Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 716
Filtrar
1.
Medicine (Baltimore) ; 103(19): e38085, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728503

RESUMO

BACKGROUND: Modern medicine has no cure for the xerostomia caused by the early onset of Sjögren's syndrome. Mume Fructus is a common Chinese herbal medicine used to relieve xerostomia. However, the molecular mechanisms of the effects of Mume Fructus are unknown. In this study, network pharmacology and molecular docking were used to investigate the mechanisms of action of Mume Fructus on Sjögren's syndrome. MATERIALS AND METHOD: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database was used to identify the active components and targets of Mume Fructus, and the UniProt database was used to identify the genes encoding these targets. SS-related targets were also identified from the GeneCards and OMIM databases. By finding the intersection of the targets of the compounds and the targets of Sjögren's syndrome, the predicted targets of Mume Fructus in the treatment of Sjögren's syndrome were obtained. Further investigation of the active compounds and their targets was carried out by constructing a network of "medicine-candidate compound-target-disease" using Cytoscape 3.7.2, the Protein-Protein Interaction network using the STRING database and Cytoscape 3.7.2, and key targets were identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on R software. Finally, molecular docking was used to verify the affinity of the candidate compounds to the key targets. RESULTS: Quercetin, beta-sitosterol, and kaempferol in Mume Fructus interact with AKT1, IL-6, IL-1B, JUN, CASP3, and MAPK8. These results suggest that Mume Fructus exerts its therapeutic effects on the peripheral gland injury of Sjögren's syndrome and its secondary cardiovascular disease and tumorigenesis through anti-inflammatory, anti-oxidant, and anti-tumor pathways. CONCLUSION: With network pharmacology, this study systematically identified the main active components, targets, and specific mechanisms of the therapeutic effects of Mume Fructus on Sjögren's syndrome, providing both a theoretical basis and research direction for further investigations on Mume Fructus.


Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Síndrome de Sjogren , Síndrome de Sjogren/tratamento farmacológico , Humanos , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Cucumis melo , Farmacologia em Rede , Mapas de Interação de Proteínas , Medicina Tradicional Chinesa/métodos , Quempferóis/farmacologia , Quempferóis/uso terapêutico
2.
Pak J Pharm Sci ; 37(1): 71-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741402

RESUMO

Diabetes mellitus, recognized by elevated glucose level in the body fluids is commonly caused by less insulin production or its action. To overcome the complications of diabetes, chemical drugs are never preferred over herbal medicines. Present study was designed to find out the anti-diabetic and health-promoting effects of ethanolic leaf extracts of Cucumis melo and Citrullus lanatus in induced-diabetic albino rats. Thirty male albino rats were bought from the animal house of the university and divided randomly into five feeding groups (n=6). Diabetes was induced in rats of groups A, B, C & D by a single dose of intra-peritoneal injection of streptozotocin (55 mg/Kg), whereas, the rats of group E were considered as control. The rats of groups A, B & C were fed basal diet supplemented with plant extracts (150mg/Kg body weight), whereas; only basal diet was offered to rats of groups D & E. After 28 days of the experiment, blood was collected for biochemical analysis. Results revealed that body weight, glucose, AST, ALB, GGT, HDL, cholesterol, triglyceride, urea and creatinine level differed significantly among treatment groups. It was therefore concluded that ethanolic leaf extracts of Cucumis melo and Citrullus lanatus can be used separately or in combination for the management of diabetes.


