Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biotechnol J ; 19(4): e2400006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581090

RESUMO

The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of ß-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.


Assuntos
Cucumis melo , Cucurbita , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Perfilação da Expressão Gênica , Cucurbita/genética , Cucurbita/metabolismo , Cucurbitaceae/genética , Sacarose/metabolismo
2.
Plant Physiol Biochem ; 206: 108217, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039581

RESUMO

The effect of calcium chloride (CaCl2) treatment on γ-aminobutyric acid (GABA) accumulation in fresh-cut cantaloupe and the involved mechanisms were investigated. The result showed that 1% (w/v) CaCl2 treatment increased GABA content and activities of glutamate decarboxylase (GAD) and succinate semialdehyde dehydrogenase (SSADH), while decreased glutamate (Glu) content and GABA transaminase (GABA-T) activities in fresh-cut cantaloupe. CmCML11 and CmCAMTA5 expressions of CaCl2-treated fruit increased by 187.4% and 165.6% than control fruit in the initial 6 h. Besides, expressions of GABA shunt genes, including CmGAD1, CmGAD2, CmGABA-T and CmSSADH were also up-regulated by CaCl2 treatment during early storage. Moreover, acting as a transcriptional activator, CmCAMTA5 could bind to the CG-box in promoters of CmGAD1, CmGABA-T and CmSSADH and activate their transcription. Furthermore, the interaction between CmCML11 and CmCAMTA5 could enhance the transcriptional activation on GABA shunt genes which were regulated by CmCAMTA5. Collectively, our findings revealed that CaCl2 treatment promoted GABA accumulation in fresh-cut cantaloupe via the combined effect of CmCML11 and CmCAMTA5 in the regulation of expressions of CmGAD1, CmGABA-T, and CmSSADH in GABA shunt.


Assuntos
Cucumis melo , Cucumis melo/genética , Cucumis melo/metabolismo , Cloreto de Cálcio , 4-Aminobutirato Transaminase/genética , 4-Aminobutirato Transaminase/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido Glutâmico
3.
J Plant Physiol ; 292: 154160, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147808

RESUMO

The response regulator (RR) gene family play crucial roles in cytokinin signal transduction, plant development, and resistance to abiotic stress. However, there are no reports on the identification and functional characterization of RR genes in melon. In this study, a total of 18 CmRRs were identified and classified into type A, type B, and clock PRRs, based on phylogenetic analysis. Most of the CmRRs displayed tissue-specific expression patterns, and some were induced by cold stress according to two RNA-seq datasets. The expression patterns of CmRR2/6/11/15 and CmPRR2/3 under cold treatment were confirmed by qRT-PCR. Subcellular localization assays indicated that CmRR6 and CmPRR3 were primarily localized in the nucleus and chloroplast. Furthermore, when either CmRR6 or CmPRR3 were silenced using tobacco ringspot virus (TRSV), the cold tolerance of the virus-induced gene silencing (VIGS) melon plants were significantly enhanced, as evidenced by measurements of chlorophyll fluorescence, ion leakage, reactive oxygen, proline, and malondialdehyde levels. Additionally, the expression levels of CmCBF1, CmCBF2, and CmCBF3 were significantly increased in CmRR6-silenced and CmPRR3-silenced plants under cold treatment. Our findings suggest that CmRRs contribute to cold stress responses and provide new insights for further pursuing the molecular mechanisms underlying CmRRs-mediated cold tolerance in melon.


Assuntos
Resposta ao Choque Frio , Cucumis melo , Resposta ao Choque Frio/genética , Cucumis melo/genética , Cucumis melo/metabolismo , Filogenia , Genoma de Planta , Genes Reguladores , Regulação da Expressão Gênica de Plantas
4.
BMC Genomics ; 24(1): 771, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093236

