Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.239
Filtrar
1.
Curr Top Dev Biol ; 159: 132-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729675

RESUMO

The primary senses-touch, taste, sight, smell, and hearing-connect animals with their environments and with one another. Aside from the eyes, the primary sense organs of vertebrates and the peripheral sensory pathways that relay their inputs arise from two transient stem cell populations: the neural crest and the cranial placodes. In this chapter we consider the senses from historical and cultural perspectives, and discuss the senses as biological faculties. We begin with the embryonic origin of the neural crest and cranial placodes from within the neural plate border of the ectodermal germ layer. Then, we describe the major chemical (i.e. olfactory and gustatory) and mechanical (i.e. vestibulo-auditory and somatosensory) senses, with an emphasis on the developmental interactions between neural crest and cranial placodes that shape their structures and functions.


Assuntos
Crista Neural , Animais , Crista Neural/citologia , Crista Neural/embriologia , Crista Neural/fisiologia , Humanos , Sensação/fisiologia , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/fisiologia , Órgãos dos Sentidos/citologia , Vertebrados/embriologia , Vertebrados/fisiologia
2.
Proc Natl Acad Sci U S A ; 121(19): e2311685121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683994

RESUMO

Neural crest cells exemplify cellular diversification from a multipotent progenitor population. However, the full sequence of early molecular choices orchestrating the emergence of neural crest heterogeneity from the embryonic ectoderm remains elusive. Gene-regulatory-networks (GRN) govern early development and cell specification toward definitive neural crest. Here, we combine ultradense single-cell transcriptomes with machine-learning and large-scale transcriptomic and epigenomic experimental validation of selected trajectories, to provide the general principles and highlight specific features of the GRN underlying neural crest fate diversification from induction to early migration stages using Xenopus frog embryos as a model. During gastrulation, a transient neural border zone state precedes the choice between neural crest and placodes which includes multiple converging gene programs. During neurulation, transcription factor connectome, and bifurcation analyses demonstrate the early emergence of neural crest fates at the neural plate stage, alongside an unbiased multipotent-like lineage persisting until epithelial-mesenchymal transition stage. We also decipher circuits driving cranial and vagal neural crest formation and provide a broadly applicable high-throughput validation strategy for investigating single-cell transcriptomes in vertebrate GRNs in development, evolution, and disease.


Assuntos
Crista Neural , Análise de Célula Única , Xenopus laevis , Animais , Crista Neural/citologia , Crista Neural/metabolismo , Análise de Célula Única/métodos , Xenopus laevis/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Movimento Celular , Redes Reguladoras de Genes , Transcriptoma , Gastrulação , Placa Neural/metabolismo , Placa Neural/embriologia , Placa Neural/citologia , Transição Epitelial-Mesenquimal/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , Neurulação/genética , Neurulação/fisiologia , Diferenciação Celular
3.
Dev Biol ; 511: 26-38, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38580174

RESUMO

In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.


Assuntos
Tubo Neural , Medula Espinal , Animais , Medula Espinal/embriologia , Tubo Neural/embriologia , Crista Neural/embriologia , Crista Neural/citologia , Crista Neural/fisiologia , Diferenciação Celular/fisiologia , Neuroglia/fisiologia , Células Neuroepiteliais/citologia , Células Neuroepiteliais/fisiologia , Humanos
4.
Exp Cell Res ; 438(1): 114049, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642790

