Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
PLoS One ; 19(4): e0300864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635849

RESUMO

Chia (Salvia hispanica L.) seed (CS) and Pumpkin (Cucurbita moschata) seed (PS) are used in ruminant diets as energy sources. The current experiment studied the impact of dietary inclusion of CS and PS on nutrient intake and digestibility, milk yield, and milk composition of dairy sheep. Twelve primiparous Texel × Suffolk ewes [70 ± 5 days in milk (DIM); 0.320 ± 0.029 kg milk yield] were distributed in a 4 × 3 Latin square design and fed either a butter-based control diet [CON; 13 g/kg dry matter] or two diets with 61 g/kg DM of either CS or PS. Dietary inclusion of CS and PS did not alter live weight (p >0.1) and DM intake (p >0.1). However, compared to the CON, dietary inclusion of both CS and PS increased the digestibility of neutral detergent fiber (p <0.001) and acid detergent lignin (p < 0.001). Milk production (p = 0.001), fat-corrected milk (p < 0.001), and feed efficiency (p < 0.001) were enhanced with PS, while the highest milk protein yield (p < 0.05) and lactose yield (p < 0.001) were for CS-fed ewes. Compared to the CON diet, the ingestion of either CS and/or PS decreased (p < 0.001) the C16:0 in milk. Moreover, both CS and PS tended to enhance the content of C18:3n6 (p > 0.05) and C18:3n3 (p > 0.05). Overall short-term feeding of CS and/or PS (up to 6.1% DM of diet) not only maintains the production performance and digestibility of nutrients but also positively modifies the milk FA composition.


Assuntos
Cucurbita , Animais , Feminino , Ovinos , Cucurbita/metabolismo , Lactação , Salvia hispanica , Detergentes , Fibras na Dieta/metabolismo , Dieta/veterinária , Sementes/metabolismo , Digestão , Ração Animal/análise , Zea mays/metabolismo , Suplementos Nutricionais/análise , Rúmen/metabolismo
2.
Biotechnol J ; 19(4): e2400006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581090

RESUMO

The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of ß-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.


Assuntos
Cucumis melo , Cucurbita , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Perfilação da Expressão Gênica , Cucurbita/genética , Cucurbita/metabolismo , Cucurbitaceae/genética , Sacarose/metabolismo
3.
Plant Physiol Biochem ; 208: 108443, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479079

RESUMO

Drought is a major limiting factor for the growth and development of pumpkins. Plasma membrane intrinsic proteins (PIPs) are major water channels that play a crucial role in the regulation of cellular water status and solute trafficking during drought conditions. CmoPIP1-4 is a plasma membrane-localized protein that is significantly upregulated in roots and leaves under drought-stress conditions. In this study, the overexpression of CmoPIP1-4 enhances drought resistance in yeast. In contrast, CRISPR-mediated CmoPIP1-4 knockout in pumpkin roots increased drought sensitivity. This increased drought sensitivity of CmoPIP1-4 knockout plants is associated with a decline in the levels of hydrogen sulfide (H2S) and abscisic acid (ABA), accompanied by an increase in water loss caused by greater levels of transpiration and stomatal conductance. In addition, the sensitivity of CmoPIP1-4 CRISPR plants is further aggravated by reduced antioxidative enzyme activity, decreased proline and sugar contents, and extensive root damage. Furthermore, expression profiles of genes such as CmoHSP70s, CmoNCED3, CmoNCED4, and others involved in metabolic activities were markedly reduced in CmoPIP1-4 CRISPR plants. Moreover, we also discovered an interaction between the drought-responsive gene CmoDCD and CmoPIP1-4, indicating their potential role in activating H2S-mediated signaling in pumpkin, which could confer drought tolerance. The findings of our study collectively demonstrate CmoPIP1-4 plays a crucial role in the regulation of H2S-mediated signaling, influencing stomatal density and aperture in pumpkin plants, and thereby enhancing their drought tolerance.