Assuntos
Glicemia , Citrullus , Cucumis melo , Diabetes Mellitus Experimental , Hipoglicemiantes , Lipídeos , Extratos Vegetais , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/sangue , Extratos Vegetais/farmacologia , Cucumis melo/química , Masculino , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Citrullus/química , Ratos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/isolamento & purificação , Lipídeos/sangue , Folhas de Planta/química , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estreptozocina
3.
Epidemiol Infect ; 152: e78, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705587

RESUMO

In September 2023, the UK Health Security Agency identified cases of Salmonella Saintpaul distributed across England, Scotland, and Wales, all with very low genetic diversity. Additional cases were identified in Portugal following an alert raised by the United Kingdom. Ninety-eight cases with a similar genetic sequence were identified, 93 in the United Kingdom and 5 in Portugal, of which 46% were aged under 10 years. Cases formed a phylogenetic cluster with a maximum distance of six single nucleotide polymorphisms (SNPs) and average of less than one SNP between isolates. An outbreak investigation was undertaken, including a case-control study. Among the 25 UK cases included in this study, 13 reported blood in stool and 5 were hospitalized. One hundred controls were recruited via a market research panel using frequency matching for age. Multivariable logistic regression analysis of food exposures in cases and controls identified a strong association with cantaloupe consumption (adjusted odds ratio: 14.22; 95% confidence interval: 2.83-71.43; p-value: 0.001). This outbreak, together with other recent national and international incidents, points to an increase in identifications of large outbreaks of Salmonella linked to melon consumption. We recommend detailed questioning and triangulation of information sources to delineate consumption of specific fruit varieties during Salmonella outbreaks.


Assuntos
Surtos de Doenças , Intoxicação Alimentar por Salmonella , Humanos , Portugal/epidemiologia , Masculino , Adulto , Feminino , Reino Unido/epidemiologia , Pessoa de Meia-Idade , Criança , Adolescente , Estudos de Casos e Controles , Adulto Jovem , Idoso , Pré-Escolar , Intoxicação Alimentar por Salmonella/epidemiologia , Intoxicação Alimentar por Salmonella/microbiologia , Cucumis melo/microbiologia , Salmonella/genética , Salmonella/isolamento & purificação , Salmonella/classificação , Lactente , Idoso de 80 Anos ou mais , Filogenia
4.
Arch Virol ; 169(6): 126, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753067

RESUMO

A novel mitovirus was identified in Fusarium oxysporum f. sp. melonis strain T-SD3 and designated as "Fusarium oxysporum mitovirus 3" (FoMV3). The virus was isolated from diseased muskmelon plants with the typical symptom of fusarium wilt. The complete genome of FoMV3 is 2269 nt in length with a predicted AU content of 61.40% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a polypeptide of 679 amino acids (aa) containing a conserved RNA-dependent RNA polymerase (RdRp) domain with a molecular mass of 77.39 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5'-untranslated region (UTR) and 3'-UTR of FoMV3 were predicted to fold into stem-loop structures. BLASTp analysis revealed that the RdRp of FoMV3 shared the highest aa sequence identity (83.85%) with that of Fusarium asiaticum mitovirus 5 (FaMV5, a member of the family Mitoviridae) infecting F. asiaticum, the causal agent of wheat fusarium head blight. Phylogenetic analysis further suggested that FoMV3 is a new member of the genus Unuamitovirus within the family Mitoviridae. This is the first report of a new mitovirus associated with F. oxysporum f. sp. melonis.


Assuntos
Micovírus , Fusarium , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Fusarium/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Micovírus/genética , Micovírus/isolamento & purificação , Micovírus/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , Sequenciamento Completo do Genoma , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Cucumis melo/virologia , Cucumis melo/microbiologia , Sequência de Aminoácidos , Regiões 5' não Traduzidas , Regiões 3' não Traduzidas , Sequência de Bases
5.
Braz J Biol ; 84: e276161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747857

RESUMO

The objective was to evaluate the behavior of melon genotypes (Cucumis melo L.) in the physical, chemical and biochemical quality of melon fruits as a function of electrical conductivity irrigation water levels (ECw). The experimental design adopted was randomized blocks in a 5 x 3 factorial scheme with five replications. The first factor was represented by five salinity levels (0.5, 1.5, 3.0, 4.5, and 6.0 dS m-1) and the second factor by accessions A35, and A24, and the hybrid Sancho. The physical, chemical and biochemical variables showed a reduction in production, with smaller fruits, with less weight, smaller cavity, with increased pulp thickness for Sancho. Vitamin C and yellow flavonoids increased indicating antioxidant power against ROS. The genotypes showed similar post-harvest behavior, however, the hybrid Sancho stood out over the others, possibly because it is an improved material. Accession A24 presented physiological and biochemical responses that classify it as intolerant.