RESUMO

BACKGROUND: Proteins with the jumonji (JMJ)-C domain belong to the histone demethylase family and contribute to reverse histone methylation. Although JMJ-C family genes have an essential role in regulating plant growth and development, the characterization of the JMJ-C family genes in melon has not been uncovered. RESULTS: In this study, a total of 17 JMJ-C proteins were identified in melon (Cucumis melo L.). CmJMJs were categorized into five subfamilies based on the specific conserved domain: KDM4/JHDM3, KDM5/JARID1, JMJD6, KDM3/JHDM2, and JMJ-C domain-only. The chromosome localization analyses showed that 17 CmJMJs were distributed on nine chromosomes. Cis-acting element analyses of the 17 CmJMJ genes showed numerous hormone, light, and stress response elements distributed in the promoter region. Covariance analysis revealed one pair of replicated fragments (CmJMJ3a and CmJMJ3b) in 17 CmJMJ genes. We investigated the expression profile of 17 CmJMJ genes in different lateral organs and four developmental stages of fruit by RNA-seq transcriptome analysis and RT-qPCR. The results revealed that most CmJMJ genes were prominently expressed in female flowers, ovaries, and developing fruits, suggesting their active role in melon fruit development. Subcellular localization showed that the fruit-related CmJMJ5a protein is specifically localized in the cell nucleus. CONCLUSIONS: This study provides a comprehensive understanding of the gene structure, classification, and evolution of JMJ-C in melon and supports the clarification of the JMJ-C functions in further research.


Assuntos
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Frutas , Cucurbitaceae/genética , Perfilação da Expressão Gênica/métodos , RNA-Seq
5.
J Plant Physiol ; 287: 154039, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329743

RESUMO

The wide application of agricultural plastics leads to microplastic (MP) accumulation in the soil and inevitably result in MP pollution. Melon is an economically important horticultural crop that is widely cultivated with plastic film mulching. However, the impact of MP pollution on plant growth remains largely unclear. Here we reported the morphological, physiological, biochemical responses and transcriptome re-programing of melon responses to MP on seed germination and seedling growth. Polyvinyl chloride particles were added to potting mix to simulate MP exposure environment (MEE). The results showed that low and medium concentrations (1-4 g kg-1) of MEE had a significant adverse effect on seed germination and seedling growth. In both cases, the germination potential was decreased, young root forks increased, and tips decreased; and the dry weight of seedlings, the total length, surface area, forks and tips of root were also decreased. However, the root activity was increased. The concentration of MEE to give the best parameters was at 2 g kg-1. Catalase enzymatic activity and reactive oxygen species (ROS) in roots were decreased continuously with increased MEE concentrations. The peak values of peroxidase activity, O2.- content and generation rate, ROS enrichment and malondialdehyde content all reached the highest at 2 g kg-1. MEE also increased the proline content and decreased the contents of ascorbic acid, soluble sugar and soluble protein in these seedlings. Medium and high concentrations of MEE (4-8 g kg-1) also increased the chlorophyll b content. Low concentrations MEE (1-2 g kg-1) inhibited actual photochemical efficiency of photosystem II and photochemical quenching, two key chlorophyll fluorescence parameters. Transcriptome analysis showed that the differentially expressed genes caused by the MEE were mainly belonged to defense response, signal transduction, hormone metabolism, plant-pathogen interaction, and phenylpropanoid biosynthesis. The results of this study will help to understand the ecotoxicological effects of MEE on melons and provide data for ecological risk assessment of Cucurbitaceae vegetable cultivation.


Assuntos
Cucumis melo , Cucurbitaceae , Plântula/metabolismo , Germinação , Cucumis melo/genética , Cucumis melo/metabolismo , Microplásticos/metabolismo , Microplásticos/farmacologia , Plásticos/metabolismo , Plásticos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Cucurbitaceae/metabolismo , Sementes , Perfilação da Expressão Gênica
6.
Gene Expr Patterns ; 47: 119306, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739937