Assuntos
Cucurbita , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/metabolismo , Resistência à Seca , Cucurbita/genética , Cucurbita/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Água/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácido Abscísico/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
4.
Molecules ; 29(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474434

RESUMO

In this study, AuNPs were biosynthesized from Cucurbita moschata fruit peel extracts. Biosynthesized AuNPs exhibited maximum absorbance at a 555 nm wavelength, and XRD analysis indicated that the CM-AuNPs had a particle size of less than 100 nm and a cubic crystal structure. TEM scans revealed that the gold particles exhibited a spherical morphology, with an average size of 18.10 nm. FTIR analysis revealed strong peaks indicating the presence of functional groups involved in the reduction reactions. The surface charge of the biosynthesized AuNPs was determined to be -19.7 mV. The antibacterial and antifungal activities of AuNPs against pathogen strains were assessed by the minimum inhibitory concentration (MIC) method. The cytotoxic effects of CM-AuNPs on cancer cell lines (Sk-Ov-3, CaCo2, and A549) and healthy cell lines (HUVEC) were investigated using the MTT method. The findings indicated that AuNPs biosynthesized by the green synthesis method using C. moschata peel aqueous extract had high inhibition on the growth of pathogenic microorganisms and effective cytotoxic activity against cancerous cell lines at low doses. As a result, it can be concluded that CM-AuNPs will be eminently effective in the production of antibacterial and/or anticancer drugs in the pharmaceutical, food, and cosmetic industries.


Assuntos
Antineoplásicos , Cucurbita , Nanopartículas Metálicas , Ouro/química , Cucurbita/metabolismo , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Extratos Vegetais/química , Química Verde
5.
BMC Genomics ; 25(1): 268, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468207

RESUMO

BACKGROUND: The core regulation of the abscisic acid (ABA) signalling pathway comprises the multigenic families PYL, PP2C, and SnRK2. In this work, we conducted a genome-wide study of the components of these families in Cucurbita pepo. RESULTS: The bioinformatic analysis of the C. pepo genome resulted in the identification of 19 CpPYL, 102 CpPP2C and 10 CpSnRK2 genes. The investigation of gene structure and protein motifs allowed to define 4 PYL, 13 PP2C and 3 SnRK2 subfamilies. RNA-seq analysis was used to determine the expression of these gene families in different plant organs, as well as to detect their differential gene expression during germination, and in response to ABA and cold stress in leaves. The specific tissue expression of some gene members indicated the relevant role of some ABA signalling genes in plant development. Moreover, their differential expression under ABA treatment or cold stress revealed those ABA signalling genes that responded to ABA, and those that were up- or down-regulated in response to cold stress. A reduced number of genes responded to both treatments. Specific PYL-PP2C-SnRK2 genes that had potential roles in germination were also detected, including those regulated early during the imbibition phase, those regulated later during the embryo extension and radicle emergence phase, and those induced or repressed during the whole germination process. CONCLUSIONS: The outcomes of this research open new research lines for agriculture and for assessing gene function in future studies.


Assuntos
Proteínas de Arabidopsis , Cucurbita , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Estudo de Associação Genômica Ampla , Plantas/genética , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética
6.
BMC Genomics ; 25(1): 112, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273235

RESUMO

BACKGROUND: Auxin transcription factor (ARF) is an important transcription factor that transmits auxin signals and is involved in plant growth and development as well as stress response. However, genome-wide identification and responses to abiotic and pathogen stresses of the ARF gene family in Cucurbita pepo L, especially pathogen stresses, have not been reported. RESULTS: Finally, 33 ARF genes (CpARF01 to CpARF33) were identified in C.pepo from the Cucurbitaceae genome database using bioinformatics methods. The putative protein contains 438 to 1071 amino acids, the isoelectric point is 4.99 to 8.54, and the molecular weight is 47759.36 to 117813.27 Da, the instability index ranged from 40.74 to 68.94, and the liposoluble index ranged from 62.56 to 76.18. The 33 genes were mainly localized in the nucleus and cytoplasm, and distributed on 16 chromosomes unevenly. Phylogenetic analysis showed that 33 CpARF proteins were divided into 6 groups. According to the amino acid sequence of CpARF proteins, 10 motifs were identified, and 1,3,6,8,10 motifs were highly conserved in most of the CpARF proteins. At the same time, it was found that genes in the same subfamily have similar gene structures. Cis-elements and protein interaction networks predicted that CpARF may be involved in abiotic factors related to the stress response. QRT-PCR analysis showed that most of the CpARF genes were upregulated under NaCl, PEG, and pathogen treatment compared to the control. Subcellular localization showed that CpARF22 was localized in the nucleus. The transgenic Arabidopsis thaliana lines with the CpARF22 gene enhanced their tolerance to salt and drought stress. CONCLUSION: In this study, we systematically analyzed the CpARF gene family and its expression patterns under drought, salt, and pathogen stress, which improved our understanding of the ARF protein of zucchini, and laid a solid foundation for functional analysis of the CpARF gene.


