Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 884
Filtrar
1.
Int J Nanomedicine ; 19: 4339-4356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774026

RESUMO

Background: The in vivo barriers and multidrug resistance (MDR) are well recognized as great challenges for the fulfillment of antitumor effects of current drugs, which calls for the development of novel therapeutic agents and innovative drug delivery strategies. Nanodrug (ND) combining multiple drugs with distinct modes of action holes the potential to circumvent these challenges, while the introduction of photothermal therapy (PTT) can give further significantly enhanced efficacy in cancer therapy. However, facile preparation of ND which contains dual drugs and photothermal capability with effective cancer treatment ability has rarely been reported. Methods: In this study, we selected curcumin (Cur) and doxorubicin (Dox) as two model drugs for the creation of a cocktail ND (Cur-Dox ND). We utilized polyvinylpyrrolidone (PVP) as a stabilizer and regulator to prepare Cur-Dox ND in a straightforward one-pot method. Results: The size of the resulting Cur-Dox ND can be easily adjusted by tuning the charged ratios. It was noted that both loaded drugs in Cur-Dox ND can realize their functions in the same target cell. Especially, the P-glycoprotein inhibition effect of Cur can synergistically cooperate with Dox, leading to enhanced inhibition of 4T1 cancer cells. Furthermore, Cur-Dox ND exhibited pH-responsive dissociation of loaded drugs and a robust photothermal translation capacity to realize multifunctional combat of cancer for photothermal enhanced anticancer performance. We further demonstrated that this effect can also be realized in 3D multicellular model, which possibly attributed to its superior drug penetration as well as photothermal-enhanced cellular uptake and drug release. Conclusion: In summary, Cur-Dox ND might be a promising ND for better cancer therapy.


Assuntos
Curcumina , Doxorrubicina , Povidona , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Povidona/química , Curcumina/química , Curcumina/farmacologia , Curcumina/farmacocinética , Linhagem Celular Tumoral , Animais , Camundongos , Humanos , Nanopartículas/química , Tamanho da Partícula , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Terapia Fototérmica/métodos , Liberação Controlada de Fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Portadores de Fármacos/química , Sobrevivência Celular/efeitos dos fármacos
2.
Int J Nanomedicine ; 19: 4217-4234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766660

RESUMO

Introduction: Rheumatoid arthritis (RA) is an inflammatory immune-mediated disease that involves synovitis, cartilage destruction, and even joint damage. Traditional agents used for RA therapy remain unsatisfactory because of their low efficiency and obvious adverse effects. Therefore, we here established RA microenvironment-responsive targeted micelles that can respond to the increase in reactive oxygen species (ROS) levels in the joint and improve macrophage-specific targeting of loaded drugs. Methods: We here prepared ROS-responsive folate-modified curcumin micelles (TK-FA-Cur-Ms) in which thioketal (TK) was used as a ROS-responsive linker for modifying polyethylene glycol 5000 (PEG5000) on the micellar surface. When micelles were in the ROS-overexpressing inflammatory microenvironment, the PEG5000 hydration layer was shed, and the targeting ligand FA was exposed, thereby enhancing cellular uptake by macrophages through active targeting. The targeting, ROS sensitivity and anti-inflammatory properties of the micelles were assessed in vitro. Collagen-induced arthritis (CIA) rats model was utilized to investigate the targeting, expression of serum inflammatory factors and histology change of the articular cartilage by micelles in vivo. Results: TK-FA-Cur-Ms had a particle size of 90.07 ± 3.44 nm, which decreased to 78.87 ± 2.41 nm after incubation with H2O2. The micelles exhibited in vitro targeting of RAW264.7 cells and significantly inhibited inflammatory cytokine levels. Pharmacodynamic studies have revealed that TK-FA-Cur-Ms prolonged the drug circulation and exhibited augmented cartilage-protective and anti-inflammatory effects in vivo. Conclusion: The unique ROS-responsive targeted micelles with targeting, ROS sensitivity and anti-inflammatory properties were successfully prepared and may offer an effective therapeutic strategy against RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Curcumina , Ácido Fólico , Micelas , Espécies Reativas de Oxigênio , Animais , Curcumina/farmacologia , Curcumina/química , Curcumina/farmacocinética , Curcumina/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Ratos , Artrite Reumatoide/tratamento farmacológico , Células RAW 264.7 , Camundongos , Ácido Fólico/química , Ácido Fólico/farmacologia , Artrite Experimental/tratamento farmacológico , Polietilenoglicóis/química , Portadores de Fármacos/química , Receptores de Folato com Âncoras de GPI/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Tamanho da Partícula , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Modelos Animais de Doenças
3.
AAPS PharmSciTech ; 25(5): 113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750336