Assuntos
Frutas , Salinidade , Frutas/química , Genótipo , Cucumis melo/fisiologia , Cucumis melo/classificação , Irrigação Agrícola , Cucurbitaceae/classificação , Cucurbitaceae/fisiologia , Cucurbitaceae/genética , Antioxidantes/análise
6.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612499

RESUMO

Melatonin (MT) is a vital hormone factor in plant growth and development, yet its potential to influence the graft union healing process has not been reported. In this study, we examined the effects of MT on the healing of oriental melon scion grafted onto squash rootstock. The studies indicate that the exogenous MT treatment promotes the lignin content of oriental melon and squash stems by increasing the enzyme activities of hydroxycinnamoyl CoA ligase (HCT), hydroxy cinnamaldehyde dehydrogenase (HCALDH), caffeic acid/5-hydroxy-conifer aldehyde O-methyltransferase (COMT), caffeoyl-CoA O-methyltransferase (CCoAOMT), phenylalanine ammonia-lyase (PAL), 4-hydroxycinnamate CoA ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD). Using the oriental melon and squash treated with the exogenous MT to graft, the connection of oriental melon scion and squash rootstock was more efficient and faster due to higher expression of wound-induced dedifferentiation 1 (WIND1), cyclin-dependent kinase (CDKB1;2), target of monopteros 6 (TMO6), and vascular-related NAC-domain 7 (VND7). Further research found that the exogenous MT increased the lignin content of the oriental melon scion stem by regulating CmCAD1 expression, and then accelerated the graft healing process. In addition, the root growth of grafted seedlings treated with the exogenous MT was more vigorous.


Assuntos
Cucumis melo , Melatonina , Melatonina/farmacologia , Lignina , Aldeídos , Quinases Ciclina-Dependentes
7.
Biotechnol J ; 19(4): e2400006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581090

RESUMO

The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of ß-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.


Assuntos
Cucumis melo , Cucurbita , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Perfilação da Expressão Gênica , Cucurbita/genética , Cucurbita/metabolismo , Cucurbitaceae/genética , Sacarose/metabolismo
8.
PLoS One ; 19(4): e0293861, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603714

RESUMO

The goal of this study was to characterize the bacterial diversity on different melon varieties grown in different regions of the US, and determine the influence that region, rind netting, and variety of melon has on the composition of the melon microbiome. Assessing the bacterial diversity of the microbiome on the melon rind can identify antagonistic and protagonistic bacteria for foodborne pathogens and spoilage organisms to improve melon safety, prolong shelf-life, and/or improve overall plant health. Bacterial community composition of melons (n = 603) grown in seven locations over a four-year period were used for 16S rRNA gene amplicon sequencing and analysis to identify bacterial diversity and constituents. Statistically significant differences in alpha diversity based on the rind netting and growing region (p < 0.01) were found among the melon samples. Principal Coordinate Analysis based on the Bray-Curtis dissimilarity distance matrix found that the melon bacterial communities clustered more by region rather than melon variety (R2 value: 0.09 & R2 value: 0.02 respectively). Taxonomic profiling among the growing regions found Enterobacteriaceae, Bacillaceae, Microbacteriaceae, and Pseudomonadaceae present on the different melon rinds at an abundance of ≥ 0.1%, but no specific core microbiome was found for netted melons. However, a core of Pseudomonadaceae, Bacillaceae, and Exiguobacteraceae were found for non-netted melons. The results of this study indicate that bacterial diversity is driven more by the region that the melons were grown in compared to rind netting or melon type. Establishing the foundation for regional differences could improve melon safety, shelf-life, and quality as well as the consumers' health.