RESUMO

BACKGROUND: Acellular nerve allografts (ANAs) have been successfully applied to bridge facial nerve defects, and transplantation of stem cells may enhance the regenerative results. Up to now, application of hair follicle epidermal neural crest stem cell-derived Schwann cell-like cells (EPI-NCSC-SCLCs) combined with ANAs for bridging facial nerve defects has not been reported. METHODS: The effect of ANAs laden with green fluorescent protein (GFP)-labeled EPI-NCSC-SCLCs (ANA + cells) on bridging rat facial nerve trunk defects (5-mm-long) was detected by functional and morphological examination, as compared with autografts and ANAs, respectively. RESULTS: (1) EPI-NCSC-SCLCs had good compatibility with ANAs in vitro. (2) In the ANA + cells group, the GFP signals were observed by in vivo imaging system for small animals within 8 weeks, and GFP-labeled EPI-NCSC-SCLCs were detected in the tissue slices at 16 weeks postoperatively. (3) The facial symmetry at rest after surgery in the ANA + cells group was better than that in the ANA group (p < 0.05), and similar to that in the autograft group (p > 0.05). The initial recovery time of vibrissal and eyelid movement in the ANA group was 2 weeks later than that in the other two groups. (4) The myelinated fibers, myelin sheath thickness and diameter of the axons of the buccal branches in the ANA group were significantly worse than those in the other two groups (P < 0.05), and the results in the ANA + cells group were similar to those in the autograft group (p > 0.05). CONCLUSIONS: EPI-NCSC-SCLCs could promote functional and morphological recovery of rat facial nerve defects, and GFP labeling could track the transplanted EPI-NCSC-SCLCs in vivo for a certain period of time. These may provide a novel choice for clinical treatment of peripheral nerve defects.


Assuntos
Aloenxertos , Nervo Facial , Proteínas de Fluorescência Verde , Folículo Piloso , Regeneração Nervosa , Crista Neural , Células de Schwann , Animais , Células de Schwann/transplante , Folículo Piloso/transplante , Folículo Piloso/citologia , Crista Neural/citologia , Crista Neural/transplante , Ratos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/transplante , Células-Tronco Neurais/citologia , Ratos Sprague-Dawley , Traumatismos do Nervo Facial/terapia , Traumatismos do Nervo Facial/patologia , Traumatismos do Nervo Facial/cirurgia , Masculino
5.
Nature ; 629(8010): 121-126, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632395

RESUMO

The neural crest is an embryonic stem cell population unique to vertebrates1 whose expansion and diversification are thought to have promoted vertebrate evolution by enabling emergence of new cell types and structures such as jaws and peripheral ganglia2. Although jawless vertebrates have sensory ganglia, convention has it that trunk sympathetic chain ganglia arose only in jawed vertebrates3-8. Here, by contrast, we report the presence of trunk sympathetic neurons in the sea lamprey, Petromyzon marinus, an extant jawless vertebrate. These neurons arise from sympathoblasts near the dorsal aorta that undergo noradrenergic specification through a transcriptional program homologous to that described in gnathostomes. Lamprey sympathoblasts populate the extracardiac space and extend along the length of the trunk in bilateral streams, expressing the catecholamine biosynthetic pathway enzymes tyrosine hydroxylase and dopamine ß-hydroxylase. CM-DiI lineage tracing analysis further confirmed that these cells derive from the trunk neural crest. RNA sequencing of isolated ammocoete trunk sympathoblasts revealed gene profiles characteristic of sympathetic neuron function. Our findings challenge the prevailing dogma that posits that sympathetic ganglia are a gnathostome innovation, instead suggesting that a late-developing rudimentary sympathetic nervous system may have been characteristic of the earliest vertebrates.


Assuntos
Linhagem da Célula , Gânglios Simpáticos , Crista Neural , Neurônios , Petromyzon , Sistema Nervoso Simpático , Tirosina 3-Mono-Oxigenase , Animais , Crista Neural/citologia , Crista Neural/metabolismo , Gânglios Simpáticos/citologia , Gânglios Simpáticos/metabolismo , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Neurônios/citologia , Neurônios/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Dopamina beta-Hidroxilase/genética , Vertebrados , Evolução Biológica , Norepinefrina/metabolismo
6.
PLoS Biol ; 22(4): e3002590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683849

RESUMO

Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.