RESUMO

Transport of oral nanocarriers across the GI epithelium necessitates transport across hydrophilic mucus layer and the hydrophobic epithelium. Based on hydrophobic-hydrophilic balance, Curcumin-Lipomer (lipid-polymer hybrid nanoparticles) comprising hydrophobic stearic acid and hydrophilic Gantrez™ AN 119 (Gantrez) were developed, by a radical in-situ approach, to successfully traverse both barriers. A monophasic preconcentrate (Cur-Pre) comprising Cur (Curcumin), stearic acid, Gantrez and stabilizers, prepared by simple solution, was added to an aqueous phase to instantaneously generate Curcumin-Lipomer (Cur-Lipo) of nanosize and high entrapment efficiency (EE). Cur-Lipo size and EE was optimized by Box-Behnken Design. Cur-Lipomers of varying hydrophobic-hydrophilic property obtained by varying the stearic acid: Gantrez ratio exhibited size in the range 200-400 nm, EE > 95% and spherical morphology as seen in the TEM. A decrease in contact angle and in mucus interaction, evident with increase in Gantrez concentration, indicated an inverse corelation with hydrophilicity, while a linear corelation was observed for mucopenetration and hydrophilicity. Cur-SLN (solid lipid nanoparticles) which served as the hydrophobic reference revealed contact angle > 90°, maximum interaction with mucus and minimal mucopenetration. The ex-vivo permeation study through chicken ileum, revealed maximum permeation with Cur-Lipo1 and comparable and significantly lower permeation of Cur-Lipo1-D and Cur-SLN proposing the importance of balancing the hydrophobic-hydrophilic property of the nanoparticles. A 1.78-fold enhancement in flux of hydrophobic Cur-SLN, with no significant change in permeation of the hydrophilic Cur-Lipomers (p > 0.05) following stripping off the mucosal layer was observed. This reiterated the significance of hydrophobic-hydrophilic balance as a promising strategy to design nanoformulations with superior permeation across the GI barrier.


Assuntos
Curcumina , Portadores de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Mucosa Intestinal , Nanopartículas , Ácidos Esteáricos , Nanopartículas/química , Administração Oral , Animais , Ácidos Esteáricos/química , Curcumina/administração & dosagem , Curcumina/farmacocinética , Curcumina/química , Mucosa Intestinal/metabolismo , Portadores de Fármacos/química , Tamanho da Partícula , Lipídeos/química , Polímeros/química , Transporte Biológico/fisiologia , Polivinil/química
4.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673967

RESUMO

Breast cancer is one of the leading causes of death in the female population because of the resistance of cancer cells to many anticancer drugs used. Curcumin has cytotoxic activities against breast cancer cells, although it has limited use due to its poor bioavailability and rapid metabolic elimination. The synthesis of metal complexes of curcumin and curcuminoids is a relevant topic in the search for more active and selective derivatives of these molecular scaffolds. However, solubility and bioavailability are concomitant disadvantages of these types of molecules. To overcome such drawbacks, the preparation of inclusion complexes offers a chemical and pharmacologically safe option for improving the aqueous solubility of organic molecules. Herein, we describe the preparation of the inclusion complex of dimethoxycurcumin magnesium complex (DiMeOC-Mg, (4)) with beta-cyclodextrin (DiMeOC-Mg-BCD, (5)) in the stoichiometric relationship 1:1. This new inclusion complex's solubility in aqueous media phosphate buffer saline (PBS) was improved by a factor of 6x over the free metal complex (4). Furthermore, 5 affects cell metabolic rate, cell morphology, cell migration, induced apoptosis, and downregulation of the matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), and signal transducer and activator of transcription-3 (STAT3) expression levels on MD Anderson metastasis breast-231 cancer (MDA-MB-231) cell lines. Results of an antitumor assay in an in ovo model showed up to 30% inhibition of tumor growth for breast cancer (MDA-MB-231) when using (5) (0.650 mg/kg dose) and 17.29% inhibition with the free homoleptic metal complex (1.5 mg/kg dose, (4)). While the formulation of inclusion complexes from metal complexes of curcuminoids demonstrates its usefulness in improving the solubility and bioavailability of these metallodrugs, the new compound (5) exhibits excellent potential for use as a therapeutic agent in the battle against breast cancer.


