotic yellows virus (CCYV), transmitted specifically by tobacco whitefly, Bemisia tabaci, in a semi-persistent manner, has caused serious damage on cucurbit and vegetable crops around the world. However, the molecular mechanism of interaction during CCYV retention and transmission are still lacking. CCYV was proven to bind particularly to the whitefly foregut, and here, we confirmed that the minor coat protein (CPm) of CCYV is participated in the interaction with the vector. In order to identify proteins of B. tabaci that interact directly with CPm of CCYV, the immunoprecipitation (IP) assay and DUALmembrane cDNA library screening technology were applied. The cytochrome c oxidase subunit 5A (COX), tubulin beta chain (TUB) and keratin, type I cytoskeletal 9-like (KRT) of B. tabaci shown strong interactions with CPm and are closely associated with the retention within the vector and transmission of CCYV. These findings on whitefly protein-CCYV CPm interactions are crucial for a much better understanding the mechanism of semi-persistent plant virus transmission by insect vectors, as well as for implement new strategies for effective management of plant viruses and their vector insects.


Assuntos
Crinivirus , Hemípteros , Animais , Capsídeo/metabolismo , Hemípteros/metabolismo , Vírion , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Crinivirus/genética , Crinivirus/metabolismo , Doenças das Plantas
3.
Plant Cell Environ ; 44(9): 3155-3172, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34105183

RESUMO

Phytohormone auxin plays a fundamental role in plant growth and defense against pathogens. However, how auxin signalling is regulated during virus infection in plants remains largely unknown. Auxin/indole-3-acetic acid (Aux/IAA) is the repressor of auxin signalling and can be recognized by an F-box protein transport inhibitor response 1 (TIR1). Ubiquitination and degradation of Aux/IAA by SKP1-Cullin-F-boxTIR1 (SCFTIR1 ) complex can trigger auxin signalling. Here, with an emerging important plant virus worldwide, we showed that tomato chlorosis virus (ToCV) infection or stable transgenic overexpression of its p22 protein does not alter auxin accumulation level but significantly decreases the expression of auxin signalling-responsive genes, suggesting that p22 can attenuate host auxin signalling. Further, p22 could bind the C-terminal of SKP1.1 and compete with TIR1 to interfere with the SCFTIR1 complex assembly, leading to a suppression of Aux/IAA degradation. Silencing and over-expression assays suggested that both NbSKP1.1 and NbTIR1 suppress ToCV accumulation and disease symptoms. Altogether, ToCV p22 disrupts the auxin signalling through destabilizing SCFTIR1 by interacting with the C-terminal of NbSKP1.1 to promote ToCV infection. Our findings uncovered a previously unknown molecular mechanism employed by a plant virus to manipulate SCF complex-mediated ubiquitin pathway and to reprogram auxin signalling for efficient infection.


Assuntos
Crinivirus/metabolismo , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Nicotiana/virologia , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas F-Box/genética , Inativação Gênica , Imunoprecipitação , Filogenia , Proteínas de Plantas/genética , Alinhamento de Sequência , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Técnicas do Sistema de Duplo-Híbrido
4.
Virus Res ; 286: 198069, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574679

