Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 238(4): 1099-1109, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33420591

RESUMO

RATIONALE: Metabolic dysfunction, mood disorders, anxiety disorders, and substance abuse disorders are associated with disruptions in circadian rhythm and circadian clock gene machinery. While the effects of alcohol on several core components of the clock genes have been described in rodent models, pharmacological activation or inhibition of clock gene functions has not been studied on alcohol drinking behaviors. OBJECTIVES: We investigated whether cryptochrome (CRY1/2) activator KL001 altered alcohol intake in mice in excessive and relapse-like alcohol drinking models. METHODS: Mice, subjected to 3 weeks of chronic intermittent alcohol drinking (IAD) (two-bottle choice, 24-h access every other day) developed excessive alcohol intake and high preference. We evaluated the pharmacological effects of KL001 after either 1-day acute withdrawal from IAD or 1-week chronic withdrawal using the alcohol deprivation effect (ADE) model. RESULTS: Single pretreatment with KL001 at 1-4 mg kg-1 reduced alcohol intake and preference after acute withdrawal in a dose-related manner. The effect of KL001 on reducing excessive alcohol consumption seems alcohol specific, as the compound does not alter sucrose (caloric reinforcer) or saccharin (noncaloric reinforcer) consumption in mice. Both single- and multiple-dosing regimens with an effective dose of KL001 (4 mg kg-1) prevented the ADE after chronic withdrawal, with no tolerance development after the multi-dosing regimen. CONCLUSIONS: Pretreatment with KL001 (a CRY1/2 activator) reduces excessive and "relapse" alcohol drinking in mice. Our in vivo results with a CRY activator suggest a possible novel target for alcohol treatment intervention.


Assuntos
Alcoolismo/prevenção & controle , Depressores do Sistema Nervoso Central/sangue , Criptocromos/efeitos dos fármacos , Etanol/sangue , Consumo de Bebidas Alcoólicas/psicologia , Animais , Carbazóis/farmacologia , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Ativação Enzimática/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Recidiva , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/psicologia , Sulfonamidas/farmacologia
2.
J Am Chem Soc ; 143(4): 2078-2087, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33464888

RESUMO

CRY1 and CRY2 proteins are highly conserved components of the circadian clock that controls daily physiological rhythms. Disruption of CRY functions are related to many diseases, including circadian sleep phase disorder. Development of isoform-selective and spatiotemporally controllable tools will facilitate the understanding of shared and distinct functions of CRY1 and CRY2. Here, we developed CRY1-selective compounds that enable light-dependent manipulation of the circadian clock. From phenotypic chemical screening in human cells, we identified benzophenone derivatives that lengthened the circadian period. These compounds selectively interacted with the CRY1 photolyase homology region, resulting in activation of CRY1 but not CRY2. The benzophenone moiety rearranged a CRY1 region called the "lid loop" located outside of the compound-binding pocket and formed a unique interaction with Phe409 in the lid loop. Manipulation of this key interaction was achieved by rationally designed replacement of the benzophenone with a switchable azobenzene moiety whose cis-trans isomerization can be controlled by light. The metastable cis form exhibited sufficiently high half-life in aqueous solutions and structurally mimicked the benzophenone unit, enabling reversible period regulation over days by cellular irradiation with visible light. This study revealed an unprecedented role of the lid loop in CRY-compound interaction and paves the way for spatiotemporal regulation of CRY1 activity by photopharmacology for molecular understanding of CRY1-dependent functions in health and disease.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Criptocromos/efeitos dos fármacos , Animais , Relógios Circadianos/fisiologia , Humanos , Luz
3.
Endocr J ; 67(1): 73-80, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31611477

RESUMO

Those who smoke nicotine-based cigarettes have elevated plasma levels of ghrelin, a hormone secreted from the stomach. Ghrelin has various physiological functions and has recently been shown to be involved in regulating biological rhythms. Therefore, in this study, in order to clarify the significance of the plasma ghrelin increase in smokers, we sought to clarify how nicotine and ghrelin affect the expression dynamics of clock genes using a mouse model. A single dose of nicotine administered intraperitoneally increased plasma ghrelin concentrations transiently, whereas continuous administration of nicotine with an osmotic minipump did not induce any change in the plasma ghrelin concentration. Single administration of nicotine resulted in a transient increase in ghrelin gene expression in the pancreas but not in the stomach, which is the major producer of ghrelin. In addition, in the pancreas, the expression of clock genes was also increased temporarily. Therefore, in order to clarify the interaction between nicotine-induced ghrelin gene expression and clock gene expression in the pancreas, nicotine was administered to ghrelin gene-deficient mice. Administration of nicotine to ghrelin-gene deficient mice increased clock gene expression in the pancreas. However, upon nicotine administration to mice pretreated with octanoate to upregulate ghrelin activity, expression levels of nicotine-inducible clock genes in the pancreas were virtually the same as those in mice not administered nicotine. Thus, our findings indicate that pancreatic ghrelin may suppress nicotine-induced clock gene expression in the pancreas.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/efeitos dos fármacos , Grelina/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Pâncreas/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Estômago/efeitos dos fármacos , Fatores de Transcrição ARNTL/efeitos dos fármacos , Fatores de Transcrição ARNTL/genética , Animais , Proteínas CLOCK/efeitos dos fármacos , Proteínas CLOCK/genética , Caprilatos/farmacologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Criptocromos/efeitos dos fármacos , Criptocromos/genética , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica , Grelina/genética , Grelina/metabolismo , Transportador de Glucose Tipo 2/efeitos dos fármacos , Transportador de Glucose Tipo 2/genética , Hipotálamo/metabolismo , Camundongos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Pâncreas/metabolismo , Proteínas Circadianas Period/efeitos dos fármacos , Proteínas Circadianas Period/genética
4.
Addict Biol ; 24(5): 921-934, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30307084