Assuntos
Antineoplásicos , Curcumina , Curcumina/análogos & derivados , Magnésio , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Curcumina/farmacologia , Curcumina/química , Curcumina/farmacocinética , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Magnésio/química , Apoptose/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Movimento Celular/efeitos dos fármacos , Solubilidade , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Embrião de Galinha , Metaloproteinase 9 da Matriz/metabolismo
5.
Pharm Dev Technol ; 29(4): 322-338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502578

RESUMO

AIMS: Micellar systems have the advantage of being easily prepared, cheap, and readily loadable with bioactive molecular cargo. However, their fundamental pitfall is poor stability, particularly under dilution conditions. We propose to use simple quaternary ammonium surfactants, namely, hexadecylamine (HDA) and hexadecylpyridinium (HDAP), together with tripolyphosphate (TPP) anion, to generate ionotropically stabilized micelles capable of drug delivery into cancer cells. METHODS: optimized mixed HDA/HDAP micelles were prepared and stabilized with TPP. Curcumin was used as a loaded model drug. The prepared nanoparticles were characterized by dynamic light scattering, infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry. Moreover, their cellular uptake was assessed using flow cytometry and confocal fluorescence microscopy. RESULTS: The prepared nanoparticles were found to be stable under dilution and at high temperatures and to have a size range from 139 nm to 580 nm, depending on pH (4.6-7.4), dilution (up to 100 times), and temperature (25 - 80 °C). They were effective at delivering their load into cancer cells. Additionally, flow cytometry indicated the resulting stabilized micellar nanoparticles to be non-cytotoxic. CONCLUSIONS: The described novel stabilized micelles are simple to prepare and viable for cancer delivery.


Assuntos
Aminas , Curcumina , Sistemas de Liberação de Medicamentos , Micelas , Nanopartículas , Polifosfatos , Humanos , Aminas/química , Polifosfatos/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Curcumina/administração & dosagem , Curcumina/química , Curcumina/farmacologia , Curcumina/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Portadores de Fármacos/química , Tensoativos/química , Tensoativos/síntese química , Tamanho da Partícula , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
6.
Am J Vet Res ; 85(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408436

RESUMO

OBJECTIVE: To investigate the role of curcumin in the regulation of P-glycoprotein (P-gp) and its influence on the pharmacokinetics of P-gp substrates. SAMPLE: 39 broiler chicken and chicken embryonic primary hepatocytes. METHODS: Chicken embryonic primary hepatocytes were treated with curcumin, after which cell viability, P-gp expression, and transport were assessed. Broiler chickens were pretreated with curcumin, after which P-gp expression and the pharmacokinetic behavior of orally administered sulfadiazine (a substrate of P-gp) were measured. RESULTS: The preliminary results showed that the viability of chicken embryonic primary hepatocytes was enhanced by pretreatment with 40, 60, and 100 µM curcumin. Curcumin inhibits the expression and transport of P-gp. In vivo experiments showed that curcumin decreased the expression of P-gp in the broiler chicken liver, kidney, and small intestine. Pretreatment with curcumin changed the pharmacokinetic behavior of orally administered sulfadiazine by increasing the area under the curve (47.36 vs 70.35 h·mg/L, P < .01) and peak concentration (10.1 vs 14.53 µg/mL, P < .01). CLINICAL RELEVANCE: Curcumin inhibited the expression and efflux of chicken P-gp, thereby improving the oral bioavailability of P-gp substrate drugs. These findings provide a rationale for exploiting herbal-drug interactions in veterinary practice to improve the absorption of drugs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Galinhas , Curcumina , Hepatócitos , Animais , Curcumina/farmacocinética , Curcumina/farmacologia , Curcumina/administração & dosagem , Galinhas/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Embrião de Galinha , Sulfadiazina/farmacocinética , Sulfadiazina/farmacologia , Sulfadiazina/administração & dosagem , Transporte Biológico , Fígado/metabolismo
7.
Chem Biodivers ; 21(5): e202302030, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401117

RESUMO

Curcumin is a diverse natural pharmacological agent involved in various signal transduction mechanisms. Therapeutically, this potent molecule faces different challenges and issues related to low bioavailability due to its poor aqueous solubility, less permeability, faster elimination and clearance. Experts in synthetic chemistry and pharmaceuticals are continuously sparing their efforts to overcome these pharmacokinetic challenges by using different structural modification strategies and developing novel drug delivery systems. In this mini-review article, we are focusing on development of curcumin derivatives by different possible routes like conjugation with biomolecules, natural polymers, synthetic polymers, natural products, metal conjugates and co- administration with natural metabolic inhibitors. In addition to that, it was also focused on the preparation of modified formulations such as micelles, microemulsions, liposomes, complexes with phospholipids, micro and nanoemulsions, solid lipid nanoparticles, nano lipid carriers, biopolymer nanoparticles and microgels to improve the pharmacokinetic properties of the curcumin without altering its pharmacodynamics activity. This review helps to understand the problems associated with curcumin and different strategies to improve its pharmacokinetic profile.