RESUMO

Mixed virus infection in host plants can differentially alter the plant phenotype, influence vector fitness, and affect virus acquisition and inoculation by vectors than single-virus infection. Vector acquisition of multiple viruses from multiple host plants could also differentially affect vector fitness and virus inoculation than acquisition of one virus. Whitefly-virus pathosystems in the southern United States include both the above-stated facets. For the first facet, this study examined the effects of single and mixed infection of cucurbit leaf crumple virus (CuLCrV, a begomovirus) and cucurbit yellow stunting disorder virus (CYSDV, a crinivirus) infecting squash on whitefly (Bemisia tabaci Gennadius MEAM1) host preference and fitness. Mixed infection of CuLCrV and CYSDV in squash plants severely altered their phenotype than single infection. The CYSDV load was reduced in mixed-infected squash plants than in singly-infected plants. Consequently, whiteflies acquired reduced amounts of CYSDV from mixed-infected plants than singly-infected plants. No differences in CuLCrV load were found between singly- and mixed-infected squash plants, and acquisition of CuLCrV by whiteflies did not vary between singly- and mixed-infected squash plants. Both singly- and mixed-infected plants similarly affected whitefly preference, wherein non-viruliferous and viruliferous (CuLCrV and/or CYSDV) whiteflies preferred non-infected plants over infected plants. The fitness study involving viruliferous and non-viruliferous whiteflies revealed no differences in developmental time and fecundity. For the second facet, this study evaluated the effects of individual or combined acquisition of tomato-infecting tomato yellow leaf curl virus (TYLCV, a begomovirus) and squash-infecting CuLCrV on whitefly host preference and fitness. Whiteflies that acquired both CuLCrV and TYLCV had significantly lower CuLCrV load than whiteflies that acquired CuLCrV alone, whereas TYLCV load remained unaltered when acquired individually or in conjunction with CuLCrV. Whitefly preference was not affected following individual or combined virus acquisition. Viruliferous (CuLCrV and/or TYLCV) whiteflies preferred to settle on non-infected tomato and squash plants. The mere presence of CuLCrV and/or TYLCV in whiteflies did not affect their fitness. Taken together, these results indicate that mixed infection of viruses in host plants and acquisition of multiple viruses by the vector could have implications for virus accumulation, virus acquisition, vector preference, and epidemics that sometimes are different from single-virus infection or acquisition.


Assuntos
Aptidão Genética , Insetos Vetores/genética , Insetos Vetores/virologia , Interações Microbianas , Vírus de Plantas/metabolismo , Animais , Begomovirus/genética , Begomovirus/metabolismo , Coinfecção/virologia , Crinivirus/genética , Crinivirus/metabolismo , Feminino , Hemípteros/virologia , Masculino , Vírus de Plantas/classificação
5.
J Agric Food Chem ; 68(19): 5302-5308, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32298097

RESUMO

A series of novel quinazolinone sulfide derivatives containing a dithioacetal moiety were designed and synthesized using Tomato chlorosis virus coat protein (ToCVCP) as a potential drug target, and the inhibitory effect of ToCV was systematically evaluated in vitro and in vivo. The experimental results showed that most of the compounds presented a strong affinity. Notably, the binding abilities of compounds D8 and D16 to ToCVCP both reached a micromolar level, which were 0.19 and 0.83 µM, respectively. The relative expression level of ToCVCP gene was detected using real-time quantitative polymerase chain reaction in Nicotiana benthamiana. Compounds D8 and D16 significantly reduced the relative expression level of ToCVCP gene by 93.34 and 83.47%, respectively, which were better than those of conventional antiviral agents. This study lays a good foundation for the structural design and modification of quinazolinone sulfide derivatives as anti-ToCV drugs.


Assuntos
Antivirais/farmacologia , Proteínas do Capsídeo/antagonistas & inibidores , Crinivirus/efeitos dos fármacos , Quinazolinonas/farmacologia , Sulfetos/farmacologia , Antivirais/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Crinivirus/genética , Crinivirus/metabolismo , Doenças das Plantas/virologia , Quinazolinonas/química , Sulfetos/química , Nicotiana/virologia
6.
J Agric Food Chem ; 68(23): 6280-6285, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32330024

RESUMO

Novel pyrimidine sulfide derivatives containing a dithioacetal and strobilurin moiety were designed and synthesized. Their antiviral activities against tomato chlorosis virus (ToCV) were investigated through the tomato chlorosis virus coat protein (ToCVCP)-oriented screening method. Microscale thermophoresis was used to study the interaction between the compound and the ToCVCP. Compounds B13 and B23 interacted better with ToCVCP than the other compounds and had dissociation constant (Kd) values of 0.09 and 0.06 µM, respectively. These values were lower than those of the control agents, ningnanmycin (0.19 µM) and ribavirin (6.54 µM), which indicated that the compounds had a strong binding effect with ToCVCP. Quantitative real-time polymerase chain reaction was used to evaluate the role of compounds B13 and B23 in the gene regulation of ToCVCP. Both compounds significantly reduced the expression level of the ToCVCP gene in Nicotiana benthamiana with reduction values of 88 and 83%, which were better than those of ningnanmycin (65%) and lead compound C14 (73%). Pyrimidine sulfide containing a dithioacetal and strobilurin moiety is significant in the research and development of novel anti-ToCV agents.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Crinivirus/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Antivirais/química , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Crinivirus/genética , Crinivirus/metabolismo , Desenho de Fármacos , Cinética , Doenças das Plantas/virologia , Relação Estrutura-Atividade , Nicotiana/virologia
7.
Virus Res ; 279: 197887, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045630