Assuntos
Encéfalo , Diferenciação Celular , Pericitos , Fatores de Transcrição , Proteínas de Peixe-Zebra , Peixe-Zebra , Pericitos/metabolismo , Pericitos/citologia , Animais , Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Encéfalo/metabolismo , Encéfalo/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Diferenciação Celular/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/metabolismo , Crista Neural/citologia , Mesoderma/metabolismo , Mesoderma/citologia , Transdução de Sinais , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética
7.
Nature ; 628(8007): 391-399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408487

RESUMO

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Assuntos
Padronização Corporal , Microfluídica , Tubo Neural , Humanos , Técnicas de Cultura de Células em Três Dimensões , Diferenciação Celular , Crista Neural/citologia , Crista Neural/embriologia , Tubo Neural/citologia , Tubo Neural/embriologia , Células-Tronco Pluripotentes/citologia , Prosencéfalo/citologia , Prosencéfalo/embriologia , Medula Espinal/citologia , Medula Espinal/embriologia
8.
Stem Cells Transl Med ; 13(5): 490-504, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38387006

RESUMO

Regenerative cell therapy to replenish the missing neurons and glia in the aganglionic segment of Hirschsprung disease represents a promising treatment option. However, the success of cell therapies for this condition are hindered by poor migration of the transplanted cells. This limitation is in part due to a markedly less permissive extracellular environment in the postnatal gut than that of the embryo. Coordinated interactions between enteric neural crest-derived cells (ENCDCs) and their local environment drive migration along the embryonic gut during development of the enteric nervous system. Modifying transplanted cells, or the postnatal extracellular environment, to better recapitulate embryonic ENCDC migration could be leveraged to improve the engraftment and coverage of stem cell transplants. We compared the transcriptomes of ENCDCs from the embryonic intestine to that of postnatal-derived neurospheres and identified 89 extracellular matrix (ECM)-associated genes that are differentially expressed. Agrin, a heparin sulfate proteoglycan with a known inhibitory effect on ENCDC migration, was highly over-expressed by postnatal-derived neurospheres. Using a function-blocking antibody and a shRNA-expressing lentivirus, we show that inhibiting agrin promotes ENCDC migration in vitro and following cell transplantation ex vivo and in vivo. This enhanced migration is associated with an increased proportion of GFAP + cells, whose migration is especially enhanced.


Assuntos
Agrina , Movimento Celular , Células-Tronco Neurais , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Camundongos , Agrina/metabolismo , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/citologia , Colo/metabolismo , Colo/citologia , Crista Neural/metabolismo , Crista Neural/citologia , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/terapia , Transplante de Células-Tronco/métodos
9.
PLoS Genet ; 19(11): e1011030, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37948459

RESUMO

Hirschsprung disease (HSCR) is associated with deficiency of the receptor tyrosine kinase RET, resulting in loss of cells of the enteric nervous system (ENS) during fetal gut development. The major contribution to HSCR risk is from common sequence variants in RET enhancers with additional risk from rare coding variants in many genes. Here, we demonstrate that these RET enhancer variants specifically alter the human fetal gut development program through significant decreases in gene expression of RET, members of the RET-EDNRB gene regulatory network (GRN), other HSCR genes, with an altered transcriptome of 2,382 differentially expressed genes across diverse neuronal and mesenchymal functions. A parsimonious hypothesis for these results is that beyond RET's direct effect on its GRN, it also has a major role in enteric neural crest-derived cell (ENCDC) precursor proliferation, its deficiency reducing ENCDCs with relative expansion of non-ENCDC cells. Thus, genes reducing RET proliferative activity can potentially cause HSCR. One such class is the 23 RET-dependent transcription factors enriched in early gut development. We show that their knockdown in human neuroblastoma SK-N-SH cells reduces RET and/or EDNRB gene expression, expanding the RET-EDNRB GRN. The human embryos we studied had major remodeling of the gut transcriptome but were unlikely to have had HSCR: thus, genetic or epigenetic changes in addition to those in RET are required for aganglionosis.