Assuntos
Cucurbita , Filogenia , Cucurbita/genética , Cucurbita/metabolismo , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
7.
Microsc Res Tech ; 87(3): 602-615, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018343

RESUMO

This study aimed to investigate the characterization of zinc oxide nanoparticles (ZnONPs) produced from Cucurbita pepo L. (pumpkin seeds) and their selective cytotoxic effectiveness on human colon cancer cells (HCT 116) and African Green Monkey Kidney, Vero cells. The study also investigated the antioxidant activity of ZnONPs. The study also examined ZnONPs' antioxidant properties. This was motivated by the limited research on the comparative cytotoxic effects of ZnO NPs on normal and HCT116 cells. The ZnO NPs were characterized using Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Transmission Electron Microscope/Selected Area Electron Diffraction (TEM/SAED), and Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) for determination of chemical fingerprinting, heat stability, size, and morphology of the elements, respectively. Based on the results, ZnO NPs from pumpkins were found to be less than 5 µm and agglomerates in nature. Furthermore, the ZnO NPs fingerprinting and SEM-EDX element analysis were similar to previous literature, suggesting the sample was proven as ZnO NPs. The ZnO NPs also stable at a temperature of 380°C indicating that the green material is quite robust at 60-400°C. The cell viability of Vero cells and HCT 116 cell line were measured at two different time points (24 and 48 h) to assess the cytotoxicity effects of ZnO NP on these cells using AlamarBlue assay. Cytotoxic results have shown that ZnO NPs did not inhibit Vero cells but were slightly toxic to cancer cells, with a dose-response curve IC50 = ~409.7 µg/mL. This green synthesis of ZnO NPs was found to be non-toxic to normal cells but has a slight cytotoxicity effect on HCT 116 cells. A theoretical study used molecular docking to investigate nanoparticle interaction with cyclin-dependent kinase 2 (CDK2), exploring its mechanism in inhibiting CDK2's role in cancer. Further study should be carried out to determine suitable concentrations for cytotoxicity studies. Additionally, DPPH has a significant antioxidant capacity, with an IC50 of 142.857 µg/mL. RESEARCH HIGHLIGHTS: Pumpkin seed extracts facilitated a rapid, high-yielding, and environmentally friendly synthesis of ZnO nanoparticles. Spectrophotometric analysis was used to investigate the optical properties, scalability, size, shape, dispersity, and stability of ZnO NPs. The cytotoxicity of ZnO NPs on Vero and HCT 116 cells was assessed, showing no inhibition of Vero cells and cytotoxicity of cancer cells. The DPPH assay was also used to investigate the antioxidant potential of biogenic nanoparticles. A molecular docking study was performed to investigate the interaction of ZnO NPs with CDK2 and to explore the mechanism by which they inhibit CDK2's role in cancer.


Assuntos
Antineoplásicos , Cucurbita , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Animais , Chlorocebus aethiops , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antioxidantes/farmacologia , Cucurbita/metabolismo , Simulação de Acoplamento Molecular , Células Vero , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas/química , Antineoplásicos/farmacologia , Sementes/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Difração de Raios X
8.
Plant Cell Environ ; 47(2): 442-459, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37969013