RESUMO

Cucurbit chlorotic yellows virus (CCYV) is a new member of the genus Crinivirus (family Closteroviridae) with a bi-partite genome. CCYV RNA 1-encoded p22 has recently been reported to be a weak local suppressor of RNA silencing for which an interaction with cucumber SKP1LB1 through an F-box-like motif was demonstrated to be essential. Using a bacterially expressed maltose-binding protein (MBP) fusion of CCYV p22 in electrophoretic mobility shift assays (EMSA), we have examined in vitro its ability to bind different RNA templates. Our experiments showed that CCYV p22 is able to bind to ss and ds long RNAs, in addition to ss and ds small interfering (si) RNA molecules. CCYV p22 deletion mutants (MBP_CCYV DEL1-4) were produced that covered the entire protein, with MBP_CCYV DEL2 corresponding to the F-box motif and its flanking sequences. None of these deletions abolished the capacity of CCYV p22 to bind ss- and dsRNA molecules. However, deletions affecting the C-terminal half of the protein resulted in decreased binding efficiency for either ss- or dsRNA molecules indicating that essential elements for these interactions are located in this region. Taken together, our data add to current knowledge of the mode of action of suppressors of RNA silencing encoded by genes sited at the 3'-terminus of crinivirus genomic RNA 1, and shed light on the involvement of CCYV p22 in the suppression of RNA silencing and/or in another role in the virus life cycle via RNA binding.


Assuntos
Crinivirus/genética , Crinivirus/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno , Cucumis sativus/virologia , Genoma Viral , Doenças das Plantas/virologia , RNA Viral/genética , Deleção de Sequência
8.
Viruses ; 11(9)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487883

RESUMO

Plants use RNA silencing as a defense against viruses. In response, viruses encode various RNA silencing suppressors to counteract the antiviral silencing. Here, we identified p22 as a silencing suppressor of cucurbit chlorotic yellows crinivirus and showed that p22 interacts with CsSKP1LB1, a Cucumis sativus ortholog of S-phase kinase-associated protein 1 (SKP1). The F-box-like motif of p22 was identified through sequence analysis and found to be necessary for the interaction using a yeast two-hybrid assay. The involvement of the F-box-like motif in p22 silencing suppressor activity was determined. Proteomics analysis of Nicotiana benthamiana leaves expressing p22, and its F-box-like motif deletion mutant showed 228 differentially expressed proteins and five enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: ABC transporters, sesquiterpenoid and triterpenoid biosynthesis, ubiquitin-mediated proteolysis, riboflavin metabolism, and cysteine and methionine metabolism. Collectively, our results demonstrate the interaction between p22 and CsSKP1LB1 and show that the deletion of F-box-like motif inhibits p22 silencing suppressor activity. The possible pathways regulated by the p22 through the F-box-like motif were identified using proteomics analysis.


Assuntos
Crinivirus/metabolismo , Cucumis sativus/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Crinivirus/química , Crinivirus/genética , Cucumis sativus/genética , Cucumis sativus/virologia , Interações Hospedeiro-Patógeno , Proteínas de Plantas/genética , Ligação Proteica , Interferência de RNA , Proteínas Quinases Associadas a Fase S/genética , Proteínas Virais/genética
9.
J Agric Food Chem ; 67(26): 7243-7248, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31026153