Assuntos
Elementos Facilitadores Genéticos , Trato Gastrointestinal , Proteínas Proto-Oncogênicas c-ret , Haplótipos , Humanos , Proteínas Proto-Oncogênicas c-ret/genética , Neuroblastoma , Linhagem Celular Tumoral , Doença de Hirschsprung/genética , Feto , Trato Gastrointestinal/embriologia , Crista Neural/citologia , Sistema Nervoso Entérico/embriologia , Análise da Expressão Gênica de Célula Única , Regulação da Expressão Gênica no Desenvolvimento
10.
Cell Rep ; 42(9): 113030, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632751

RESUMO

Neural crest cells are multipotent cells that delaminate from the neuroepithelium, migrating throughout the embryo. Aberrant migration causes developmental defects. Animal models are improving our understanding of neural crest anomalies, but in vivo migration behaviors are poorly understood. Here, we demonstrate that murine neural crest cells display actin-based lamellipodia and filopodia in vivo. Using neural crest-specific knockouts or inhibitors, we show that the serine-threonine kinase glycogen synthase kinase-3 (GSK3) and the cytoskeletal regulator lamellipodin (Lpd) are required for lamellipodia formation while preventing focal adhesion maturation. Lpd is a substrate of GSK3, and phosphorylation of Lpd favors interactions with the Scar/WAVE complex (lamellipodia formation) at the expense of VASP and Mena interactions (adhesion maturation and filopodia formation). This improved understanding of cytoskeletal regulation in mammalian neural crest migration has general implications for neural crest anomalies and cancer.


Assuntos
Adesões Focais , Quinase 3 da Glicogênio Sintase , Crista Neural , Animais , Camundongos , Movimento Celular , Mamíferos , Crista Neural/citologia , Pseudópodes
11.
Dev Dyn ; 252(5): 629-646, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36692868

RESUMO

BACKGROUND: Collective and discrete neural crest cell (NCC) migratory streams are crucial to vertebrate head patterning. However, the factors that confine NCC trajectories and promote collective cell migration remain unclear. RESULTS: Computational simulations predicted that confinement is required only along the initial one-third of the cranial NCC migratory pathway. This guided our study of Colec12 (Collectin-12, a transmembrane scavenger receptor C-type lectin) and Trail (tumor necrosis factor-related apoptosis-inducing ligand, CD253) which we show expressed in chick cranial NCC-free zones. NCC trajectories are confined by Colec12 or Trail protein stripes in vitro and show significant and distinct changes in cell morphology and dynamic migratory characteristics when cocultured with either protein. Gain- or loss-of-function of either factor or in combination enhanced NCC confinement or diverted cell trajectories as observed in vivo with three-dimensional confocal microscopy, respectively, resulting in disrupted collective migration. CONCLUSIONS: These data provide evidence for Colec12 and Trail as novel NCC microenvironmental factors playing a role to confine cranial NCC trajectories and promote collective cell migration.


Assuntos
Movimento Celular , Galinhas , Crista Neural , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Galinhas/genética , Galinhas/fisiologia , Simulação por Computador , Crista Neural/citologia , Crista Neural/fisiologia , Crânio
12.
Nature ; 612(7941): 732-738, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517595

RESUMO

Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.


Assuntos
Gastrulação , Macaca fascicularis , Organogênese , Análise de Célula Única , Animais , Humanos , Camundongos , Gastrulação/genética , Macaca fascicularis/embriologia , Macaca fascicularis/genética , Organogênese/genética , Corpos Embrioides , Perfilação da Expressão Gênica , Linha Primitiva/citologia , Linha Primitiva/embriologia , Tubo Neural/citologia , Tubo Neural/embriologia , Crista Neural/citologia , Crista Neural/embriologia , Via de Sinalização Hippo , Mesoderma/citologia , Mesoderma/embriologia , Células-Tronco
13.
PLoS One ; 17(2): e0263830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35148331

RESUMO

Neural crest cell genes control the migration of neural crest cells to multiple parts of developing vertebrate embryos. A recent hypothesis posits that the "domestication syndrome" characteristic of domesticated animals is driven by selection for tameness acting on neural crest cell genes, particularly those affecting cell migration. This is posited to explain why this syndrome involves many disparate phenotypic effects. These effects can be connected to deficits in neural crest cell migration. This hypothesis predicts that patterns of selection on these neural crest cell genes will differ between domesticated species and related wild species. Specifically, it predicts higher levels of positive selection on these genes in domesticated species, relative to closely related wild species. Here we test this prediction in a comparative framework. We obtained DNA sequences from a public database (NCBI) for eleven key neural crest cell genes from a set of thirty domesticated vertebrates and matched close relatives that remain wild. We used the program Contrast-FEL in the software suite HyPhy to compare the number of sites under positive selection (as measured by non-synonymous to synonymous nucleotide substitution rates across codons) between these two types of taxa in a phylogenetic framework. We found that domesticated lineages showed a consistently higher level of positive selection on these key genes, relative to their closely related wild counterparts. In addition, we found support for relaxation of selection and purifying selection. We argue that this result is consistent with an important role for these genes in the domestication syndrome.