Assuntos
Disponibilidade Biológica , Curcumina , Pró-Fármacos , Curcumina/química , Curcumina/farmacologia , Curcumina/farmacocinética , Humanos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/farmacocinética , Composição de Medicamentos , Animais , Nanopartículas/química
8.
J Agric Food Chem ; 71(42): 15632-15643, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37824789

RESUMO

In vitro dissolution methods correctly predicting in vivo bioavailability of compounds from complex mixtures are lacking. We therefore used data on the in vivo performance of bioavailability-improved curcumin formulations to implement an in vivo predictive dissolution method (BiPHa+). BiPHa+ was applied for the characterization of eight curcumin formulations previously studied in a strictly controlled pharmacokinetic human trial. During dissolution, the dissolved proportion of curcumin in the aqueous medium underwent a formulation-dependent reduction, whereas the proportion remained stable in the organic layer. Compared with conventional dissolution systems, BiPHa+ was superior in terms of in vivo-relevant formulation characterization. All formulations could be precisely categorized according to their bioavailability in humans. In vitro-in vivo relationships for each dissolution method were established, with BiPHa+ providing the highest degree of linearity (r2 = 0.9975). The BiPHa+ assay correctly predicted the bioavailability of curcuminoids from complex mixtures and provided mechanistic information about formulation-dependent release characteristics.


Assuntos
Curcumina , Humanos , Disponibilidade Biológica , Curcumina/farmacocinética , Solubilidade , Diarileptanoides , Misturas Complexas
9.
Inflammopharmacology ; 31(3): 1449-1464, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36856916

RESUMO

Alzheimer's disease (AD) is one of the most prevalent neurodegenerative illnesses, and yet, no workable treatments have been discovered to prevent or reverse AD. Curcumin (CUR), the major polyphenolic compound of turmeric (Curcuma longa) rhizomes, and Ginkgo biloba extract (GBE) are natural substances derived from conventional Chinese herbs that have long been shown to provide therapeutic advantages for AD. The uptake of curcumin into the brain is severely restricted by its low ability to cross the blood-brain barrier (BBB). Meanwhile, GBE has been shown to improve BBB permeability. The present study evaluated the neuroprotective effects and pharmacokinetic profile of curcumin and GBE combination to find out whether GBE can enhance curcumin's beneficial effects in AD by raising its brain concentration. Results revealed that CUR + GBE achieved significantly higher levels of curcumin in the brain and plasma after 30 min and 1 h of oral administration, compared to curcumin alone, and this was confirmed by reversed phase high-performance liquid chromatography (RP-HPLC). The effect of combined oral treatment, for 28 successive days, on cognitive function and other AD-like alterations was studied in scopolamine-heavy metal mixtures (SCO + HMM) AD model in rats. The combination reversed at least, partially on the learning and memory impairment induced by SCO + HMM. This was associated with a more pronounced inhibitory effect on acetylcholinesterase (AChE), caspase-3, hippocampal amyloid beta (Aß1-42), and phosphorylated tau protein (p-tau) count, and pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukine-1beta (IL-1ß), as compared to the curcumin alone-treated group. Additionally, the combined treatment significantly decreased lipid peroxidation (MDA) and increased levels of reduced glutathione (GSH), when compared with the curcumin alone. These findings support the concept that the combination strategy might be an alternative therapy in the management/prevention of neurological disorders. This study sheds light on a new approach for exploring new phyto-therapies for AD and emphasizes that more research should focus on the synergic effects of herbal drugs in future.


Assuntos
Doença de Alzheimer , Curcumina , Fármacos Neuroprotetores , Animais , Ratos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Curcumina/farmacocinética , Curcumina/farmacologia , Curcumina/uso terapêutico , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extrato de Ginkgo/farmacocinética , Extrato de Ginkgo/farmacologia , Extrato de Ginkgo/uso terapêutico , Humanos , Barreira Hematoencefálica
10.
Eur J Drug Metab Pharmacokinet ; 48(2): 189-199, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36800055