RESUMO

Tomato chlorosis virus (ToCV) is a newly reported plant virus that has rapidly spread to all parts of the world, resulting in a serious decline in tomato quality and yield due to the lack of effective control agents. In this study, the ToCV coat protein (ToCVCP) was expressed and purified in Escherichia coli, and a series of novel glucopyranoside derivatives containing a dithioacetal moiety was designed and synthesized. The binding affinity of these compounds to ToCVCP was determined using microscale thermophoresis. Results revealed that compounds 6b and 8a interacted with ToCVCP with Kd values of 0.12 and 0.21 µM, respectively. Quantitative reverse transcription polymerase chain reaction was used to evaluate the anti-ToCV activity of 6b and 8a in vivo, and both significantly reduced the expression level of ToCVCP gene in tomato compared with commercial antivirus agents. This study provides an efficient and convenient screening method for anti-ToCV agents and reliable support for the development of novel agrochemicals for ToCV.


Assuntos
Antivirais/farmacologia , Proteínas do Capsídeo/genética , Crinivirus/efeitos dos fármacos , Glucosídeos/farmacologia , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Antivirais/síntese química , Antivirais/química , Proteínas do Capsídeo/metabolismo , Crinivirus/genética , Crinivirus/metabolismo , Glucosídeos/síntese química , Glucosídeos/química , Estrutura Molecular
10.
Adv Virus Res ; 102: 199-223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30266174

RESUMO

Viruses transmitted by whiteflies are predominantly classified as having either persistent circulative or semipersistent transmission, and the majority of studies have addressed transmission of viruses in the genera Begomovirus (family Geminiviridae) and Crinivirus (family Closteroviridae), respectively. Early studies on vector transmission primarily addressed individual aspects of transmission; however, with the breadth of new technology now available, an increasingly greater number of studies involve coordinated research that is beginning to assemble a more complete picture of how whiteflies and viruses have coevolved to facilitate transmission. In particular the integration of gene expression and metabolomic studies into broader research topics is providing knowledge of changes within the whitefly vector in response to the presence of viruses that would have been impossible to identify previously. Examples include comparative studies on the response of Bemisia tabaci to begomovirus and crinivirus infection of common host plants, evolution of whitefly endosymbiont relationships, and opportunities to evaluate responses to specific transmission-related events. Integration of metabolomics, as well as the application of electrical penetration graphing, can lead to an ability to monitor the changes that occur in vector insects associated with specific aspects of virus transmission. Through gaining more complete knowledge of the mechanisms behind whitefly transmission of viruses new control strategies will undoubtedly emerge for control of whiteflies and the viruses they transmit.


Assuntos
Hemípteros/virologia , Interações Hospedeiro-Patógeno/genética , Proteínas de Insetos/genética , Insetos Vetores/virologia , Metabolômica/métodos , Plantas/virologia , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Begomovirus/genética , Begomovirus/metabolismo , Coevolução Biológica , Crinivirus/genética , Crinivirus/metabolismo , Regulação da Expressão Gênica , Controle de Insetos/métodos , Proteínas de Insetos/classificação , Proteínas de Insetos/metabolismo , Doenças das Plantas/virologia , Simbiose/genética , Transcriptoma
11.
Virol J ; 15(1): 93, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29793511

RESUMO

BACKGROUND: Cucurbit chlorotic yellows virus (CCYV), a bipartite crinivirus, causes chlorotic leaf spots and yellowing symptoms on cucurbit leaves. We previously developed an infectious clone of CCYV. Limited work has been conducted on the construction of a crinivirus green fluorescence protein (GFP) expression vector to date. FINDING: We constructed a CCYV GFP expression vector using the "add a gene" strategy based on CCYV RNA2 cDNA constrcut. Three resultant clones, pCCYVGFPSGC, pCCYVGFPCGC, and pCCYVGFPCGS, were constructed with different promoters used to initiate GFP and CP expression. At 25 dpi GFP fluorescence was detectable not only in leaf veins but also in the surrounding cells. pCCYVGFPCGC-infected cucumber leaves exhibited cell spread at 25 dpi, whereas pCCYVGFPSGC and pCCYVGFPCGS were mainly found in single cells. Further observation of pCCYVGFPCGC GFP expression at 30 dpi, 40 dpi, and 50 dpi showed phloem-limited localization in the systemic leaves. CONCLUSIONS: We developed of a CCYV GFP expression vector that will be useful for further study of CCYV movement in cucurbits.


