Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Biotechnol Lett ; 46(3): 459-467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523200

RESUMO

Solar ultraviolet radiations induced DNA damages in human skin cells with cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts (6-4PPs) as the most frequent lesions. CPDs are repaired much slower than 6-4PPs by the nucleotide excision repair pathway, which are thus the major lesions that interfere with key cellular processes and give rise to gene mutations, possibly resulting in skin cancer. In prokaryotes and multicellular eukaryotes other than placental mammals, CPDs can be rapidly repaired by CPD photolyases in one simple enzymatic reaction using the energy of blue light. In this study, we aim to construct recombinant CPD photolyases that can autonomously enter human cell nuclei to fix UV-induced CPDs. A fly cell penetration peptide and a viral nucleus localization signal peptide were recombined with a fungal CPD photolyase to construct a recombinant protein. This engineered CPD photolyase autonomously crosses cytoplasm and nuclear membrane of human cell nuclei, which then efficiently photo-repairs UV-induced CPD lesions in the genomic DNA. This further protects the cells by increasing SOD activity, and decreasing cellular ROSs, malondialdehyde and apoptosis.


Assuntos
Núcleo Celular , Dano ao DNA , Reparo do DNA , Desoxirribodipirimidina Fotoliase , Dímeros de Pirimidina , Proteínas Recombinantes , Raios Ultravioleta , Humanos , Desoxirribodipirimidina Fotoliase/metabolismo , Desoxirribodipirimidina Fotoliase/genética , Núcleo Celular/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
2.
Environ Mol Mutagen ; 65 Suppl 1: 14-24, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37554110

RESUMO

Exposure to ultraviolet (UV) light is the primary etiological agent for skin cancers because UV damages cellular DNA. The most frequent form of UV damage is the cyclobutane pyrimidine dimer (CPD), which consists of covalent linkages between neighboring pyrimidine bases in DNA. In human cells, the 5' position of cytosine bases in CG dinucleotides is frequently methylated, and methylated cytosines in the TP53 tumor suppressor are often sites of mutation hotspots in skin cancers. It has been argued that this is because cytosine methylation promotes UV-induced CPD formation; however, the effects of cytosine methylation on CPD formation are controversial, with conflicting results from previous studies. Here, we use a genome-wide method known as CPD-seq to map UVB- and UVC-induced CPDs across the yeast genome in the presence or absence in vitro methylation by the CpG methyltransferase M.SssI. Our data indicate that cytosine methylation increases UVB-induced CPD formation nearly 2-fold relative to unmethylated DNA, but the magnitude of induction depends on the flanking sequence context. Sequence contexts with a 5' guanine base (e.g., GCCG and GTCG) show the strongest induction due to cytosine methylation, potentially because these sequence contexts are less efficient at forming CPD lesions in the absence of methylation. We show that cytosine methylation also modulates UVC-induced CPD formation, albeit to a lesser extent than UVB. These findings can potentially reconcile previous studies, and define the impact of cytosine methylation on UV damage across a eukaryotic genome.


Assuntos
Dímeros de Pirimidina , Neoplasias Cutâneas , Humanos , Dímeros de Pirimidina/genética , Sequência de Bases , Dano ao DNA , Metilação de DNA/genética , Citosina , DNA/genética , Raios Ultravioleta/efeitos adversos , Neoplasias Cutâneas/etiologia
3.
Mol Cell ; 83(20): 3669-3678.e7, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37816354

RESUMO

UV irradiation induces "bulky" DNA photodimers such as (6-4)-photoproducts and cyclobutane pyrimidine dimers that are removed by nucleotide excision repair, a complex process defective in the sunlight-sensitive and cancer-prone disease xeroderma pigmentosum. Some bacteria and lower eukaryotes can also repair photodimers by enzymatically simpler mechanisms, but such pathways have not been reported in normal human cells. Here, we have identified such a mechanism. We show that normal human cells can employ a DNA base excision repair process involving NTH1, APE1, PARP1, XRCC1, and FEN1 to rapidly remove a subset of photodimers at early times following UVC irradiation. Loss of these proteins slows the early rate of repair of photodimers in normal cells, ablates their residual repair in xeroderma pigmentosum cells, and increases UVC sensitivity ∼2-fold. These data reveal that human cells can excise photodimers using a long-patch base excision repair process that functions additively but independently of nucleotide excision repair.


