RESUMO
High levels of oxyanions are found in the soil environment, often as a result of human activity. At high concentrations, oxyanions can be harmful to both humans and wildlife. Information about the interactions between oxyanions and natural samples is essential for understanding the bioavailability, toxicity, and transport of these compounds in the environment. In the present study, the authors investigated the reactivity of different oxyanions (AsO4 , MoO4 , SeO4 , and CrO4 ) at different pH values in 2 horizons of a ferralic soil. By combining available microscopic data on iron oxides with the macroscopic data obtained, the authors were able to use the charge distribution model to accurately describe the adsorption of these 4 oxyanions and thus to determine the surface speciation. The charge distribution model was previously calibrated and evaluated using phosphate adsorption/desorption data. The adsorption behavior on ferralic soil is controlled mainly by the natural iron oxides present, and it is qualitatively analogous to that exhibited by synthetic iron oxides. The highest adsorption was found for arsenate ions, whereas the lowest was found for selenate, with chromate and molybdate ions showing an intermediate behavior.
Assuntos
Arseniatos/análise , Cromatos/análise , Molibdênio/análise , Ácido Selênico/análise , Poluentes do Solo/análise , Solo/química , Adsorção , Ânions/análise , Ânions/isolamento & purificação , Arseniatos/isolamento & purificação , Cromatos/isolamento & purificação , Compostos Férricos/análise , Modelos Químicos , Molibdênio/isolamento & purificação , Fosfatos/análise , Fosfatos/isolamento & purificação , Ácido Selênico/isolamento & purificação , Poluentes do Solo/isolamento & purificaçãoRESUMO
Twenty-one yeast-like microorganisms were isolated from tannery effluents and from a nickel-copper mine in Argentina. They were tested for their Cu(II), Ni(II), Cd(II) and Cr(VI) tolerance in qualitative assays on solid medium. Three isolates were selected for their multiple tolerance to the different heavy metals and highest tolerance to Cr(VI). According to morphological and physiological analysis and 26S rDNA D1/D2 domain sequences the isolates were characterized as: Lecythophora sp. NGV-1, Candida sp. NGV-9 and Aureobasidium pullulans VR-8. Resistance of the three strains to high Cr(VI) concentrations and their ability to remove Cr(VI) were assessed using YNB-glucose medium supplemented with 0.5 and 1 mM Cr(VI). Chromate removal activity was estimated by measuring remaining Cr(VI) concentration in the supernatant using the colorimetric 1,5-diphenylcarbazide method and total chromium was determined by flame atomic absorption spectroscopy. The results indicate that the initial Cr(VI) concentration negatively influenced growth and the specific growth rate but stimulated the metabolic activity of the three strains; resistance to Cr(VI) by these strains was mainly due to reduction of Cr(VI) rather than chromium bioaccumulation. This study showed the potential ability of these strains as tools for bioremediation of Cr(VI) from contaminated sites.