Assuntos
Crinivirus/genética , Cucumis sativus/virologia , Vetores Genéticos/química , Proteínas de Fluorescência Verde/genética , Doenças das Plantas/virologia , RNA Viral/genética , Células Clonais , Crinivirus/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Floema/virologia , Folhas de Planta/virologia , Regiões Promotoras Genéticas , RNA Viral/metabolismo
12.
PLoS One ; 11(12): e0167769, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28005969

RESUMO

Viruses infecting wild flora may have a significant negative impact on nearby crops, and vice-versa. Only limited information is available on wild species able to host economically important viruses that infect sweetpotatoes (Ipomoea batatas). In this study, Sweet potato chlorotic fleck virus (SPCFV; Carlavirus, Betaflexiviridae) and Sweet potato chlorotic stunt virus (SPCSV; Crinivirus, Closteroviridae) were surveyed in wild plants of family Convolvulaceae (genera Astripomoea, Ipomoea, Hewittia and Lepistemon) in Uganda. Plants belonging to 26 wild species, including annuals, biannuals and perennials from four agro-ecological zones, were observed for virus-like symptoms in 2004 and 2007 and sampled for virus testing. SPCFV was detected in 84 (2.9%) of 2864 plants tested from 17 species. SPCSV was detected in 66 (5.4%) of the 1224 plants from 12 species sampled in 2007. Some SPCSV-infected plants were also infected with Sweet potato feathery mottle virus (SPFMV; Potyvirus, Potyviridae; 1.3%), Sweet potato mild mottle virus (SPMMV; Ipomovirus, Potyviridae; 0.5%) or both (0.4%), but none of these three viruses were detected in SPCFV-infected plants. Co-infection of SPFMV with SPMMV was detected in 1.2% of plants sampled. Virus-like symptoms were observed in 367 wild plants (12.8%), of which 42 plants (11.4%) were negative for the viruses tested. Almost all (92.4%) the 419 sweetpotato plants sampled from fields close to the tested wild plants displayed virus-like symptoms, and 87.1% were infected with one or more of the four viruses. Phylogenetic and evolutionary analyses of the 3'-proximal genomic region of SPCFV, including the silencing suppressor (NaBP)- and coat protein (CP)-coding regions implicated strong purifying selection on the CP and NaBP, and that the SPCFV strains from East Africa are distinguishable from those from other continents. However, the strains from wild species and sweetpotato were indistinguishable, suggesting reciprocal movement of SPCFV between wild and cultivated Convolvulaceae plants in the field.


Assuntos
Carlavirus/isolamento & purificação , Crinivirus/isolamento & purificação , Ipomoea batatas/virologia , Potyvirus/isolamento & purificação , Regiões 3' não Traduzidas/genética , África Oriental , Capsídeo/metabolismo , Carlavirus/classificação , Carlavirus/metabolismo , Coinfecção/virologia , Crinivirus/classificação , Crinivirus/metabolismo , Evolução Molecular , Incidência , Ipomoea batatas/crescimento & desenvolvimento , Filogenia , Doenças das Plantas/etiologia , Doenças das Plantas/virologia , Potyvirus/classificação , Potyvirus/metabolismo , Recombinação Genética , Uganda , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
PLoS Pathog ; 11(3): e1004711, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25747942