Assuntos
Animais Domésticos/genética , Animais Selvagens/genética , Redes Reguladoras de Genes , Crista Neural/citologia , Análise de Sequência de DNA/métodos , Substituição de Aminoácidos , Animais , Movimento Celular , Bases de Dados Genéticas , Domesticação , Crista Neural/química , Seleção Genética , Mutação Silenciosa , Coluna Vertebral , Vertebrados
14.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35132438

RESUMO

Cranial neural crest cell (NCC)-derived chondrocyte precursors undergo a dynamic differentiation and maturation process to establish a scaffold for subsequent bone formation, alterations in which contribute to congenital birth defects. Here, we demonstrate that transcription factor and histone methyltransferase proteins Prdm3 and Prdm16 control the differentiation switch of cranial NCCs to craniofacial cartilage. Loss of either paralog results in hypoplastic and disorganized chondrocytes due to impaired cellular orientation and polarity. We show that these proteins regulate cartilage differentiation by controlling the timing of Wnt/ß-catenin activity in strikingly different ways: Prdm3 represses whereas Prdm16 activates global gene expression, although both act by regulating Wnt enhanceosome activity and chromatin accessibility. Finally, we show that manipulating Wnt/ß-catenin signaling pharmacologically or generating prdm3-/-;prdm16-/- double mutants rescues craniofacial cartilage defects. Our findings reveal upstream regulatory roles for Prdm3 and Prdm16 in cranial NCCs to control Wnt/ß-catenin transcriptional activity during chondrocyte differentiation to ensure proper development of the craniofacial skeleton.


Assuntos
Diferenciação Celular , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Cartilagem/citologia , Cartilagem/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína do Locus do Complexo MDS1 e EVI1/deficiência , Proteína do Locus do Complexo MDS1 e EVI1/genética , Camundongos , Camundongos Knockout , Crista Neural/citologia , Crista Neural/metabolismo , Sequências Reguladoras de Ácido Nucleico , Crânio/citologia , Crânio/metabolismo , Proteínas Wnt/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , beta Catenina/metabolismo
15.
Cell Mol Life Sci ; 79(3): 158, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35220463

RESUMO

Calvarial bone is one of the most complex sequences of developmental events in embryology, featuring a uniquely transient, pluripotent stem cell-like population known as the cranial neural crest (CNC). The skull is formed through intramembranous ossification with distinct tissue lineages (e.g. neural crest derived frontal bone and mesoderm derived parietal bone). Due to CNC's vast cell fate potential, in response to a series of inductive secreted cues including BMP/TGF-ß, Wnt, FGF, Notch, Hedgehog, Hippo and PDGF signaling, CNC enables generations of a diverse spectrum of differentiated cell types in vivo such as osteoblasts and chondrocytes at the craniofacial level. In recent years, since the studies from a genetic mouse model and single-cell sequencing, new discoveries are uncovered upon CNC patterning, differentiation, and the contribution to the development of cranial bones. In this review, we summarized the differences upon the potential gene regulatory network to regulate CNC derived osteogenic potential in mouse and human, and highlighted specific functions of genetic molecules from multiple signaling pathways and the crosstalk, transcription factors and epigenetic factors in orchestrating CNC commitment and differentiation into osteogenic mesenchyme and bone formation. Disorders in gene regulatory network in CNC patterning indicate highly close relevance to clinical birth defects and diseases, providing valuable transgenic mouse models for subsequent discoveries in delineating the underlying molecular mechanisms. We also emphasized the potential regenerative alternative through scientific discoveries from CNC patterning and genetic molecules in interfering with or alleviating clinical disorders or diseases, which will be beneficial for the molecular targets to be integrated for novel therapeutic strategies in the clinic.