RESUMO

In production, most cultivars of melon are andromonoecious and characterized by carrying both male and bisexual flowers on the same plant. In this study, four A-class genes (CmAP1a, CmAP1b, CmAP2a and CmAP2b), two B-class genes (CmAP3 and CmPI), two C-class genes (CmAGa and CmAGb) and four E-class genes (CmSEP1,2,3,4) were identified in melon. However, no D-class gene of melon was identified. The conserved domains of ABCE function proteins showed relatively high similarity between Arabidopsis and melon. The expression patterns of ABCE homeotic genes in different flower buds of melon suggested that transcripts of CmAP1a, CmPI and CmSEP1 in bisexual buds were significantly lower than that in male flower buds, while the expression levels of CmAGa, CmAGb and CmSEP4 in bisexual flower buds were significantly higher than that in male flower buds. There was no significant difference in expression levels of other ABCE model genes between male buds and bisexual buds. Subsequently, qRT-PCR was performed in different floral organs of bisexual flowers in melon. For A class genes, CmAP1a and CmAP1b showed the highest accumulation in sepals than petals, stamens and pistil, while CmAP2a and CmAP2b revealed the highest expression in pistil than other three floral organs. For B class genes, CmAP3 and CmPI were highly accumulated in petals and stamens though CmAP3 also showed abundant accumulation in pistil. For C class genes, the expression levels of CmAGa and CmAGb were higher in stamens and pistil than that in sepals and petals. For E class genes, CmSEP1 showed higher expression level in sepals and petals than stamens and pistil. CmSEP2, CmSEP3 and CmSEP4 showed the highest accumulation in pistil than other floral organs. These results provided a theoretical basis for studying the function of ABCE homeotic genes in floral organs development of melon.


Assuntos
Arabidopsis , Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Proteínas de Plantas/genética , Flores/genética , Genes de Plantas , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
7.
J Toxicol Sci ; 48(1): 25-35, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36599425

RESUMO

Methylthioacetic acid (MTA) is an acid-hydrolyzed derivative of a natural aroma compound, methylthioacetic acid ethyl ester isolated from Cucumis melo var. conomon (Katsura-uri, Japanese Picking Melon), and induces a villiform-like structure dome in RCM-1 human colorectal cancer cell culture. Thus far, the physiological and molecular properties of MTA-mediated dome formation remain unknown. Herein, MTA (not more than 2 mM) was demonstrated to differentiate the unorganized cell mass into the dome in RCM-1 cell culture by disclosing the correlation between dome formation and several intestinal differentiation markers such as alkaline phosphatase activity and the protein levels of dipeptidyl peptidase 4, villin, and Krüppel-like factor 4. Dome formation in RCM-1 cell culture was additively enhanced by the simultaneous administration of MTA and butyric acid (BA), suggesting that MTA directs the differentiation of RCM-1 cells, potentially through the same or similar pathway(s) shared with BA. Notably, a high dose of MTA (2 mM or more) elevated several apoptosis markers, such as DNA fragmentation, caspase-3/7 activity, and cleavage of poly(ADP-ribose) polymerase. Altogether, in addition to RCM-1 cell differentiation, MTA triggers apoptosis. These results indicate that MTA is a potential anticarcinogenic agent applicable in differentiation therapy and traditional chemotherapy against colorectal cancers.


Assuntos
Neoplasias Colorretais , Cucumis melo , Humanos , Cucumis melo/química , Cucumis melo/genética , Cucumis melo/metabolismo , Odorantes , Compostos Orgânicos , Diferenciação Celular , Apoptose
8.
Chem Biodivers ; 19(9): e202200200, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35950335

RESUMO

Diabetes mellitus is a typical life threatening of disease, which generate due to the dysfunction of ß cells of pancreas. In 2014, WHO stated that 422 million people were infected with DM. The current pattern of management of diabetes included synthetic or plant based oral hypoglycemic drugs and insulin but drug resentence is become a very big issues in antidiabetic therapy. Thus, it's very earnest to discover now medication for this disease. Now the days, it is well acknowledged that diabetic patients are more prone towards covid and related complications. Thus, medical practitioners reformed the methodology of prescribing medication for covid infected antidiabetic therapy and encouraging the medication contains dual pharmacological properties. It is also well know that polyphenols specifically hold a significant role in oxidative stress and reduced the severity of many inflammatory diseases. Cucumis melo has rich history as ethano-pharmacological use in Indian subcontinent. The fruit and seed are well-known for the treatment of various diseases due to the presence of phenolics. Therefore, in this study, the combined mixture of flower and seeds were used for the extraction of polyphenolic rich extract and tested for antidiabetic activity through the antioxidant and in vivo experiments. The antioxidant potential measurement exhibited that the selected plant extract has the significant competence to down-regulate oxidative stress (DPPH scavenging IC50 at 60.7±1.05 µg/mL, ABTS IC50 at 62.15±0.50 µg/mL). Furthermore, the major polyphenolic phyto-compounds derived from the Cucumis melo were used for in silico anticovid activity, docking, and complementarity studies. The anticovid activity prognosis reflected that selected phyto-compounds amentoflavone and vanillic acid have optimal possibility to interact with 3C-like protease and through this moderate anticovid activity can be exhibit. The docking experiments established that the selected compounds have propensity to interact with protein tyrosine phosphatase 1B, 11ß-Hydroxysteroid dehydrogenase, superoxide dismutase, glutathione peroxidase, and catalase ß-glucuronidase receptor. In vivo experiments showed that 500 mg/kg, Cucumis melo extract ominously amplified body weight, plasma insulin, high-density lipoprotein levels, and biochemical markers. Furthermore, extract significantly downregulate the blood glucose, total cholesterol, triglycerides, low-density lipoprotein, and very low-density lipoprotein.