RESUMO

Certain RNA and DNA viruses that infect plants, insects, fish or poikilothermic animals encode Class 1 RNaseIII endoribonuclease-like proteins. dsRNA-specific endoribonuclease activity of the RNaseIII of rock bream iridovirus infecting fish and Sweet potato chlorotic stunt crinivirus (SPCSV) infecting plants has been shown. Suppression of the host antiviral RNA interference (RNAi) pathway has been documented with the RNaseIII of SPCSV and Heliothis virescens ascovirus infecting insects. Suppression of RNAi by the viral RNaseIIIs in non-host organisms of different kingdoms is not known. Here we expressed PPR3, the RNaseIII of Pike-perch iridovirus, in the non-hosts Nicotiana benthamiana (plant) and Caenorhabditis elegans (nematode) and found that it cleaves double-stranded small interfering RNA (ds-siRNA) molecules that are pivotal in the host RNA interference (RNAi) pathway and thereby suppresses RNAi in non-host tissues. In N. benthamiana, PPR3 enhanced accumulation of Tobacco rattle tobravirus RNA1 replicon lacking the 16K RNAi suppressor. Furthermore, PPR3 suppressed single-stranded RNA (ssRNA)--mediated RNAi and rescued replication of Flock House virus RNA1 replicon lacking the B2 RNAi suppressor in C. elegans. Suppression of RNAi was debilitated with the catalytically compromised mutant PPR3-Ala. However, the RNaseIII (CSR3) produced by SPCSV, which cleaves ds-siRNA and counteracts antiviral RNAi in plants, failed to suppress ssRNA-mediated RNAi in C. elegans. In leaves of N. benthamiana, PPR3 suppressed RNAi induced by ssRNA and dsRNA and reversed silencing; CSR3, however, suppressed only RNAi induced by ssRNA and was unable to reverse silencing. Neither PPR3 nor CSR3 suppressed antisense-mediated RNAi in Drosophila melanogaster. These results show that the RNaseIII enzymes of RNA and DNA viruses suppress RNAi, which requires catalytic activities of RNaseIII. In contrast to other viral silencing suppression proteins, the RNaseIII enzymes are homologous in unrelated RNA and DNA viruses and can be detected in viral genomes using gene modeling and protein structure prediction programs.


Assuntos
Crinivirus/metabolismo , Proteína Catiônica de Eosinófilo/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Iridovirus/metabolismo , Interferência de RNA/fisiologia , Proteínas Virais/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/virologia , Immunoblotting , Mutagênese Sítio-Dirigida , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , RNA de Cadeia Dupla , RNA Interferente Pequeno/biossíntese , Nicotiana/virologia , Transfecção
15.
Virology ; 464-465: 365-374, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25113907

RESUMO

Tomato chlorosis virus (ToCV) (genus Crinivirus, family Closteroviridae) causes important emergent diseases in tomato and other solanaceous crops. ToCV is not transmitted mechanically and is naturally transmitted by whiteflies. The ToCV genome consists of two molecules of linear, positive-sense RNA encapsidated into long flexuous virions. We present the construction of full-length cDNA clones of the ToCV genome (RNA1 and RNA2) fused to the SP6 RNA polymerase promoter and under the control of the CaMV 35S promoter. RNA1 replicated in the absence of RNA2 in Nicotiana benthamiana and tomato protoplasts after inoculation with cDNA-derived in vitro transcripts. Agroinfiltration of RNA1 and RNA2 under the 35S promoter resulted in systemic infection in N. benthamiana plants. In addition, tomato plants were infected by grafting with agroinfected N. benthamiana scions, showing the typical ToCV symptoms. The viral progeny generated in tomato was transmissible by the whitefly Bemisia tabaci.


Assuntos
Crinivirus/metabolismo , Crinivirus/patogenicidade , DNA Complementar/metabolismo , DNA Viral/metabolismo , Hemípteros/virologia , Insetos Vetores/virologia , Doenças das Plantas/virologia , Animais , Crinivirus/genética , DNA Complementar/genética , DNA Viral/genética , Nicotiana/virologia , Virulência
16.
Proc Natl Acad Sci U S A ; 108(40): 16777-82, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21930903