Assuntos
Bacillaceae , Cucumis melo , Cucurbitaceae , Estados Unidos , Cucurbitaceae/microbiologia , Cucumis melo/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Enterobacteriaceae
9.
Food Chem ; 449: 139234, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608604

RESUMO

Cuticle wax chemicals are cultivar-dependent and contribute to storage quality. Few research reported on wax analysis between melting flesh-type (MF; 'Jinhuami 25') and nonmelting flesh-type (NMF; 'Xizhoumi 17' and 'Chougua') Hami melons. Chemicals and crystal structures of Hami melon cuticular wax, cell wall metabolism related to fruit melting, and fruit physiology were analyzed to observe wax functions. Results showed that Hami melon cuticle wax predominantly consists of esters, alkanes, alcohols, aldehydes, and terpenoids. MF-type has a lower alkane/terpenoid ratio, concomitant to its higher weight loss and cuticle permeability. Micromorphology of wax crystals appears as numerous platelets with irregular crystals, and the transformation of wax structure in NMF Hami melon is delayed. Waxy components affect cell wall metabolism and physiological quality, which results in the pulp texture difference between MF-type and NMF-type during storage. Results provide a reference for the regulation of wax synthesis in both types of melons.


Assuntos
Cucumis melo , Frutas , Ceras , Ceras/química , Frutas/química , Cucumis melo/química , Parede Celular/química
10.
Microb Biotechnol ; 17(3): e14437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465735

RESUMO

Escherichia coli O157:H7 causes >73,000 foodborne illnesses in the United States annually, many of which have been associated with fresh ready-to-eat produce including cantaloupe melons. In this study, we created a produce-associated bacterial (PAB) library containing >7500 isolates and screened them for the ability to inhibit the growth of E. coli O157:H7 using an in vitro fluorescence-based growth assay. One isolate, identified by 16S and whole-genome sequence analysis as Enterobacter asburiae, was able to inhibit the growth of E. coli by ~30-fold in vitro and produced zones of inhibition between 13 and 21 mm against 12 E. coli outbreak strains in an agar spot assay. We demonstrated that E. asburiae AEB30 was able to grow, persist and inhibit the growth of E. coli on cantaloupe melons under simulated pre- and post-harvest conditions. Analysis of the E. asburiae AEB30 genome revealed an operon encoding a contact-dependent growth inhibition (CDI) system that when mutated resulted in the loss of E. coli growth inhibition. These data suggest that E. asburiae AEB30 is a potential biocontrol agent to prevent E. coli contamination of cantaloupe melons in both pre- and post-harvest environments and that its mode of action is via a CDI system.


Assuntos
Cucumis melo , Cucurbitaceae , Enterobacter , Escherichia coli O157 , Microbiologia de Alimentos , Cucumis melo/microbiologia , Cucurbitaceae/microbiologia , Contagem de Colônia Microbiana
11.
Genes (Basel) ; 15(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397139

RESUMO

As the most important melon cultivar grown in the north-western provinces of China, Hami melon (Cucumis melo) produces large edible fruits that serve as an important dietary component in the world. In general, as a climacteric plant, melon harvested at 60% maturity results in a product with bad quality, while the highest-quality product can be guaranteed when harvesting at 90% maturity. In order to clarify the genetic basis of their distinct profiles of metabolite accumulation, we performed systematic transcriptome analyses between 60% and 90% maturity melons. A total of 36 samples were sequenced and over 1.7 billion reads were generated. Differentially expressed genes in 60% and 90% maturity melons were detected. Hundreds of these genes were functionally enriched in the sucrose and citric acid accumulation process of C. melo. We also detected a number of distinct splicing events between 60% and 90% maturity melons. Many genes associated with sucrose and citric acid accumulation displayed as differentially expressed or differentially spliced between different degrees of maturity of Hami melons, including CmCIN2, CmSPS2, CmBGAL3, and CmSPS2. These results demonstrate that the phenotype pattern differences between 60% and 90% maturity melons may be largely resulted from the significant transcriptome regulation.