Assuntos
COVID-19 , Cucumis melo , Diabetes Mellitus Experimental , Momordica , 11-beta-Hidroxiesteroide Desidrogenases , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Biomarcadores , Glicemia , Catalase/metabolismo , Colesterol , Cucumis melo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucuronidase , Glutationa Peroxidase/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina , Lipoproteínas HDL/uso terapêutico , Lipoproteínas LDL/uso terapêutico , Momordica/metabolismo , Peptídeo Hidrolases , Extratos Vegetais/química , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Superóxido Dismutase/metabolismo , Triglicerídeos , Ácido Vanílico
9.
Food Chem ; 393: 133388, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35671659

RESUMO

Two rootstock crosses of sweet melon and watermelon (Cucurbita moschata × Cucurbita maxima hybrids), 'Kickstart' and 'Carnivor', grafted onto four melon cultivars (cantaloups; 'Majestic', 'Hunter', 'Honeygoal' and 'Honeyval') were evaluated for quality, phytonutrient composition and volatile compounds in the 2020 and 2021 growing season at two harvests. Grafted fruits showed higher SSC/TA ratio, and antioxidant scavenging activity. Grafted 'Majestic/Carnivor' and 'Honeyval/ Carnivor' melons significantly increased the ascorbic acid content than the controls. 'Majestic/Carnivor' melons showed the highest ß- carotene and lutein than the controls. PLS-DA score plots discriminated the grafted cantaloupes and honeydew melons from controls based on the concentration of volatile compounds. Hexyl acetate and hexadecane respectively discriminated the grafted cantaloups and honeydew melons from ungrafted fruits. 'Carnivor' rootstocks showed higher expression of volatiles in the grafted cantaloupes and honeydew melons in the heat map. Panellists preferred Majestic/Carnivor' and 'Honeyval/ Carnivor' melons.


Assuntos
Citrullus , Cucumis melo , Cucurbita , Cucurbitaceae , Antioxidantes/metabolismo , Cucumis melo/metabolismo , Frutas , beta Caroteno/metabolismo
10.
Planta ; 255(6): 123, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35552537

RESUMO

MAIN CONCLUSION: We identified 66 melon SAUR genes by bioinformatic analyses. CmSAUR19, 38, 58, 62 genes are specifically expressed in different stages of fruit growth, suggesting their participation in regulating fruit development. Auxin plays a crucial role in plant growth by regulating the multiple auxin response genes. However, in melon (Cucumis melo L.), the functions of the auxin early response gene family SAUR (Small auxin up RNA) genes in fruit development are still poorly understood. Through genome-wide characterization of CmSAUR family in melon, we identified a total of 66 CmSAUR genes. The open reading frames of the CmSAUR genes ranged from 234 to 525 bp, containing only one exon and lacking introns. Chromosomal position and phylogenetic tree analyses found that the two gene clusters in the melon chromosome are highly homologous in the Cucurbitaceae plants. Among the four conserved motifs in CmSAUR proteins, motif 1, motif 2, and motif 3 located in most of the family protein sequences, and motif 4 showed a close correlation with the two gene clusters. The CmSAUR28 and CmSAUR58 genes have auxin response elements located in the promoters, suggesting they may be involved in the auxin signaling pathway to regulate fruit development. Through transcriptomic profiling in the four developmental stages of fruit and different lateral organs, we selected 16 differentially-expressed SAUR genes for performing further expression analyses. qRT-PCR results showed that five SAUR genes are specifically expressed in flower organs and ovaries. CmSAUR19 and CmSAUR58 were significantly accumulated in the early developmental stage of the fruit. CmSAUR38 and CmAUR62 showed high expression in the climacteric and post-climacteric stages, suggesting their specific role in controlling fruit ripening. This work provides a foundation for further exploring the function of the SAUR gene in fruit development.