RESUMO

Numerous pathogens of humans, animals, and plants are transmitted by specific arthropod vectors. However, understanding the mechanisms governing these pathogen-vector interactions is hampered, in part, by the lack of easy-to-use analytical tools. We investigated whitefly transmission of Lettuce infectious yellows virus (LIYV) by using a unique immunofluorescent localization approach in which we fed virions or recombinant virus capsid components to whiteflies, followed by feeding them antibodies to the virions or capsid components, respectively. Fluorescent signals, indicating the retention of virions, were localized in the anterior foregut or cibarium of a whitefly vector biotype but not within those of a whitefly nonvector biotype. Retention of virions in these locations strongly corresponded with the whitefly vector transmission of LIYV. When four recombinant LIYV capsid components were individually fed to whitefly vectors, significantly more whiteflies retained the recombinant minor coat protein (CPm). As demonstrated previously and in the present study, whitefly vectors failed to transmit virions preincubated with anti-CPm antibodies but transmitted virions preincubated with antibodies recognizing the major coat protein (CP). Correspondingly, the number of insects that specifically retained virions preincubated with anti-CPm antibodies were significantly reduced compared with those that specifically retained virions preincubated with anti-CP antibodies. Notably, a transmission-defective CPm mutant was deficient in specific virion retention, whereas the CPm-restored virus showed WT levels of specific virion retention and transmission. These data provide strong evidence that transmission of LIYV is determined by a CPm-mediated virion retention mechanism in the anterior foregut or cibarium of whitefly vectors.


Assuntos
Proteínas do Capsídeo/metabolismo , Crinivirus/metabolismo , Transmissão de Doença Infecciosa , Imunofluorescência/métodos , Hemípteros/virologia , Insetos Vetores/virologia , Vírion/metabolismo , Animais , Anticorpos Antivirais/metabolismo , Crinivirus/genética , DNA Complementar/genética , Ensaio de Imunoadsorção Enzimática , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Virus Res ; 156(1-2): 64-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21211541

RESUMO

Viruses in the genus Crinivirus infect diverse plant species and are transmitted by specific whitefly vectors, but the basis for vector specific transmission remains poorly understood. Here, we demonstrated that purified virion preparations of Lettuce chlorosis virus (LCV) contained filamentous particles that were consistently transmitted to plants by whiteflies (Bemisia tabaci biotypes A and B) following membrane feeding, suggesting that the preparations contained biologically active virions with all the components essential for specific vector transmission. We also demonstrated in sequential membrane feeding experiments that B. tabaci biotype A pre-fed with high concentrations of Lettuce infectious yellows virus (LIYV) virions followed by decreasing concentrations of LCV virions either abolished or interfered with the transmission of the latter. However, in the reverse treatment, an abolishment/interference in transmission of LIYV was not observed. These results suggest that both viruses share a common transmission pathway in B. tabaci biotype A, and factors other than virion quality and quantity may additionally influence their transmission. To begin investigating the viral determinants that are involved in mediating the whitefly transmission of LCV, virions were analyzed by Western immunoblotting. Our results showed that virions were positively identified by antisera produced against three E. coli expressed recombinant LCV capsid proteins--the major coat protein [CP], minor CP [CPm], and P60.


Assuntos
Crinivirus/fisiologia , Hemípteros/virologia , Lactuca/virologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Crinivirus/genética , Crinivirus/metabolismo , Insetos Vetores/virologia , Vírion/metabolismo
18.
Virus Res ; 145(1): 48-53, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19540278

RESUMO

Post-transcriptional gene silencing (PTGS) degrades RNA in a sequence-specific manner and is utilised by plants as a natural defence mechanism against virus invaders. Two members of the genus Crinivirus have been reported to encode suppressors and counter PTGS: Sweet potato chlorotic stunt virus p22 and Tomato chlorosis virus (ToCV) p22, coat protein and coat protein minor. Using an Agrobacterium-mediated transient assay on Nicotiana benthamiana wildtype and 16c plants, we screened four Cucurbit yellow stunting disorder virus (CYSDV) RNA 1-encoded proteins (papain-like protease, p25, p5.2 and p22) to determine which one possess PTGS suppressor activity. Amongst these proteins, only CYSDV p25 was able to suppress (double- and single-stranded) RNA-induced silencing of the green fluorescent protein (GFP) mRNA. Restoration of GFP expression by CYSDV p25 in both of these experiments had no apparent effect on the accumulation of the small interfering RNAs. The identification of CYSDV p25 adds to the list of suppressors encoded by crinivirus RNA 1 molecules, which are unrelated in terms of amino acid sequence homology suggesting distinct PTGS suppression mechanisms and possible roles in viral replication.