Assuntos
Xeroderma Pigmentoso , Humanos , Xeroderma Pigmentoso/genética , Reparo do DNA/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Dano ao DNA/genética , DNA/genética , Raios Ultravioleta , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
4.
Chem Commun (Camb) ; 59(91): 13603-13606, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37899697

RESUMO

Nucleic acids can be damaged by ultraviolet (UV) irradiation, forming structural photolesions such as cyclobutane-pyrimidine-dimers (CPD). In modern organisms, sophisticated enzymes repair CPD lesions in DNA, but to our knowledge, no RNA-specific enzymes exist for CPD repair. Here, we show for the first time that RNA can protect itself from photolesions by an intrinsic UV-induced self-repair mechanism. This mechanism, prior to this study, has exclusively been observed in DNA and is based on charge transfer from CPD-adjacent bases. In a comparative study, we determined the quantum yields of the self-repair of the CPD-containing RNA sequence, GAU = U to GAUU (0.23%), and DNA sequence, d(GAT = T) to d(GATT) (0.44%), upon 285 nm irradiation via UV/Vis spectroscopy and HPLC analysis. After several hours of irradiation, a maximum conversion yield of ∼16% for GAU = U and ∼33% for d(GAT = T) was reached. We examined the dynamics of the intermediate charge transfer (CT) state responsible for the self-repair with ultrafast UV pump - IR probe spectroscopy. In the dinucleotides GA and d(GA), we found comparable quantum yields of the CT state of ∼50% and lifetimes on the order of several hundred picoseconds. Charge transfer in RNA strands might lead to reactions currently not considered in RNA photochemistry and may help understanding RNA damage formation and repair in modern organisms and viruses. On the UV-rich surface of the early Earth, these self-stabilizing mechanisms likely affected the selection of the earliest nucleotide sequences from which the first organisms may have developed.


Assuntos
Reparo do DNA , Dímeros de Pirimidina , Dímeros de Pirimidina/química , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efeitos da radiação , RNA , DNA/química , Raios Ultravioleta , Dano ao DNA
5.
Nat Commun ; 14(1): 2702, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169747

RESUMO

Sequencing of melanomas has identified hundreds of recurrent mutations in both coding and non-coding DNA. These include a number of well-characterized oncogenic driver mutations, such as coding mutations in the BRAF and NRAS oncogenes, and non-coding mutations in the promoter of telomerase reverse transcriptase (TERT). However, the molecular etiology and significance of most of these mutations is unknown. Here, we use a new method known as CPD-capture-seq to map UV-induced cyclobutane pyrimidine dimers (CPDs) with high sequencing depth and single nucleotide resolution at sites of recurrent mutations in melanoma. Our data reveal that many previously identified drivers and other recurrent mutations in melanoma occur at CPD hotspots in UV-irradiated melanocytes, often associated with an overlapping binding site of an E26 transformation-specific (ETS) transcription factor. In contrast, recurrent mutations in the promoters of a number of known or suspected cancer genes are not associated with elevated CPD levels. Our data indicate that a subset of recurrent protein-coding mutations are also likely caused by ETS-induced CPD hotspots. This analysis indicates that ETS proteins profoundly shape the mutation landscape of melanoma and reveals a method for distinguishing potential driver mutations from passenger mutations whose recurrence is due to elevated UV damage.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/metabolismo , Mutação , Dímeros de Pirimidina/genética , Dano ao DNA , Melanócitos/metabolismo , Raios Ultravioleta/efeitos adversos , Neoplasias Cutâneas/genética
6.
Dev Growth Differ ; 65(4): 194-202, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36880984