RESUMO

Late flowering is a serious bottleneck in pumpkin (Cucurbita moschata Duch.) agriculture production. Although key genes governing flowering time have been reported in many species, the regulatory network of flowering in pumpkin remains largely obscure, thereby impeding the resolution of industry-wide challenges associated with delayed fruit ripening in pumpkin cultivation. Here, we report an early flowering pumpkin germplasm accession (LXX-4). Using LXX-4 and a late flowering germplasm accession (HYM-9), we constructed an F2 segregation population. A significant difference in FLOWERING LOCUS T-LIKE 2 (FTL2) expression level was identified to be the causal factor of the flowering time trait discrepancy in LXX-4 and HYM-9. Moreover, we have shown that a 21 bp InDel in the FTL2 promoter was the key reason for the waxing and waning of its transcript level. The 21 bp deletion excluded a repressor-AGL19 and recruited activators-BBX7, WRKY40 and SVP to the FTL2 promoter in LXX-4. Together, our data add a useful element to our knowledge which could be used to simplify breeding efforts for early-maturing pumpkin.


Assuntos
Cucurbita , Cucurbita/genética , Cucurbita/metabolismo , Fenótipo
9.
J Agric Food Chem ; 71(27): 10459-10469, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37395666

RESUMO

Atlantic giant (AG, Cucurbita maxima) is a type of giant pumpkin in the Cucurbitaceae family and has the world's largest fruit. AG possesses excellent ornamental and economic value due to its well-known large fruit. However, giant pumpkins are usually thrown away after viewing, thus generating a waste of resources. To explore the additional value of giant pumpkins, a metabolome assay was performed between AG and Hubbard (a small fruit pumpkin) fruits. We found that bioactive compounds, especially flavonoids (including 8-prenylnaringenin, tetrahydrocurcumin, galangin, and acacetin) and coumarins (including coumarin, umbelliferone, 4-coumaryl alcohol, and coumaryl acetate), with extensive antioxidant and pharmacological functions, showed higher accumulation in AG fruit than in Hubbard fruits. Comparative transcriptomics of the two pumpkin fruits indicated that the differentially expressed genes (DEGs) encoding PAL, C4H, 4CL, CSE, HCT, CAD, and CCoAOMT were relatively highly expressed, which promoted an increased accumulation of the identified flavonoids and coumarins in giant pumpkins. In addition, the construction of a co-expression network and cis-element analysis of the promoter demonstrated that differentially expressed MYB, bHLH, AP2, and WRKY transcription factors might play vital roles in regulating the expression of DEGs involved in the biosynthesis of several flavonoids and coumarins. Our current results provide new insights into the accumulation of active compounds in giant pumpkins.


Assuntos
Cucurbita , Frutas , Frutas/genética , Frutas/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Metabolômica , Flavonoides/metabolismo , Cumarínicos/metabolismo
10.
Plant J ; 114(6): 1353-1368, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942473

RESUMO

Pumpkin is often used as a rootstock for other Cucurbitaceae crops due to its resistance to soil-borne diseases and abiotic stress. Pumpkin rootstocks use a sodium transporter (CmHKT1;1) to promote the transport of Na+ from the shoot to the root effectively and improve the salt tolerance of the scion. However, the molecular regulatory mechanisms that influence the activity of CmHKT1;1 during salt stress response remain unknown. In this study, CmCNIH1, a cornichon homolog, was identified as a potential cargo receptor for CmHKT1;1. Yeast two-hybrid, biomolecular fluorescence complementation and luciferase complementary assays demonstrated that CmCNIH1 and CmHKT1;1 could interact. CmCNIH1 was a key component of the cellular vesicle transport machinery located in the endoplasmic reticulum (ER), ER export site and Golgi apparatus. A CmCNIH1 knockout mutant was more sensitive to salt stress than the wild-type (WT). In addition, ion homeostasis was disrupted in cmcnih1 mutants, which had higher Na+ and lower K+ content in shoots and roots than the WT. Two-electrode voltage-clamp experiment displayed that CmCNIH1 could not influence the Na+ current that passed through the plasma membrane (PM) in CmHKT1;1-expressing Xenopus laevis oocytes. Data from co-localization assays indicated that intact CmCNIH1 protein could alter the subcellular localization of CmHKT1;1 in tobacco leaf, pumpkin root and yeast. In summary, CmCNIH1 may function as a cargo receptor that regulates the localization of CmHKT1;1 to the PM to improve salt tolerance in pumpkin.