Assuntos
Crinivirus/genética , Nicotiana/genética , Doenças das Plantas/genética , Interferência de RNA , Proteínas Virais/metabolismo , Crinivirus/metabolismo , Genes Virais , Proteínas de Fluorescência Verde , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/genética
19.
Virology ; 333(2): 367-73, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15721368

RESUMO

Cytological, immunological, and mutagenesis approaches were used to identify the viral factors associated with the formation of plasmalemma deposits (PLDs) in whole plants and protoplasts infected by Lettuce infectious yellows virus (LIYV). Transmission electron microscopy and immunogold labeling using polyclonal antibodies to four of the five LIYV RNA 2-encoded large proteins, capsid protein (CP), minor capsid protein (CPm), HSP70 homolog (HSP70h), and P59, showed specific labeling of LIYV virions or virion aggregates around the vesiculated membranous inclusions, but not PLDs in LIYV-infected Nicotiana benthamiana, Nicotiana clevelandii, Lactuca sativa, and Chenopodium murale plants, and Nicotiana tabacum protoplasts. In contrast, antibodies to the RNA 2-encoded P26 showed specific labeling of PLDs but not virions in both LIYV-infected plants and protoplasts. Virion-like particles (VLPs) were seen in protoplasts infected by all LIYV RNA 2 mutants except for the CP (major capsid protein) mutant. PLDs were more difficult to find in protoplasts, but were seen in protoplasts infected by the CP and CPm mutants, but not in protoplasts infected by the P26, HSP70h, or P59 mutants. Interestingly, although the CPm mutant showed VLPs and PLDs, the PLDs did not show associated virions/virion-like particles as was always observed for PLDs seen in protoplasts infected by wild-type LIYV. Immunoblot analyses performed on purified LIYV virions showed that P26 was not detected with purified virions, but was detected in the cell wall, 1000 g and 30,000 g pellet fractions of LIYV-infected plants. These data suggest that P26 is associated with the LIYV-induced PLDs, and in contrast to the other RNA 2-encoded large proteins, P26 is not a virion protein.


Assuntos
Crinivirus/genética , Crinivirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Bases , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Crinivirus/patogenicidade , DNA Viral/genética , Genes Virais , Microscopia Imunoeletrônica , Mutação , Doenças das Plantas/virologia
20.
Virology ; 289(1): 54-62, 2001 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-11601917

RESUMO

Lettuce infectious yellows virus (LIYV) RNA 2 defective RNAs (D RNAs) were compared in protoplasts for their ability to replicate and to express the green fluorescent protein (GFP) from recombinant D RNA constructs. Initially four LIYV D RNAs of different genetic composition were compared, but only two (LIYV D RNA M5 and M18) replicated to high levels. Both of these contained at least two complete ORFs, one being the 3'-terminal ORF encoding P26. Northern hybridization analysis using probes corresponding to 3' regions of LIYV RNA 2 detected the P26 subgenomic RNA from protoplasts infected with LIYV RNAs 1 and 2 or protoplasts inoculated only with RNA 1 plus either the LIYV D RNA M5 or M18, suggesting that these LIYV D RNAs served as templates to generate the P26 subgenomic RNA. The GFP coding region was inserted as an in-frame insertion into the P26 coding region of the LIYV M5 and M18 D RNAs, yielding M5gfp and M18gfp. When transcripts of M5gfp and M18gfp were used to inoculate protoplasts, bright fluorescence was seen only when they were co-inoculated with LIYV RNA 1. The percentage of fluorescent protoplasts ranged from experiment to experiment, but was as high as 5.8%. Time course analyses showed that fluorescence was not detected before 48 h pi, and this correlated with the timing of LIYV RNA 2 and RNA 2 D RNA accumulation, but not with that of LIYV RNA 1.


Assuntos
Crinivirus/metabolismo , Vírus Defeituosos/genética , Proteínas Luminescentes/metabolismo , RNA Viral/genética , Recombinação Genética , Northern Blotting , Crinivirus/genética , Crinivirus/fisiologia , Proteínas de Fluorescência Verde , Lactuca/virologia , Proteínas Luminescentes/genética , Protoplastos/virologia , RNA Viral/metabolismo , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...