Assuntos
Diferenciação Celular , Redes Reguladoras de Genes/genética , Osteogênese , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
16.
Nat Commun ; 13(1): 13, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013168

RESUMO

The cranial neural crest generates a huge diversity of derivatives, including the bulk of connective and skeletal tissues of the vertebrate head. How neural crest cells acquire such extraordinary lineage potential remains unresolved. By integrating single-cell transcriptome and chromatin accessibility profiles of cranial neural crest-derived cells across the zebrafish lifetime, we observe progressive and region-specific establishment of enhancer accessibility for distinct fates. Neural crest-derived cells rapidly diversify into specialized progenitors, including multipotent skeletal progenitors, stromal cells with a regenerative signature, fibroblasts with a unique metabolic signature linked to skeletal integrity, and gill-specific progenitors generating cell types for respiration. By retrogradely mapping the emergence of lineage-specific chromatin accessibility, we identify a wealth of candidate lineage-priming factors, including a Gata3 regulatory circuit for respiratory cell fates. Rather than multilineage potential being established during cranial neural crest specification, our findings support progressive and region-specific chromatin remodeling underlying acquisition of diverse potential.


Assuntos
Diferenciação Celular/fisiologia , Crista Neural , Análise de Célula Única , Peixe-Zebra/embriologia , Animais , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/citologia , Crista Neural/metabolismo , Análise de Célula Única/métodos , Crânio/citologia , Transcriptoma , Peixe-Zebra/metabolismo
17.
Brain Res ; 1776: 147750, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896332

RESUMO

INTRODUCTION: The incidence rate of senile dementia is rising, and there is no definite cure for it yet. Cell therapy, as a new investigational approach, has shown promising results. Hair bulges with abundant easily accessible neural stem cells permit autologous implantation in irreversible neurodegenerative disorders. METHODS: Fifty rats were randomly divided into 5 groups of control, sham-operation, two-common carotid vessel-occlusion rats that received vehicle (2VO + V), 2VO rats that received 1 × 106 epidermal stem cells (2VO + ESC1), and 2VO rats that received 2.5 × 106 epidermal stem cells (2VO + ESC2) in 300 µl PBS intravenously on days 4, 9, and 14 after surgery. The epidermal neural crest stem cells (EPI-NCSCs) were isolated from hair follicles of rat whiskers. The open-field, passive avoidance, and Morris water maze were used as behavioral tests. The basal-synaptic transmission, long-term potentiation (LTP), and short-term synaptic plasticity were evaluated by field-potential recording of the CA1 hippocampal area. RESULTS: 30 days after the first transplantation in the 2VO + ESC1 group, functional recovery was prominent in anxiety and fear memory compared to the 2VO + ESC2 group, while LTP induction was recovered in both groups of grafted animals without improvement in basal synaptic transmission. These positive recoveries may be related to the release of different neurotrophic factors from grafted cells that can stimulate endogenous neurogenesis and synaptic plasticity. CONCLUSIONS: Our results showed that EPI-NCSCs implantation could rescue LTP and cognitive disability in 2VO rats, while transplantation of 1 million cells showed better performance relative to 2.5 million cells.


Assuntos
Demência Vascular/terapia , Crista Neural/citologia , Células-Tronco Neurais/transplante , Neuroproteção/fisiologia , Transplante de Células-Tronco/métodos , Animais , Aprendizagem da Esquiva/fisiologia , Demência Vascular/fisiopatologia , Modelos Animais de Doenças , Aprendizagem em Labirinto/fisiologia , Ratos , Transmissão Sináptica/fisiologia
18.
Biomed Pharmacother ; 146: 112593, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34968925