RESUMO

BACKGROUND AND OBJECTIVE: Many naturally available dietary molecules such as curcumin have not seen the market due to poor solubility, bioavailability, and photodegradability. Successful development of a lipid-based dry emulsion may overcome these issues and help in reaching the markets for natural dietary molecules such as curcumin. The current study aims to develop a dry emulsion formulation of curcumin using natural oil and evaluate its dissolution, photostability, pharmacokinetics, and anti-inflammatory activity. METHODS: Dry emulsions were prepared using emu oil and corn oil as the lipid phase, Caproyl 90 and Cremophor RH 40 as surfactants, and dextrin as a hydrophilic carrier. RESULTS: Microscopic studies showed the formation of spherical porous particles, and solid-state characterization using differential scanning calorimetry and powder X-ray diffraction showed the conversion of curcumin to an amorphous form. About 80% drug release was observed from formulation, whereas pure drug showed only 50% drug release in 30 min. In vivo pharmacokinetic studies showed fivefold improvement in the maximum concentration of curcumin in plasma (Cmax) and sevenfold improvement in the area under the concentration-time curve of curcumin from emu oil formulation compared with pure curcumin. Significant differences were observed in the anti-inflammatory activity of curcumin dry emulsion and plain curcumin. Emu-oil-based formulations showed synergistic anti-inflammatory activity over corn-oil-based formulations with improved photostability. CONCLUSION: The present study suggests that the dry emulsion may enhance the bioavailability with synergistic anti-inflammatory activity and photostability of curcumin when given orally.


Assuntos
Curcumina , Ratos , Animais , Curcumina/farmacocinética , Ratos Sprague-Dawley , Emulsões/química , Sistemas de Liberação de Medicamentos , Anti-Inflamatórios/farmacologia , Disponibilidade Biológica , Excipientes/química , Solubilidade
11.
Biopharm Drug Dispos ; 44(2): 183-191, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36638836

RESUMO

Curcumin (CUR), derived from the dietary spice turmeric, is a polyphenolic compound with various biological and pharmacological activities. Tetrahydrocurcumin (THC) is one of the major reductive metabolites of curcumin. A pharmacokinetic study using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for the simultaneous determination of curcumin, THC, quercetin (QR), and paeoniflorin (PF) in rat plasma had been performed. In this study, the regional distributions of curcumin and tetrahydrocurcumin in the liver and the three segments of small intestine (duodenum, jejunum, and ileum) of rats when orally co-administered with quercetin and paeoniflorin were carried out. Drug concentrations were determined using UHPLC-MS/MS. The results showed that curcumin was well distributed in the small intestine, while the distributions of tetrahydrocurcumin in the liver, duodenum, jejunum were similar, but much more abundant in the ileum. When orally co-administered with quercetin and paeoniflorin, the tissue to plasma concentration ratios (Kp values) of curcumin in the three segments of the small intestine were increased, indicating that the presence of quercetin and paeoniflorin increases the distribution of curcumin in these regions. Moreover, the half-life (t1/2 ) of THC in the liver was significantly prolonged, and the Kp value of THC in the liver was increased and the Kp values in the small intestine were decreased, suggesting that the combination of quercetin and paeoniflorin might suppress the metabolism of curcumin in the small intestine. In brief, the combination had an effect on the distributions of curcumin and tetrahydrocurcumin in the liver and small intestine of rats.


Assuntos
Curcumina , Quercetina , Ratos , Animais , Quercetina/metabolismo , Quercetina/farmacologia , Curcumina/farmacocinética , Espectrometria de Massas em Tandem/métodos , Fígado/metabolismo , Íleo
12.
Nutrients ; 14(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558506

RESUMO

There is a growing interest for curcuminoids in the general population and the scientific research community. Curcuminoids, derived from turmeric spice, are lipophiles and therefore have a low solubility in water which hence have a low bioavailability in the human plasma. To circumvent this issue, a natural product developed by Biodroga Nutraceuticals combined curcuminoids with omega-3 fatty acids (OM3) esterified in monoglycerides (MAG). The objective was to perform a 24 h pharmacokinetics in humans receiving a single dose of curcuminoid formulated by three different means, and to compare their plasma curcuminoids concentration. Sixteen males and fifteen females tested three formulations: 400 mg of curcuminoids powder extract, 400 mg of curcuminoids in rice oil and 400 mg of curcuminoids with 1 g MAG-OM3. Blood samples were collected at 0, 1, 2, 3, 4, 5, 6, 8, 10 and 24 h post dose intake. Plasma samples were analyzed by ultra high-performance liquid chromatography with a triple quadrupole mass spectrometer (UPLC-MS/MS). Twenty-four hours after a single dose intake, the total plasma curcuminoids area under the curve (AUC) reached 166.8 ± 17.8 ng/mL*h, 134.0 ± 12.7 ng/mL*h and 163.1 ± 15.3 ng/mL*h when curcuminoids were provided with MAG-OM3, with rice oil or in powder, respectively. The Cmax of total curcuminoids reached between 11.9-17.7 ng/mL at around 4 h (Tmax). One-hour post-dose, the curcuminoids plasma concentration was 40% higher in participants consuming the MAG-OM3 compared to the other formulations. Thus, in a young population, plasma curcuminoids 24 h pharmacokinetics and its increase shortly after the single dose intake were higher when provided with MAG-OM3 than rice oil.