Assuntos
Cucumis melo , Transcriptoma , Transcriptoma/genética , Cucumis melo/genética , Perfilação da Expressão Gênica/métodos , Sacarose/metabolismo , Ácido Cítrico/metabolismo
13.
Yi Chuan ; 46(2): 168-180, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340006

RESUMO

Histone demethylase (HDM) play crucial roles in regulating plant growth and environmental adaptation. In this study, the HDM gene family in melon was identified by bioinformatics methods and the expression patterns of the CmHDM family members in different melon tissues were analyzed using transcriptome data. The results showed that 20 CmHDM genes were identified in the melon genome, which were unevenly distributed across each chromosome. These members fall into two major categories: LSD1 and JmjC. The JmjC group could be further divided into five subgroups with different numbers. The results of collinearity analysis of intraspecific and interspecific relationships showed that there were only one pair of segmental duplication in melon HDM genes, and more collinearity in genetic relationship of HDM genes between melon and tomato. The numbers of conserved domains, exons and introns in each member vary and various cis-acting elements responding to hormones and environmental signals existed in the respective promoter regions. Expression analysis showed that the respective gene members were expressed at different levels in male flowers, female flowers, roots, stems, leaves, ovary, and mature fruits of melon. These results will contribute to the understanding on the potential functions of the HDM genes and their potential functions in regulating melon growth and environmental adaptation.


Assuntos
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucurbitaceae/genética , Transcriptoma , Flores/genética , Íntrons
14.
PeerJ ; 12: e16704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38192601

RESUMO

Grafting is widely applied in the cultivation of melon. In this study, 'Qinmi No.1' (Cucumis melo L.(QG)) and 'Ribenxuesong' (Cucurbita maxima Duch. (RG)) were used as rootstocks for 'Qingxin Yangjiaocui' (Cucumis melo L.). The results showed that grafting with muskmelon rootstocks had no significant effect on fruit aroma, but grafting with pumpkin rootstocks significantly reduced the odor intensity and odor preference scores of melon fruits. Compared with the fruits from self-grafted plants (SG), four new aromatic volatiles with a sweet smell were detected, the alcohol dehydrogenase (ADH) activity was significantly decreased at 30 DAP, but unaffected at 42 DAP in QG fruits. There was no difference for alcohol acetyltransferase (AAT) activity between QG and SG fruits. The expression level of CmADH2 was significantly higher at 30 DAP and 42 DAP, but CmAAT2 was significantly lower at 42 DAP in QG fruits compared with SG fruits. In RG fruits, the main aroma compounds including butanoic acid ethyl ester, 2-methyl-2-butene-1-al, and 2-methylheptan-1-al were absent, while the volatile compounds with unpleasant odor characteristics including trans, cis-2,6-nonadien-1-ol, (E,E)-2,4-heptadienal, octanoic acid, and styrene were detected. Compared with SG fruits, 1-nonanol and 1-heptanol with green odor characteristics were significantly increased, but eucalyptol and farnesene with fruity aroma characteristics were significantly decreased in RG fruits. The ADH activity of RG fruits was significantly lower than that of SG fruits at 30 DAP and the AAT activity was significantly lower than that of SG fruits at 42 DAP. In addition, the expression levels of CmADH and CmAAT homologs in RG fruits were significantly lower than those in SG or QG fruits. These results show that grafting with pumpkin rootstocks affected the main aroma components, reduced ADH and AAT activities, and down-regulated the expression levels of CmADHs and CmAATs in the melon fruits. This study reveals the mechanism of different rootstocks on melon fruit aroma quality, and lays a theoretical foundation for the selection of rootstocks in melon production. Future studies using overexpression or CRISPR/CAS system to obtain stable transgenic lines of genes encoding key aromatic volatiles, would be promising to effectively improve the flavor quality of melon.