Assuntos
Cucurbita , Cucurbita/metabolismo , Tolerância ao Sal , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768611

RESUMO

The BES1 (BRI1-EMSSUPPRESSOR1) gene family play a vital role in the BR (brassinosteroid) signaling pathway, which is involved in the growth and development, biotic, abiotic, and hormone stress response in many plants. However, there are few reports of BES1 in Cucurbita moschata. In this study, 50 BES1 genes were identified in six Cucurbitaceae species by genome-wide analysis, which could be classified into 3 groups according to their gene structural features and motif compositions, and 13 CmoBES1 genes in Cucurbita moschata were mapped on 10 chromosomes. Quantitative real-time PCR analysis showed that the CmoBES1 genes displayed differential expression under different abiotic stress and hormone treatments. Subcellular localization showed that the most of CmoBES1 proteins localized in nucleus and cytoplasm, and transactivation assay indicated 9 CmoBES1 proteins played roles as transcription factors. Our analysis of BES1s diversity, localization, and expression in Curcubitaceae contributes to the better understanding of the essential roles of these transcription factors in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cucurbita , Cucurbitaceae , Proteínas de Ligação a DNA/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/metabolismo , Brassinosteroides/metabolismo , Plantas/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Trop Anim Health Prod ; 55(1): 55, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715777

RESUMO

Heat stress is the most major environmental element contributing to rabbit health problems and reduced production. It is proposed that essential oils be applied to alleviate heat stress-induced oxidative damage in rabbits. The purpose of this feeding trial was to determine the protective impact of pumpkin seed essential oil (PSO)-supplemented diets in reducing the threat of unambient temperature on growing rabbits. Five groups of 5-week-old rabbits were allocated randomly into separated galvanized wire battery. The first group was raised under normal conditions (18 ± 2 °C) and fed a control diet (control group; CNT), whereas the other four groups were exposed to high ambient temperature (38 ± 2 °C) and fed a control diet supplemented with 0 (PSO0.0), 0.5 (PSO0.05), 1.0 (PSO1.0), and 2.0 (PSO2.0) mL PSO/kg diet. Results indicated that all supplemented groups and the positive control have higher live body weight compared with the heat stress group (PSO0.0) at 9 weeks of age. Supplementing of PSO resulted in significant improvement in weight gain at 5-9 weeks and 9-13 weeks compared with PSO0.0 group. The highest feed intake was detected in PSO0.05 group compared with that in other groups. Both PSO2.0 and PSO2.0 groups showed the lowest feed conversion ration compared with other groups. Heat-stressed rabbits given a high dose of PSO (1 to 2 mL) had higher hemoglobin concentrations and lower white blood cell counts throughout the experiment than those given a control diet and subjected to heat stress. All hepatic and renal function parameters improved significantly in the rabbits fed a high dose of PSO as compared to the heat-stressed control group, while protein constituents were significantly higher in experimental groups fed 2 mL PSO compared with other groups. Heat-stressed rabbits administered graded amounts of PSO had the lowest plasma glucose, cortisol, thyroid, and corticosterone concentrations and were noticed to be equivalent to the control group fed unsupplemented diet and reared under normal conditions. The immunohistochemistry analysis demonstrated that rabbit groups reared under heat stress and given 2 mL PSO supplemented diets had negative caspase-3 immunoreactivity surrounding portal tract and normal structure. In conclusion, adding pumpkin seed oil up to 2 mL/kg diet for growing rabbits is indorsed to promote growth as well as antioxidant and immunological status under heat stress conditions.