Assuntos
Curcumina , Ácidos Graxos Ômega-3 , Masculino , Feminino , Humanos , Diarileptanoides , Monoglicerídeos , Cromatografia Líquida , Pós , Espectrometria de Massas em Tandem , Glicerídeos , Curcumina/farmacocinética , Estudos Cross-Over
13.
Biosci Biotechnol Biochem ; 86(12): 1688-1694, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36195320

RESUMO

The pharmacokinetics of novel formulations of curcumin mixed with squalene (CSQU) and of curcumin mixed with docosahexaenoic acid (CDHA) was investigated and compared with a standardized unformulated curcumin extract (StdC) and a solid lipid curcumin particle (SLCP) formulation in a randomized, open-label, crossover study. A total of 10 healthy subjects consumed a single dose of each formulation, and blood samples were collected over 8 h. Plasma concentrations of curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) were measured. The dose-normalized AUC0-8h of curcumin was significantly higher for SLCP (2.2-fold), CSQU (2.3-fold) and CDHA (2.8-fold) than for StdC. The dose-normalized AUC0-8h of DMC and BDMC did not significantly change, but their Tmax was significantly shortened for SLCP, CSQU, and CDHA. In conclusion, compared with StdC, both fish oil formulations, CSQU and CDHA, significantly improved curcumin absorption as well as SLCP, and CDHA was bioequivalent or superior to SLCP. No sex differences were observed in curcumin absorption.


Assuntos
Curcumina , Humanos , Curcumina/farmacocinética , Óleos de Peixe , Estudos Cross-Over
14.
Int J Clin Pharmacol Ther ; 60(12): 530-538, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36278294

RESUMO

OBJECTIVE: Theracurmin, which contains the curcumin composition, CR-033P, has been demonstrated to be highly bioavailable. To compare the pharmacokinetics of the three compositions, CR-033P, CR-043P using modified starch as an alternative to the dispersant gum ghatti used in the CR-033P, and TS-P1 containing the newly developed amorphous curcumin, a randomized double-blind crossover study (3-way, 3-period) was conducted. MATERIALS AND METHODS: A single dose of the curcumin capsules (TS-P1 45 mg, CR-033P 90 mg, and CR-043P 90 mg) was administered to healthy adult participants. Blood sampling was performed 24 hours after capsule administration, and the plasma concentration of total curcumin was determined using high-performance liquid chromatography coupled with tandem mass spectrometry. RESULTS: TS-P1 and CR-043P tended to have a slightly lower area under the concentration time curve (AUC) 0-24h than CR-033P, while TS-P1 displayed bioequivalence to CR-043P. Further, TS-P1 displayed bioequivalence to CR-033P in terms of AUC0-12h, while that of CR-043P tended to be lower than that of CR-033P. TS-P1 had a higher AUC0-12h than CR-043P. A statistically significant difference (p < 0.001) was found between the preparations in terms of Cmax. TS-P1 tended to have a higher Cmax than CR-033P, CR-043P tended to have a slightly lower Cmax than CR-033P, and TS-P1 tended to have a higher Cmax than CR-043P. CONCLUSION: The newly developed TS-P1 composition seemed to display similar curcumin systemic exposure except for a higher plasma concentration than the CR-033P composition. Further, only a few significant differences were found between CR-043P and CR-033P.


Assuntos
Curcumina , Adulto , Humanos , Disponibilidade Biológica , Estudos Cross-Over , Curcumina/farmacocinética , Equivalência Terapêutica , Área Sob a Curva
15.
Molecules ; 27(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35209213

RESUMO

The design of multifunctional microcarriers has attracted significant attention because they combine various functions within a single system. In this study, we developed a set of multilayered hydrogel microcarriers, which were first loaded with chemotherapeutic curcumin (CUR), then, using the layer-by-layer (LbL) technique, coated through a polyelectrolyte shell consisting of chitosan (CHIT) or poly(allylamine hydrochloride) (PAH). As an outer layer with antimicrobial function, newly synthesised alkylene quaternary ammonium salt functionalised polyelectrolytes (A-QAS-PEs) were applied. For this purpose, poly(acrylic acid) (PAA) was decorated with different hydrophobic side chains (n-hexane and n-dodecane side entities) and different degrees of substitution (m) of quaternary ammonium groups (abbreviated as PAA-C(O)O-(CH2)n-N+(CH3)3(m); n = 6, 12; m = 8-14%). The grafting approach of PAA with the alkylene quaternary ammonium salt moiety was performed under mild reaction conditions using Steglich esterification followed by quaternisation. The structure of antimicrobial decorated PAA was confirmed by 1H NMR and FTIR, and the mean diameter of all multifunctional microparticles was characterised by SEM. The viscoelastic properties of the functional layers were studied using quartz crystal microbalance with a dissipation (QCM-D). The release of CUR from the microcarriers was described using a hybrid model, i.e., a combination of first-order kinetics and the Korsmeyer-Peppas model. The antimicrobial activity of functionalised PAA and multilayered CUR-loaded hydrogel microcarriers with quaternary ammonium function was assessed against Staphylococcus aureus and Serratia marcescens by the agar diffusion assay method. Only a limited inhibition zone of PAA was observed, but in the case of both antimicrobial decorated PAA and the corresponding multilayered nanocarriers, the inhibitory activity increase was achieved against both strains of bacteria.