RESUMO

Cannabis is often used by consumers for sleep disorders. Studies show that circadian rhythm could be affected by a misuse of cannabis. Recent research has connected the role of microglial cells with psychiatric disorders such as substance abuse. The aim was to show the effect of two major components of cannabis on circadian genes regulation in microglial cells. In BV-2 microglial cells, cannabidiol (CBD) induces a deregulation of circadian genes with (P-value = 0.039) or without (P-value = 0.0015) lipopolisaccharides stimulation. CBD up regulated Arntl (P = 9.72E-5) and down regulated Clock (P = 0.0034) in BV-2 cells. Temporal expression of Arntl (light and dark P = 0.0054) and Clock (light and dark P = 0.047) was confirmed to have 24 hours light and dark rhythmic regulation in dissected suprachiasmatic nucleus as well as of Cb1 cannabinoid receptor (light and dark P = 0.019). In BV-2 microglia cells, CBD also up regulated CRY2 (P = 0.0473) and PER1 (P = 0.0131). Other nuclear molecules show a deregulation of circadian rhythm in microglial cells by CBD, such as RORA, RevErbα, RORB, CREBBP, AFT4, AFT5 and NFIL3. Our study suggests that circadian rhythm in microglial cells is deregulated by CBD but not by THC. It is consistent with clinical observations of the use of therapeutic cannabis to treat insomnia.


Assuntos
Canabidiol/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Relógios Circadianos/efeitos dos fármacos , Dronabinol/farmacologia , Microglia/efeitos dos fármacos , Proteínas Circadianas Period/efeitos dos fármacos , Fatores de Transcrição ARNTL/efeitos dos fármacos , Fatores de Transcrição ARNTL/genética , Animais , Proteínas CLOCK/efeitos dos fármacos , Proteínas CLOCK/genética , Relógios Circadianos/genética , Criptocromos/efeitos dos fármacos , Criptocromos/genética , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Camundongos , Microglia/metabolismo , Proteínas Circadianas Period/genética , RNA-Seq , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/genética , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/metabolismo
5.
Mol Plant ; 1(1): 4-14, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20031911

RESUMO

The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.


Assuntos
Criptocromos/metabolismo , Criptocromos/efeitos da radiação , Fotorreceptores de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efeitos da radiação , Criptocromos/efeitos dos fármacos , Dimerização , Transferência de Energia , Genes Reporter , Luz , Luciferases/metabolismo , Luminescência , Fotorreceptores de Plantas/efeitos dos fármacos , Fotorreceptores de Plantas/efeitos da radiação , Plantas/efeitos dos fármacos , Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/efeitos da radiação , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/efeitos da radiação
6.
Mol Plant ; 1(1): 68-74, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20031915

RESUMO

Arabidopsis cryptochromes cry1 and cry2 are blue-light signalling molecules with significant structural similarity to photolyases--a class of blue-light-sensing DNA repair enzymes. Like photolyases, purified plant cryptochromes have been shown to bind both flavin and pterin chromophores. The flavin functions as a light sensor and undergoes reduction in response to blue light that initiates the signalling cascade. However, the role of the pterin in plant cryptochromes has until now been unknown. Here, we show that the action spectrum for light-dependent degradation of cry2 has a significant peak of activity at 380 nm, consistent with absorption by a pterin cofactor. We further show that cry1 protein expressed in living insect cells responds with greater sensitivity to 380 nm light than to 450 nm, consistent with a light-harvesting antenna pigment that transfers excitation energy to the oxidized flavin of cry1. The pterin biosynthesis inhibitor DHAP selectively reduces cryptochrome responsivity at 380 nm but not 450 nm blue light in these cell cultures, indicating that the antenna pigment is a folate cofactor similar to that of photolyases.


Assuntos
Arabidopsis/fisiologia , Criptocromos/fisiologia , Ácido Fólico/fisiologia , Luz , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/fisiologia , Proteínas de Arabidopsis/efeitos da radiação , Criptocromos/química , Criptocromos/efeitos dos fármacos , Criptocromos/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Flavinas/fisiologia , Flavinas/efeitos da radiação , Fluorescência , Gliceraldeído 3-Fosfato/análogos & derivados , Gliceraldeído 3-Fosfato/farmacologia , Compostos Organofosforados/farmacologia , Plântula/fisiologia , Plântula/efeitos da radiação , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Espectrofotometria , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...