Assuntos
Cucumis melo , Cucurbita , Odorantes , Frutas/genética , Álcool Desidrogenase , Olfato/genética
15.
Plant Physiol Biochem ; 206: 108217, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039581

RESUMO

The effect of calcium chloride (CaCl2) treatment on γ-aminobutyric acid (GABA) accumulation in fresh-cut cantaloupe and the involved mechanisms were investigated. The result showed that 1% (w/v) CaCl2 treatment increased GABA content and activities of glutamate decarboxylase (GAD) and succinate semialdehyde dehydrogenase (SSADH), while decreased glutamate (Glu) content and GABA transaminase (GABA-T) activities in fresh-cut cantaloupe. CmCML11 and CmCAMTA5 expressions of CaCl2-treated fruit increased by 187.4% and 165.6% than control fruit in the initial 6 h. Besides, expressions of GABA shunt genes, including CmGAD1, CmGAD2, CmGABA-T and CmSSADH were also up-regulated by CaCl2 treatment during early storage. Moreover, acting as a transcriptional activator, CmCAMTA5 could bind to the CG-box in promoters of CmGAD1, CmGABA-T and CmSSADH and activate their transcription. Furthermore, the interaction between CmCML11 and CmCAMTA5 could enhance the transcriptional activation on GABA shunt genes which were regulated by CmCAMTA5. Collectively, our findings revealed that CaCl2 treatment promoted GABA accumulation in fresh-cut cantaloupe via the combined effect of CmCML11 and CmCAMTA5 in the regulation of expressions of CmGAD1, CmGABA-T, and CmSSADH in GABA shunt.


Assuntos
Cucumis melo , Cucumis melo/genética , Cucumis melo/metabolismo , Cloreto de Cálcio , 4-Aminobutirato Transaminase/genética , 4-Aminobutirato Transaminase/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido Glutâmico
16.
J Ethnopharmacol ; 322: 117584, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38104874

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cholestatic liver injury (CLI) is a pathologic process with the impairment of liver and bile secretion and excretion, resulting in an excessive accumulation of bile acids within the liver, which leads to damage to both bile ducts and hepatocytes. This process is often accompanied by inflammation. Cucumis melo L is a folk traditional herb for the treatment of cholestasis. Cucurbitacin B (CuB), an important active ingredient in Cucumis melo L, has significant anti-inflamamatory effects and plays an important role in diseases such as neuroinflammation, skin inflammation, and chronic hepatitis. Though numerous studies have confirmed the significant therapeutic effect of CuB on liver diseases, the impact of CuB on CLI remains uncertain. Consequently, the objective of this investigation is to elucidate the therapeutic properties and potential molecular mechanisms underlying the effects of CuB on CLI. AIM OF THE STUDY: The aim of this paper was to investigate the potential protective mechanism of CuB against CLI. METHODS: First, the corresponding targets of CuB were obtained through the SwissTargetPrediction and SuperPre online platforms. Second, the DisGeNET database, GeneCards database, and OMIM database were utilized to screen therapeutic targets for CLI. Then, protein-protein interaction (PPI) was determined using the STRING 11.5 data platform. Next, the OmicShare platform was employed for the purpose of visualizing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The molecular docking technique was then utilized to evaluate the binding affinity existing between potential targets and CuB. Subsequently, the impacts of CuB on the LO2 cell injury model induced by Lithocholic acid (LCA) and the CLI model induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) were determined by evaluating inflammation in both in vivo and in vitro settings. The potential molecular mechanism was explored by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot (WB) techniques. RESULTS: A total of 122 CuB targets were collected and high affinity targets were identified through the PPI network, namely TLR4, STAT3, HIF1A, and NFKB1. GO and KEGG analyses indicated that the treatment of CLI with CuB chiefly involved the inflammatory pathway. In vitro study results showed that CuB alleviated LCA-induced LO2 cell damage. Meanwhile, CuB reduced elevated AST and ALT levels and the release of inflammatory factors in LO2 cells induced by LCA. In vivo study results showed that CuB could alleviate DDC-induced pathological changes in mouse liver, inhibit the activity of serum transaminase, and suppress the liver and systemic inflammatory reaction of mice. Mechanically, CuB downregulated the IL-6, STAT3, and HIF-1α expression and inhibited STAT3 phosphorylation. CONCLUSION: By combining network pharmacology with in vivo and in vitro experiments, the results of this study suggested that CuB prevented the inflammatory response by inhibiting the IL-6/STAT3/HIF-1α signaling pathway, thereby demonstrating potential protective and therapeutic effects on CLI. These results establish a scientific foundation for the exploration and utilization of natural medicines for CLI.