Assuntos
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Filogenia
11.
J Integr Plant Biol ; 64(7): 1448-1461, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35568969

RESUMO

The NAC transcription factor NONRIPENING (NOR) is a master regulator of climacteric fruit ripening. Melon (Cucumis melo L.) has climacteric and non-climacteric fruit ripening varieties and is an ideal model to study fruit ripening. Two natural CmNAC-NOR variants, the climacteric haplotype CmNAC-NORS,N and the non-climacteric haplotype CmNAC-NORA,S , have effects on fruit ripening; however, their regulatory mechanisms have not been elucidated. Here, we report that a natural mutation in the transcriptional activation domain of CmNAC-NORS,N contributes to climacteric melon fruit ripening. CmNAC-NOR knockout in the climacteric-type melon cultivar "BYJH" completely inhibited fruit ripening, while ripening was delayed by 5-8 d in heterozygous cmnac-nor mutant fruits. CmNAC-NOR directly activated carotenoid, ethylene, and abscisic acid biosynthetic genes to promote fruit coloration and ripening. Furthermore, CmNAC-NOR mediated the transcription of the "CmNAC-NOR-CmNAC73-CmCWINV2" module to enhance flesh sweetness. The transcriptional activation activity of the climacteric haplotype CmNAC-NORS,N on these target genes was significantly higher than that of the non-climacteric haplotype CmNAC-NORA,S . Moreover, CmNAC-NORS,N complementation fully rescued the non-ripening phenotype of the tomato (Solanum lycopersicum) cr-nor mutant, while CmNAC-NORA,S did not. Our results provide insight into the molecular mechanism of climacteric and non-climacteric fruit ripening in melon.


Assuntos
Cucumis melo , Cucurbitaceae , Solanum lycopersicum , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
BMC Plant Biol ; 22(1): 193, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35410167

RESUMO

BACKGROUND: Hami melon (Cucumis melo var. saccharinus) is a popular fruit in China because of its excellent taste, which is largely determined by its physicochemical characteristics, including flesh texture, sugar content, aroma, and nutrient composition. However, the mechanisms by which these characteristics are regulated have not yet been determined. In this study, we monitored changes in the fruits of two germplasms that differed in physicochemical characteristics throughout the fruit development period. RESULTS: Ripe fruit of the bred variety 'Guimi' had significantly higher soluble sugar contents than the fruit of the common variety 'Yaolong.' Additionally, differences in fruit shape and color between these two germplasms were observed during development. Comparative transcriptome analysis, conducted to identify regulators and pathways underlying the observed differences at corresponding stages of development, revealed a higher number of differentially expressed genes (DEGs) in Guimi than in Yaolong. Moreover, most DEGs detected during early fruit development in Guimi were associated with cell wall biogenesis. Temporal analysis of the identified DEGs revealed similar trends in the enrichment of downregulated genes in both germplasms, although there were differences in the enrichment trends of upregulated genes. Further analyses revealed trends in differential changes in multiple genes involved in cell wall biogenesis and sugar metabolism during fruit ripening. CONCLUSIONS: We identified several genes associated with the ripening of Hami melons, which will provide novel insights into the molecular mechanisms underlying the development of fruit characteristics in these melons.