Assuntos
Antioxidantes , Cucurbita , Coelhos , Animais , Antioxidantes/metabolismo , Cucurbita/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Resposta ao Choque Térmico , Óleos de Plantas/farmacologia , Imunidade , Ração Animal/análise
13.
Andrologia ; 54(11): e14578, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36056790

RESUMO

The present study was designed to evaluate the protective effect of fluted pumpkin seeds (FPS) against caffeine (CAFF) induced testicular toxicity in rats. Thirty young healthy male Wistar rats (196 ± 12 g) were randomly organized into five sets of six animals per each group: control, caffeine (CAFF; 50 mg kg-1 bw) and FPS co-treatment groups (CAFF + 50 mg FPS, CAFF + 100 mg FPS and CAFF + 200 mg FPS kg-1  bw). CAFF and FPS were administered daily and twice per week respectively by oral gavage for 40 days. CAFF treatment decreased testicular lactate dehydrogenase enzyme activity level, which was attenuated on co-administration with FPS at 50 and 100 mg kg-1  bw. Furthermore, CAFF decreased seminiferous epithelia thickness and spermatogenesis score index and increased the number of tubules with abnormal histological features, which were attenuated on co-administration with FPS at 50 mg kg-1  bw much more than at the higher doses (p < 0.05). CAFF did not affect malondialdehyde and glutathione concentrations and glutathione peroxidase (GSH-Px) activity in the testes whereas FPS co-treatment at the higher doses elevated glutathione level and GSH-Px activity and did not affect spermatogenesis score index at the highest dose (200 mg kg-1  bw). Testicular malondialdehyde concentrations remained unaffected in all FPS co-treatment groups. Overall, FPS is able to minimize the CAFF-induced testicular injury at lower than at the higher tested doses.


Assuntos
Cucurbita , Testículo , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Cafeína/farmacologia , Cucurbita/metabolismo , Glutationa/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo , Ratos Wistar , Espermatogênese
14.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955610

RESUMO

Ethylene biosynthesis and signal transduction play critical roles in plant sex differentiation. ACS (1-aminocyclopropane-1-carboxylic acid synthase) is a rate-limiting enzyme in ethylene biosynthesis. However, the understanding of the ACS gene family in Cucurbita maxima is limited. Here, we identified and characterized 13 ACS genes in the C. maxima genome. All ACS genes could be divided into three groups according to a conserved serine residue at the C-terminus. Thirteen CmaACS genes were found to be randomly distributed on 10 of the 20 chromosomes of C. maxima. The ACS gene exhibits different tissue-specific expression patterns in pumpkin, and four ACS genes (CmaACS1, CmaACS4, CmaACS7, and CmaACS9) were expressed specifically in both the female and male flowers of C. maxima. In addition, the expression levels of CmaACS4 and CmaACS7 were upregulated after ethephon and IAA treatments, which ultimately increased the number of female flowers, decreased the position of the first female flower and decreased the number of bisexual flowers per plant. These results provide relevant information for determining the function of the ACS genes in C. maxima, especially for regulating the function of ethylene in sex determination.


Assuntos
Cucurbita , Cucurbita/genética , Cucurbita/metabolismo , Etilenos/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Chemosphere ; 305: 135536, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35772518

RESUMO

The Cucurbitaceae family accumulates dioxin-like compounds in its fruits. We previously showed that A20/AN1 zinc finger protein (ZFP) genes were highly expressed in the zucchini (Cucurbita pepo) subspecies pepo, which accumulates dioxin-like compounds at high concentrations. Transgenic tobacco (Nicotiana tabacum) plants overexpressing A20/AN1 ZFP genes show accumulation of dioxin-like compounds in their upper parts. However, the mechanisms underlying the accumulation of dioxin-like compounds regulated by the A20/AN1 ZFPs remain unclear. Here, we show that A20/AN1 ZFPs positively regulate the expression of the major latex-like protein (MLP) and its homolog genes in N. tabacum and C. pepo. MLPs are involved in the transport of dioxin-like compounds from the roots to the upper parts of C. pepo. Overexpression of A20/AN1 ZFP genes in N. tabacum leads to the upregulation of pathogenesis-related protein class-10 genes with the binding ability toward dioxin-like compounds. Our results demonstrated that A20/AN1 ZFPs upregulate MLP and its homolog genes in N. tabacum and C. pepo, resulting in the accumulation of dioxin-like compounds.