Assuntos
Colestase , Cucumis melo , Medicamentos de Ervas Chinesas , Triterpenos , Animais , Camundongos , Interleucina-6 , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fígado , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Inflamação
17.
J Plant Physiol ; 292: 154160, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147808

RESUMO

The response regulator (RR) gene family play crucial roles in cytokinin signal transduction, plant development, and resistance to abiotic stress. However, there are no reports on the identification and functional characterization of RR genes in melon. In this study, a total of 18 CmRRs were identified and classified into type A, type B, and clock PRRs, based on phylogenetic analysis. Most of the CmRRs displayed tissue-specific expression patterns, and some were induced by cold stress according to two RNA-seq datasets. The expression patterns of CmRR2/6/11/15 and CmPRR2/3 under cold treatment were confirmed by qRT-PCR. Subcellular localization assays indicated that CmRR6 and CmPRR3 were primarily localized in the nucleus and chloroplast. Furthermore, when either CmRR6 or CmPRR3 were silenced using tobacco ringspot virus (TRSV), the cold tolerance of the virus-induced gene silencing (VIGS) melon plants were significantly enhanced, as evidenced by measurements of chlorophyll fluorescence, ion leakage, reactive oxygen, proline, and malondialdehyde levels. Additionally, the expression levels of CmCBF1, CmCBF2, and CmCBF3 were significantly increased in CmRR6-silenced and CmPRR3-silenced plants under cold treatment. Our findings suggest that CmRRs contribute to cold stress responses and provide new insights for further pursuing the molecular mechanisms underlying CmRRs-mediated cold tolerance in melon.


Assuntos
Resposta ao Choque Frio , Cucumis melo , Resposta ao Choque Frio/genética , Cucumis melo/genética , Cucumis melo/metabolismo , Filogenia , Genoma de Planta , Genes Reguladores , Regulação da Expressão Gênica de Plantas
18.
BMC Genomics ; 24(1): 771, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093236

RESUMO

BACKGROUND: Proteins with the jumonji (JMJ)-C domain belong to the histone demethylase family and contribute to reverse histone methylation. Although JMJ-C family genes have an essential role in regulating plant growth and development, the characterization of the JMJ-C family genes in melon has not been uncovered. RESULTS: In this study, a total of 17 JMJ-C proteins were identified in melon (Cucumis melo L.). CmJMJs were categorized into five subfamilies based on the specific conserved domain: KDM4/JHDM3, KDM5/JARID1, JMJD6, KDM3/JHDM2, and JMJ-C domain-only. The chromosome localization analyses showed that 17 CmJMJs were distributed on nine chromosomes. Cis-acting element analyses of the 17 CmJMJ genes showed numerous hormone, light, and stress response elements distributed in the promoter region. Covariance analysis revealed one pair of replicated fragments (CmJMJ3a and CmJMJ3b) in 17 CmJMJ genes. We investigated the expression profile of 17 CmJMJ genes in different lateral organs and four developmental stages of fruit by RNA-seq transcriptome analysis and RT-qPCR. The results revealed that most CmJMJ genes were prominently expressed in female flowers, ovaries, and developing fruits, suggesting their active role in melon fruit development. Subcellular localization showed that the fruit-related CmJMJ5a protein is specifically localized in the cell nucleus. CONCLUSIONS: This study provides a comprehensive understanding of the gene structure, classification, and evolution of JMJ-C in melon and supports the clarification of the JMJ-C functions in further research.