Assuntos
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Frutas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Açúcares/metabolismo , Transcriptoma
13.
Plant J ; 109(5): 1213-1228, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897855

RESUMO

In monoecious melon (Cucumis melo), sex is determined by the differential expression of sex determination genes (SDGs) and adoption of sex-specific transcriptional programs. Histone modifications such as H3K27me3 have been previously shown to be a hallmark associated to unisexual flower development in melon; yet, no genetic approaches have been conducted for elucidating the roles of H3K27me3 writers, readers, and erasers in this process. Here we show that melon homologs to Arabidopsis LHP1, CmLHP1A and B, redundantly control several aspects of plant development, including sex expression. Cmlhp1ab double mutants displayed an overall loss and redistribution of H3K27me3, leading to a deregulation of genes involved in hormone responses, plant architecture, and flower development. Consequently, double mutants display pleiotropic phenotypes and, interestingly, a general increase of the male:female ratio. We associated this phenomenon with a general deregulation of some hormonal response genes and a local activation of male-promoting SDGs and MADS-box transcription factors. Altogether, these results reveal a novel function for CmLHP1 proteins in maintenance of monoecy and provide novel insights into the polycomb-mediated epigenomic regulation of sex lability in plants.


Assuntos
Arabidopsis , Cucumis melo , Cucurbitaceae , Arabidopsis/genética , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Regulação da Expressão Gênica de Plantas/genética , Histonas/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Food Chem ; 362: 130193, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34082290

RESUMO

Lignin is an important component of the healing tissue in fruits. In this study, we treated muskmelon (Cucumis melo L. cv. "Manao") fruit with exogenous nitric oxide (NO) donor sodium nitroprusside (SNP) to observe and analyze its effect on lignin synthesis and accumulation during healing. Results showed that SNP treatment enhanced the contents of endogenous NO and H2O2, increased the activities of phenylalanine ammonia lyase, cinnamate 4 hydroxylase, cinnamyl alcohol dehydrogenase, and peroxidase, and raised the contents of sinapyl alcohol, coniferyl alcohol, coumaryl alcohol, and lignin. SNP augmented the hardness of the healing tissue and decreased its resilience, springiness, and cohesiveness. In addition, SNP treatment effectively reduced the weight loss and disease index of wounded muskmelons. All these results suggest that lignin metabolism mediated by NO play a crucial role in wound healing of muskmelons.


Assuntos
Cucumis melo/química , Cucumis melo/metabolismo , Frutas/química , Lignina/biossíntese , Nitroprussiato/química , Oxirredutases do Álcool , Frutas/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/química , Peroxidase/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Fenilpropionatos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
15.
Plant Cell ; 33(4): 1319-1340, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33793825

RESUMO

In plants, chitin-triggered immunity is one of the first lines of defense against fungi, but phytopathogenic fungi have developed different strategies to prevent the recognition of chitin. Obligate biotrophs such as powdery mildew fungi suppress the activation of host responses; however, little is known about how these fungi subvert the immunity elicited by chitin. During epiphytic growth, the cucurbit powdery mildew fungus Podosphaera xanthii expresses a family of candidate effector genes comprising nine members with an unknown function. In this work, we examine the role of these candidates in the infection of melon (Cucumis melo L.) plants, using gene expression analysis, RNAi silencing assays, protein modeling and protein-ligand predictions, enzymatic assays, and protein localization studies. Our results show that these proteins are chitinases that are released at pathogen penetration sites to break down immunogenic chitin oligomers, thus preventing the activation of chitin-triggered immunity. In addition, these effectors, designated effectors with chitinase activity (EWCAs), are widely distributed in pathogenic fungi. Our findings reveal a mechanism by which fungi suppress plant immunity and reinforce the idea that preventing the perception of chitin by the host is mandatory for survival and development of fungi in plant environments.