Assuntos
Cucurbita , Dioxinas , Cucurbita/genética , Cucurbita/metabolismo , Dioxinas/metabolismo , Látex , Nicotiana/genética , Zinco/metabolismo , Dedos de Zinco/genética
16.
BMC Genomics ; 23(Suppl 1): 436, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698057

RESUMO

BACKGROUND: Fusarium oxysporum f. sp. cucumerinum (FOC) is the causal agent of cucumber Fusarium wilt, which can cause extensive damages and productivity losses. Cucurbita ficifolia Bouché (Cucurbitaceae) is usually used as rootstock for cucumber because of its excellent resistance to Fusarium wilt. Our previous study found that C.ficifolia has high FOC resistance, the underlying mechanism of which is unclear. RESULTS: Transcriptome and proteome profiling was performed on the basis of RNA-Seq and isobaric tag for relative and absolute quantitation technology to explore the molecular mechanisms of the response of Cucurbita ficifolia Bouché to Fusarium oxysporum f. sp. cucumerium infection. Comparative analyses revealed that 1850 genes and 356 protein species were differentially regulated at 2d and 4d after FOC inoculation. However, correlation analysis revealed that only 11 and 39 genes were differentially regulated at both the transcriptome and proteome levels after FOC inoculation at 2d and 4d, respectively. After FOC inoculation, plant hormones signal transduction, transcription factors were stimulated, whereas wax biosynthesis and photosynthesis were suppressed. Increased synthesis of oxidative-redox proteins is involved in resistance to FOC. CONCLUSIONS: This study is the first to reveal the response of C. ficifolia leaf to FOC infection at the transcriptome and proteome levels, and to show that FOC infection activates plant hormone signaling and transcription factors while suppressing wax biosynthesis and photosynthesis. The accumulation of oxidative-redox proteins also plays an important role in the resistance of C. ficifolia to FOC. Results provide new information regarding the processes of C. ficifolia leaf resistance to FOC and will contribute to the breeding of cucumber rootstock with FOC resistance.


Assuntos
Cucumis sativus , Cucurbita , Cucurbitaceae , Fusarium , Musa , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Cucurbitaceae/genética , Fusarium/genética , Perfilação da Expressão Gênica , Musa/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteoma/genética , Proteômica , Fatores de Transcrição/genética , Transcriptoma
17.
Bull Environ Contam Toxicol ; 108(6): 1132-1138, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35577927

RESUMO

In this study, pumpkin seedlings were subjected to cadmium stress (100 mg/L cadmium ion solution, 10 days) without or with wheat straw biochar at different concentrations (0%, 0.5%, 1%, and 2% w/v). As the biochar concentration increased, the amount of cadmium accumulated in the root and stem of pumpkin seedlings decreased and the fresh weight of root, stem and leaf increased. The highest cadmium concentration was in the root, followed by the stem and then the leaf. 1% and 2% biochar treatments reduced the oxidative stress of cadmium to seedlings, and added the contents of fatty acid, carbohydrate, amino acid and indoleacetic acid in the root. With the increase of biochar concentration, the metabolites promoting root growth increased. These results provide new information about how biochar alleviates cadmium stress by affecting the metabolic response.


Assuntos
Cucurbita , Poluentes do Solo , Cádmio/análise , Carvão Vegetal/química , Cucurbita/metabolismo , Plântula , Solo/química , Poluentes do Solo/análise
18.
J Plant Physiol ; 271: 153643, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35248933

RESUMO

Cucurbits have been used as phloem research models for many decades because their exudates can be accessed with ease. However, cucurbit plants possess two distinct phloem systems known as the fascicular phloem (FP) and extrafascicular phloem (EFP). Therefore, the molecular composition and function of certain exudates can be misinterpreted due to their unclear origin. To characterize the anatomy and function of the different phloem systems more clearly, we generated specific antibodies against marker proteins (PP1 homologs) allowing the clear identification of the EFP at the organ, tissue and cellular levels by immunological staining. We also used detailed microscopy to determine common and unique anatomical features of the FP and EFP sieve elements (SEs) in cucumber (Cucumis sativus). The comparison of exudation rates and the dynamic viscosity, density and sugar content of the exudates from plants grown in the light and dark revealed the consistent composition and behavior of the EFP exudate even when photosynthesis was prevented, thus differing from the properties of the FP exudate. Furthermore, the analysis of phloem transport using a fluorescein disodium salt showed only wound-induced exudation of dye from the EFP, indicating the absence of transport in this tissue. Our results show that it is important to distinguish between the EFP and FP in cucurbits, particularly their differing behaviors in response to wounding.