Assuntos
Antibacterianos , Curcumina , Portadores de Fármacos , Hidrogéis , Serratia marcescens/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia
16.
ACS Appl Bio Mater ; 5(2): 483-491, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35112841

RESUMO

Interleukin-mediated deep cytokine storm, an aggressive inflammatory response to SARS-CoV-2 virus infection in COVID-19 patients, is correlated directly with lung injury, multi-organ failure, and poor prognosis of severe COVID-19 patients. Curcumin (CUR), a phenolic antioxidant compound obtained from turmeric (Curcuma longa L.), is well-known for its strong anti-inflammatory activity. However, its in vivo efficacy is constrained due to poor bioavailability. Herein, we report that CUR-encapsulated polysaccharide nanoparticles (CUR-PS-NPs) potently inhibit the release of cytokines, chemokines, and growth factors associated with damage of SARS-CoV-2 spike protein (CoV2-SP)-stimulated liver Huh7.5 and lung A549 epithelial cells. Treatment with CUR-PS-NPs effectively attenuated the interaction of ACE2 and CoV2-SP. The effects of CUR-PS-NPs were linked to reduced NF-κB/MAPK signaling which in turn decreased CoV2-SP-mediated phosphorylation of p38 MAPK, p42/44 MAPK, and p65/NF-κB as well as nuclear p65/NF-κB expression. The findings of the study strongly indicate that organic NPs of CUR can be used to control hyper-inflammatory responses and prevent lung and liver injuries associated with CoV2-SP-mediated cytokine storm.


Assuntos
Anti-Inflamatórios/farmacologia , Curcumina/farmacologia , Síndrome da Liberação de Citocina/prevenção & controle , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Nanopartículas/química , Transdução de Sinais/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Anti-Inflamatórios/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas/biossíntese , Curcumina/química , Curcumina/farmacocinética , Citocinas/biossíntese , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Fosforilação , Glicoproteína da Espícula de Coronavírus/fisiologia
17.
Bioengineered ; 13(2): 4328-4339, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35137655

RESUMO

Healing of various skin wounds is a lengthy process and often combined with bacterial infection and scar formation. Biomimetic electrospun nanofibrous wound dressing loaded with materials that possess properties of dual antibacterial and tissue repair would be developed to address this problem. In this study, a composite chitosan electrospun nanofibrous material containing Cur@ß-CD/AgNPs nanoparticles composed of silver and curcumin possessed synergic effects on antibacterial activity and wound healing. The developed functionalized silver nanoparticles showed effective activity against both Gram-negative and Gram-positive bacteria. In vivo, Cur@ß-CD/AgNPs chitosan dressing displayed enhanced wound closure rates compared to commercial AquacelAg. Moreover, Cur@ß-CD/AgNPs chitosan dressing contributed to the most uniform collagen distribution by Masson's trichrome staining. In brief, Cur@ß-CD/AgNPs chitosan nanofibers work as a potential wound dressing with antibacterial and antiscarring properties.


Assuntos
Bandagens , Curcumina , Nanopartículas Metálicas/química , Nanofibras/química , Prata/química , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Células Cultivadas , Quitosana/química , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Técnicas Eletroquímicas , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Masculino , Camundongos , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
18.
Nutrients ; 14(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35057429