RESUMO

Neural crest-derived cells (NCDCs), which exist as neural crest cells during the fetal stage and differentiate into palate cells, also exist in adult palate tissues, though with unknown roles. In the present study, NCDCs were labeled with EGFP derived from P0-Cre/CAG-CAT-EGFP (P0-EGFP) double transgenic mice, then their function in palate mucosa wound healing was analyzed. As a palate wound healing model, left-side palate mucosa of P0-EGFP mice was resected, and stem cell markers and keratinocyte markers were detected in healed areas. NCDCs were extracted from normal palate mucosa and precultured with stem cell media for 14 days, then were differentiated into keratinocytes or osteoblasts to analyze pluripotency. The wound healing process started with marginal mucosal regeneration on day two and the entire wound area was lined by regenerated mucosa with EGFP-positive cells (NCDCs) on day 28. EGFP-positive cells comprised approximately 60% of cells in healed oral mucosa, and 65% of those expressed stem cell markers (Sca-1+, PDGFRα+) and 30% expressed a keratinocyte marker (CK13+). In tests of cultured palate mucosa cells, approximately 70% of EGFP-positive cells expressed stem cell markers (Sca-1+, PDGFRα+). Furthermore, under differentiation inducing conditions, cultured EGFP-positive cells were successfully induced to differentiate into keratinocytes and osteoblasts. We concluded that NCDCs exist in adult palate tissues as stem cells and have potential to differentiate into various cell types during the wound healing process.


Assuntos
Diferenciação Celular/fisiologia , Queratinócitos/citologia , Osteoblastos/citologia , Palato/citologia , Cicatrização/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Mucosa Bucal/metabolismo , Crista Neural/citologia
19.
Nature ; 600(7890): 690-694, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880503

RESUMO

Collective cell migration underlies morphogenesis, wound healing and cancer invasion1,2. Most directed migration in vivo has been attributed to chemotaxis, whereby cells follow a chemical gradient3-5. Cells can also follow a stiffness gradient in vitro, a process called durotaxis3,4,6-8, but evidence for durotaxis in vivo is lacking6. Here we show that in Xenopus laevis the neural crest-an embryonic cell population-self-generates a stiffness gradient in the adjacent placodal tissue, and follows this gradient by durotaxis. The gradient moves with the neural crest, which is continually pursuing a retreating region of high substrate stiffness. Mechanistically, the neural crest induces the gradient due to N-cadherin interactions with the placodes and senses the gradient through cell-matrix adhesions, resulting in polarized Rac activity and actomyosin contractility, which coordinates durotaxis. Durotaxis synergizes with chemotaxis, cooperatively polarizing actomyosin machinery of the cell group to prompt efficient directional collective cell migration in vivo. These results show that durotaxis and dynamic stiffness gradients exist in vivo, and gradients of chemical and mechanical signals cooperate to achieve efficient directional cell migration.


Assuntos
Movimento Celular , Crista Neural/citologia , Maleabilidade , Actomiosina/metabolismo , Animais , Polaridade Celular , Quimiotaxia , Feminino , Dureza , Xenopus laevis/embriologia , Proteínas rac de Ligação ao GTP/metabolismo
20.
Development ; 148(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822717

RESUMO

Cells are permanently exposed to a multitude of different kinds of signals: however, how cells respond to simultaneous extracellular signals within a complex in vivo environment is poorly understood. Here, we studied the role of the mechanosensitive ion channel Piezo1 on the migration of the neural crest, a multipotent embryonic cell population. We identify that Piezo1 is required for the migration of Xenopus cephalic neural crest. We show that loss of Piezo1 promotes focal adhesion turnover and cytoskeletal dynamics by controlling Rac1 activity, leading to increased speed of migration. Moreover, overactivation of Rac1, due to Piezo1 inhibition, counteracts cell migration inhibitory signals by Semaphorin 3A and Semaphorin 3F, generating aberrant neural crest invasion in vivo. Thus, we find that, for directional migration in vivo, neural crest cells require a tight regulation of Rac1, by semaphorins and Piezo1. We reveal here that a balance between a myriad of signals through Rac1 dictates cell migration in vivo, a mechanism that is likely to be conserved in other cell migration processes.


Assuntos
Movimento Celular , Canais Iônicos/metabolismo , Crista Neural/embriologia , Semaforina-3A/metabolismo , Transdução de Sinais , Proteínas de Xenopus/metabolismo , Animais , Canais Iônicos/genética , Crista Neural/citologia , Semaforina-3A/genética , Proteínas de Xenopus/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...