Assuntos
Ascomicetos/patogenicidade , Quitina/metabolismo , Quitinases/metabolismo , Cucumis melo/microbiologia , Imunidade Vegetal/fisiologia , Ascomicetos/citologia , Ascomicetos/genética , Ascomicetos/metabolismo , Parede Celular/metabolismo , Quitina/imunologia , Quitinases/química , Quitinases/genética , Cucumis melo/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Interações Hospedeiro-Patógeno/fisiologia , Família Multigênica , Filogenia , Doenças das Plantas/microbiologia
16.
BMC Plant Biol ; 21(1): 83, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557758

RESUMO

BACKGROUND: Cinnamyl alcohol dehydrogenase (CAD) is an important enzyme functions at the last step in lignin monomer synthesis pathway. Our previous work found that drought induced the expressions of CmCAD genes and promoted lignin biosynthesis in melon stems. RESULTS: Here we studied the effects of abscisic acid (ABA), hydrogen peroxide (H2O2) and jasmonic acid (JA) to CmCADs under drought stress. Results discovered that drought-induced ABA, H2O2 and MeJA were prevented efficiently from increasing in melon stems pretreated with fluridone (Flu, ABA inhibitor), imidazole (Imi, H2O2 scavenger) and ibuprofen (Ibu, JA inhibitor). ABA and H2O2 are involved in the positive regulations to CmCAD1, 2, 3, and 5, and JA is involved in the positive regulations to CmCAD2, 3, and 5. According to the expression profiles of lignin biosynthesis genes, ABA, H2O2 and MeJA all showed positive regulations to CmPAL2-like, CmPOD1-like, CmPOD2-like and CmLAC4-like. In addition, positive regulations were also observed with ABA to CmPAL1-like, CmC4H and CmCOMT, with H2O2 to CmPAL1-like, CmC4H, CmCCR and CmLAC17-like, and with JA to CmCCR, CmCOMT, CmLAC11-like and CmLAC17-like. As expected, the signal molecules positively regulated CAD activity and lignin biosynthesis under drought stress. Promoter::GUS assays not only further confirmed the regulations of the signal molecules to CmCAD1~3, but also revealed the important role of CmCAD3 in lignin synthesis due to the strongest staining of CmCAD3 promoter::GUS. CONCLUSIONS: CmCADs but CmCAD4 are positively regulated by ABA, H2O2 and JA under drought stress and participate in lignin synthesis.


Assuntos
Cucumis melo/genética , Cucumis melo/metabolismo , Secas , Genes de Plantas , Lignina/biossíntese , Lignina/genética , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Oxirredutases do Álcool/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/metabolismo
17.
Sci Rep ; 10(1): 22240, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335220

RESUMO

Melon (Cucumis melo L.) is a very important crop throughout the world and has great economic importance, in part due to its nutritional properties. It prefers well-drained soil with low acidity and has a strong demand for water during fruit set. Therefore, a correct water balance-involving aquaporins-is necessary to maintain the plants in optimal condition. This manuscript describes the identification and comparative analysis of the complete set of aquaporins in melon. 31 aquaporin genes were identified, classified and analysed according to the evolutionary relationship of melon with related plant species. The individual role of each aquaporin in the transport of water, ions and small molecules was discussed. Finally, qPCR revealed that almost all melon aquaporins in roots and leaves were constitutively expressed. However, the high variations in expression among them point to different roles in water and solute transport, providing important features as that CmPIP1;1 is the predominant isoform and CmTIP1;1 is revealed as the most important osmoregulator in the tonoplast under optimal conditions. The results of this work pointing to the physiological importance of each individual aquaporin of melon opening a field of knowledge that deserves to be investigated.


Assuntos
Cucumis melo/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Cucumis melo/metabolismo , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Plant Physiol Biochem ; 154: 770-781, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32827970

RESUMO

N-(2-Chloro-4-pyridyl)-N'-phenylurea (CPPU) is a cytokinin-like plant growth regulator, which application in melon fruit set often produced bitter fruit caused by cucurbitacin B (Cu B) accumulation. However, more evidence is required to uncover the role of CPPU in regulating Cu B synthesis. In this study, two oriental melon cultivars 'YMR' (easy to present bitter fruit in maturation) and 'HDB' (hardly produce bitter fruit at maturity) were used. Four concentrations of CPPU (2.5, 5, 10 and 20 mg L-1) were set and hand pollination was used as control. Cu B accumulated in roots and fruit of 7 days after flower (7 DAF), which in 'YMR' was higher than those in 'HDB', and consistent with Cu B biosynthetic genes expression patterns. Furthermore, Cu B content in fruit significantly increased with CPPU concentrations and reached the highest level at 7 DAF, then decreased after 14 DAF, and which treated by 20 mg L-1 CPPU was always higher than that of controls and other low CPPU concentrations. Meanwhile, fruit bitterness evaluation suggested 20 mg L-1 CPPU increased the occurrence of bitterness during melon maturation. Transcription analysis suggested that the expression of Cu B biosynthetic genes (CmBi, Cm710, CmACT) and CmBt, the fruit-specific transcription factor, were significantly induced by 20 mg L-1 CPPU. Transient over-expression of CmBt in young fruit of 'YMR' increased Cu B biosynthetic genes (CmBi, CmACT, Cm710 and Cm890) expression and promoted Cu B accumulation. Taken together, this study demonstrates that 20 mg L-1 CPPU promotes Cu B accumulation in melon fruit by inducing CmBt and its biosynthetic genes.