Assuntos
Cucumis sativus , Cucurbita , Transporte Biológico , Cucumis sativus/metabolismo , Cucurbita/anatomia & histologia , Cucurbita/metabolismo , Floema/metabolismo , Fotossíntese
19.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613606

RESUMO

It is generally recognized that the root uptake capacity of grafted plants strongly depends on the rootstocks' well-developed root system. However, we found that grafted plants showed different nitrate uptake capacities when different varieties of oriental melon scion were grafted onto the same squash rootstock, suggesting that the scion regulated the nitrate uptake capacity of the rootstock root. In this study, we estimated the nitrate uptake capacity of grafted plants with the different oriental melon varieties' seedlings grafted onto the same squash rootstocks. The results indicated a significant difference in the nitrate uptake rate and activity of two heterologous grafting plants. We also showed a significant difference in CmoNRT2.1 expression in the roots of two grafting combinations and verified the positive regulation of nitrate uptake by CmoNRT2.1 expression. In addition, the two varieties of oriental melon scion had highly significant differences in CmHY5 expression, which was transported to the rootstock and positively induced CmoHY5-1 and CmoHY5-2 expression in the rootstock roots. Meanwhile, CmHY5 could positively regulate CmoNRT2.1 expression in the rootstock roots. Furthermore, CmoHY5-1 and CmoHY5-2 also positively regulated CmoNRT2.1 expression, respectively, and CmoHY5-1 dominated the positive regulation of CmoNRT2.1, while CmHY5 could interact with CmoHY5-1 and CmoHY5-2, respectively, to jointly regulate CmoNRT2.1 expression. The oriental melon scion regulated the nitrate uptake capacity of the melon/squash grafting plant roots, and the higher expression of CmHY5 in the oriental melon scion leaves, the more substantial the nitrate uptake capacity of squash rootstock roots.


Assuntos
Cucumis melo , Cucurbita , Cucurbitaceae , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Nitratos/metabolismo , Fatores de Transcrição/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Transporte de Íons , Cucumis melo/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
20.
J Complement Integr Med ; 19(2): 345-352, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883006

RESUMO

OBJECTIVES: Inflammation, insulin resistance, hyperinsulinemia and cell damage are the major patho-physiological reasons behind type 2 diabetes (T2DM), which is one of the most prevalent non communicable metabolic disorders in the world. Oral hypoglycemic drugs and insulin shots are usually exercised to treat the diabetic patients but it produces many side effects. Thereby paving the way for natural hypoglycemic agents; a Himalayan herb and alternative nutritional therapy; low glycaemic indexed pumpkin seed, are used in combination for a better management of the disease. The aim of the study was to explore the combined efficacy of Gymnadenia orchidis Lindl root Salep and low-glycemic indexed-pumpkin seeds in better management of T2DM and associated complications. METHODS: Balb/c mice were randomly allocated to six different groups (n=5). Streptozotocin along with high-fat-diet was used to induce T2DM. The experimental animals were supplemented with low-glycemic food or root Salep (200 mg/kg body weight) or combination of both according to their groups for 21 days, post which various biochemical tests were performed. RESULTS: T2DM augmented the IL-6, IFN-γ, TNF-α, BAX, Insulin levels, and HOMA-IR with concurrent reduction of IL-4, QUICKI, Bcl-2, estradiol and progesterone levels. FACS revealed augmented cellular damage in T2DM mice. Interestingly, root Salep and pumpkin seeds normalized those parameters in T2DM animals suggesting significant (p<0.001) improvement of immunity of the diseased animals and ameliorated associated complications. CONCLUSIONS: Root Salep and pumpkin seed display synergism among binomial set of herbal agents which may be safely used for T2DM management.


Assuntos
Cucurbita , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Orchidaceae , Animais , Glicemia/metabolismo , Cucurbita/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Camundongos , Orchidaceae/metabolismo , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...