Assuntos
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Frutas , Cucurbitaceae/genética , Perfilação da Expressão Gênica/métodos , RNA-Seq
19.
PeerJ ; 11: e16483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107581

RESUMO

Background: O-methyltransferase (OMT)-mediated O-methylation is a frequent modification that occurs during natural product biosynthesis, and it increases the diversity and stability of secondary metabolites. However, detailed genome-wide identification and expression analyses of OMT gene family members have not been performed in melons. In this study, we aimed to perform the genome-wide identification of OMT gene family members in melon to identify and clarify their actions during stress. Methods: Genome-wide identification of OMT gene family members was performed using data from the melon genome database. The Cucumis melo OMT genes (CmOMTs) were then compared with the genes from two representative monocotyledons and three representative dicotyledons. The basic information, cis-regulatory elements in the promoter, predicted 3-D-structures, and GO enrichment results of the 21 CmOMTs were analyzed. Results: In our study, 21 CmOMTs (named CmOMT1-21) were obtained by analyzing the melon genome. These genes were located on six chromosomes and divided into three groups composed of nine, six, and six CmOMTs based on phylogenetic analysis. Gene structure and motif descriptions were similar within the same classes. Each CmOMT gene contains at least one cis-acting element associated with hormone transport regulation. Analysis of cis-acting elements illustrated the potential role of CmOMTs in developmental regulation and adaptations to various abiotic and biotic stresses. The RNA-seq and quantitative real-time PCR (qRT-PCR) results indicated that NaCl stress significantly induced CmOMT6/9/14/18 and chilling and high temperature and humidity (HTH) stresses significantly upregulated CmOMT14/18. Furthermore, the expression pattern of CmOMT18 may be associated with Fusarium oxysporum f. sp. melonis race 1.2 (FOM1.2) and powdery mildew resistance. Our study tentatively explored the biological functions of CmOMT genes in various stress regulation pathways and provided a conceptual basis for further detailed studies of the molecular mechanisms.


Assuntos
Cucumis melo , Cucumis melo/genética , Metiltransferases/genética , Filogenia , Genoma de Planta/genética , Estresse Fisiológico/genética
20.
Food Res Int ; 173(Pt 2): 113476, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803799

RESUMO

Postbiotics made from lactic acid bacteria may ameliorate sarcopenia via the metabolic reprogramming of gut dysbiosis. This study investigated the anti-sarcopenic effect of postbiotics (WDK) produced from polyphenol-rich melon peel extract (Cucumis melo L. var. makuwa, KEE) and whey with Lentilactobacillus kefiri DH5 (DH5) in C2C12 skeletal muscle cells and hindlimb-immobilized mice. WDK significantly ameliorated palmitate-induced atrophy of C2C12 cells, restoring myotube length and diameter. It also upregulated the expression of myogenic genes including Atrogin-1, Igf-1, and MyoD. Hindlimb-immobilized C57BL/6J mice were randomly divided and orally administered 10 mL/kg body weight of saline (CON), Whey, Whey + DH5 (WD), DH5 + KEE, Whey + DH5 + KEE postbiotic (WDK) for three weeks (n = 10/group). Interestingly, WDK significantly improved muscle function in hindlimb-immobilized mice by restoring both the grip strength and the mass of the soleus muscle, which was closely related to the upregulation of the myoD gene. WDK increased microbial diversity and modulated the distribution of intestinal bacteria, particularly those involved in protein synthesis and the production of butyrate. There was a significant correlation between myogenic biomarkers and butyrate producing gut microbiota. Restoration of muscle mass and function following postbiotic WDK is strongly related to the regulation of myogenic genes by in part remodulating gut microbiota. In conclusion, these findings suggest that polyphenol- and whey-based postbiotics WDK may have potential as an effective manner to combat the progression of sarcopenia.


Assuntos
Cucumis melo , Microbioma Gastrointestinal , Sarcopenia , Camundongos , Animais , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , Camundongos Endogâmicos C57BL , Membro Posterior/metabolismo , Proteínas do Soro do Leite , Polifenóis/farmacologia , Butiratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...