Assuntos
Cucumis melo/metabolismo , Proteínas de Plantas/metabolismo , Polietilenoglicóis/metabolismo , Poliuretanos/metabolismo , Fatores de Transcrição/metabolismo , Triterpenos/metabolismo , Frutas/metabolismo
19.
BMC Genomics ; 21(1): 390, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493266

RESUMO

BACKGROUND: Cantaloupe is susceptible to cold stress when it is stored at low temperatures, resulting in the loss of edible and commercial quality. To ascertain the molecular mechanisms of low temperatures resistance in cantaloupe, a cold-sensitive cultivar, Golden Empress-308 (GE) and a cold-tolerant cultivar, Jia Shi-310 (JS), were selected in parallel for iTRAQ quantitative proteomic analysis. RESULTS: The two kinds of commercial cultivars were exposed to a temperature of 0.5 °C for 0, 12 and 24 days. We found that the cold-sensitive cultivar (GE) suffered more severe damage as the length of the cold treatment increased. Proteomic analysis of both cultivars indicated that the number of differentially expressed proteins (DEPs) changed remarkably during the chilly treatment. JS expressed cold-responsive proteins more rapidly and mobilized more groups of proteins than GE. Furthermore, metabolic analysis revealed that more amino acids were up-regulated in JS during the early phases of low temperatures stress. The DEPs we found were mainly related to carbohydrate and energy metabolism, structural proteins, reactive oxygen species scavenging, amino acids metabolism and signal transduction. The consequences of phenotype assays, metabolic analysis and q-PCR validation confirm the findings of the iTRAQ analysis. CONCLUSION: We found that the prompt response and mobilization of proteins in JS allowed it to maintain a higher level of cold tolerance than GE, and that the slower cold responses in GE may be a vital reason for the severe chilling injury commonly found in this cultivar. The candidate proteins we identified will form the basis of future studies and may improve our understanding of the mechanisms of cold tolerance in cantaloupe.


Assuntos
Cucumis melo/fisiologia , Proteínas de Plantas/metabolismo , Proteômica/métodos , Cromatografia Líquida , Resposta ao Choque Frio , Cucumis melo/metabolismo , Metabolismo Energético , Armazenamento de Alimentos , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
20.
J Agric Food Chem ; 68(24): 6511-6519, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32437138

RESUMO

We investigated the effect on melon fruits of "fish water" alone or in combination with a supplement of synthetic fertilizers in a nutrient solution or foliar application of Ca(NO3)2. These treatments were compared with a traditional soilless system with synthetic fertilizers and no reuse of the nutrient solution. The results show that the treatments with recirculation of fish water and with the foliar supplement yielded fruits of greater weight and size but with reduced lightness and lower concentrations of proteins, NO3-, K+, and total amino acids. The supply of synthetic nutrients to the roots or leaves caused a reduction in the sugar concentrations and the antioxidant activity of these fruits. The use of fish water (alone or with an amendment) increased spermine and putrescine with respect to the traditional soilless crop management. The results for these bioactive compounds in melons should be considered for maintenance of health with age.


Assuntos
Produção Agrícola/métodos , Cucumis melo/crescimento & desenvolvimento , Frutas/química , Hidroponia/métodos , Antioxidantes/análise , Antioxidantes/metabolismo , Cucumis melo/química , Cucumis melo/metabolismo , Fertilizantes/análise , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Nutrientes/metabolismo , Açúcares/análise , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...