RESUMO

For thousands of years, mankind has been using plant extracts or plants themselves as medicinal herbs. Currently, there is a great deal of public interest in naturally occurring medicinal substances that are virtually non-toxic, readily available, and have an impact on well-being and health. It has been noted that dietary curcumin is one of the regulators that may positively influence changes in the brain after ischemia. Curcumin is a natural polyphenolic compound with pleiotropic biological properties. The observed death of pyramidal neurons in the CA1 region of the hippocampus and its atrophy are considered to be typical changes for post-ischemic brain neurodegeneration and for Alzheimer's disease. Additionally, it has been shown that one of the potential mechanisms of severe neuronal death is the accumulation of neurotoxic amyloid and dysfunctional tau protein after cerebral ischemia. Post-ischemic studies of human and animal brains have shown the presence of amyloid plaques and neurofibrillary tangles. The significant therapeutic feature of curcumin is that it can affect the aging-related cellular proteins, i.e., amyloid and tau protein, preventing their aggregation and insolubility after ischemia. Curcumin also decreases the neurotoxicity of amyloid and tau protein by affecting their structure. Studies in animal models of cerebral ischemia have shown that curcumin reduces infarct volume, brain edema, blood-brain barrier permeability, apoptosis, neuroinflammation, glutamate neurotoxicity, inhibits autophagy and oxidative stress, and improves neurological and behavioral deficits. The available data suggest that curcumin may be a new therapeutic substance in both regenerative medicine and the treatment of neurodegenerative disorders such as post-ischemic neurodegeneration.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Isquemia Encefálica/complicações , Curcumina/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/etiologia , Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Animais , Apoptose/efeitos dos fármacos , Atrofia/etiologia , Disponibilidade Biológica , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Edema Encefálico/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Curcumina/química , Curcumina/farmacocinética , Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Gerbillinae , Hipocampo/patologia , Humanos , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Estresse Oxidativo/efeitos dos fármacos , Ratos , Proteínas tau/efeitos dos fármacos , Proteínas tau/metabolismo
19.
Pharmacol Res ; 176: 106080, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032663

RESUMO

Combination therapy system has become a promising strategy for achieving favorable antitumor efficacy. Herein, a novel oral drug delivery system with colon localization and tumor targeting functions was designed for orthotopic colon cancer chemotherapy and photothermal combinational therapy. The polydopamine coated nanodiamond (PND) was used as the photothermal carrier, through the coupling of sulfhydryl-polyethylene glycol-folate (SH-PEG-FA) on the surface of PND to achieve systematic colon tumor targeting, curcumin (CUR) was loaded as the model drug, and then coated with chitosan (CS) to achieve the long gastrointestinal tract retention and colon localization functions to obtain PND-PEG-FA/CUR@CS nanoparticles. It has high photothermal conversion efficiency and good photothermal stability and exhibited near-infrared (NIR) laser-responsive drug release behavior. Folate (FA) modification effectively promotes the intracellular uptake of nanoparticles by CT26 cells, and the combination of chemotherapy and photothermal therapy (CT/PTT) can enhance cytotoxicity. Compared with free CUR group, nanoparticles prolonged the gastrointestinal tract retention time, accumulated more in colon tumor tissues, and exhibited good photothermal effect in vivo. More importantly, the CT/PTT group exhibited satisfactory tumor growth inhibition effects with good biocompatibility in vivo. In summary, this oral drug delivery system is an efficient platform for chemotherapy and photothermal combinational therapy of orthotopic colon cancer.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias do Colo/terapia , Curcumina/administração & dosagem , Ácido Fólico/administração & dosagem , Indóis/administração & dosagem , Nanodiamantes/administração & dosagem , Polietilenoglicóis/administração & dosagem , Polímeros/administração & dosagem , Administração Oral , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Terapia Combinada , Curcumina/química , Curcumina/farmacocinética , Liberação Controlada de Fármacos , Ácido Fólico/química , Ácido Fólico/farmacocinética , Indóis/química , Indóis/farmacocinética , Camundongos Endogâmicos BALB C , Nanodiamantes/química , Terapia Fototérmica , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polímeros/química , Polímeros/farmacocinética
20.
Food Funct ; 13(2): 639-648, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34931204

RESUMO

Based on the free drug hypothesis, we hypothesized that food compounds that bind stronger to BSA than CUR inhibit the binding between BSA and CUR, and that this results in an increase of the cellular uptake and physiological activities of CUR. To verify this hypothesis, food compounds that bind stronger to BSA than CUR were identified. When THP-1 monocytes were co-treated with the identified compounds (e.g., piperine) and CUR, cell viability significantly decreased, suggesting that the physiological activity of CUR was enhanced. Also, when THP-1 macrophages were co-treated with CUR and the identified compounds following LPS + IFNγ treatment, the decrement of TNF-α was higher compared to treatment with CUR only. Furthermore, the cellular uptake of CUR was increased during this co-treatment. Such results verify our hypothesis, and provide insights into the development of ways to enhance the physiological activities of various food compounds via focusing on their interaction with albumin.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Curcumina , Albumina Sérica , Alcaloides/efeitos adversos , Benzodioxóis/efeitos adversos , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Endocitose/efeitos dos fármacos , Humanos , Piperidinas/efeitos adversos , Alcamidas Poli-Insaturadas/efeitos adversos , Albumina Sérica/química , Albumina Sérica/metabolismo , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...