RESUMO

Ultraviolet B (UVB) in sunlight cause skin damage, ranging from wrinkles to photoaging and skin cancer. UVB can affect genomic DNA by creating cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidine (6-4) photoproducts (6-4PPs). These lesions are mainly repaired by the nucleotide excision repair (NER) system and by photolyase enzymes that are activated by blue light. Our main goal was to validate the use of Xenopus laevis as an in vivo model system for investigating the impact of UVB on skin physiology. The mRNA expression levels of xpc and six other genes of the NER system and CPD/6-4PP photolyases were found at all stages of embryonic development and in all adult tissues tested. When examining Xenopus embryos at different time points after UVB irradiation, we observed a gradual decrease in CPD levels and an increased number of apoptotic cells, together with an epidermal thickening and an increased dendricity of melanocytes. We observed a quick removal of CPDs when embryos are exposed to blue light versus in the dark, confirming the efficient activation of photolyases. A decrease in the number of apoptotic cells and an accelerated return to normal proliferation rate was noted in blue light-exposed embryos compared with their control counterparts. Overall, a gradual decrease in CPD levels, detection of apoptotic cells, thickening of epidermis, and increased dendricity of melanocytes, emulate human skin responses to UVB and support Xenopus as an appropriate and alternative model for such studies.


Assuntos
Dano ao DNA , Desoxirribodipirimidina Fotoliase , Animais , Humanos , Xenopus laevis/metabolismo , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Raios Ultravioleta/efeitos adversos
7.
Proc Natl Acad Sci U S A ; 120(10): e2216907120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36853943

RESUMO

Ultraviolet (UV) light induces different classes of mutagenic photoproducts in DNA, namely cyclobutane pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and atypical thymine-adenine photoproducts (TA-PPs). CPD formation is modulated by nucleosomes and transcription factors (TFs), which has important ramifications for Ultraviolet (UV) mutagenesis. How chromatin affects the formation of 6-4PPs and TA-PPs is unclear. Here, we use UV damage endonuclease-sequencing (UVDE-seq) to map these UV photoproducts across the yeast genome. Our results indicate that nucleosomes, the fundamental building block of chromatin, have opposing effects on photoproduct formation. Nucleosomes induce CPDs and 6-4PPs at outward rotational settings in nucleosomal DNA but suppress TA-PPs at these settings. Our data also indicate that DNA binding by different classes of yeast TFs causes lesion-specific hotspots of 6-4PPs or TA-PPs. For example, DNA binding by the TF Rap1 generally suppresses CPD and 6-4PP formation but induces a TA-PP hotspot. Finally, we show that 6-4PP formation is strongly induced at the binding sites of TATA-binding protein (TBP), which is correlated with higher mutation rates in UV-exposed yeast. These results indicate that the formation of 6-4PPs and TA-PPs is modulated by chromatin differently than CPDs and that this may have important implications for UV mutagenesis.


Assuntos
Cromatina , Saccharomyces cerevisiae , Cromatina/genética , Saccharomyces cerevisiae/genética , Nucleossomos/genética , Mutagênese , Mutagênicos , Adenina , Dímeros de Pirimidina/genética
8.
Curr Protoc ; 2(11): e595, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36374013

RESUMO

The formation and persistence of DNA damage can impact biological processes such as DNA replication and transcription. To maintain genome stability and integrity, organisms rely on robust DNA damage repair pathways. Techniques to detect and locate DNA damage sites across a genome enable an understanding of the consequences of DNA damage as well as how damage is repaired, which can have key diagnostic and therapeutic implications. Importantly, advancements in technology have enabled the development of high-throughput sequencing-based DNA damage detection methods. These methods require DNA enrichment or amplification steps that limit the ability to quantitate the DNA damage sites. Further, each of these methods is typically tailored to detect only a specific type of damage. RAre DAmage and Repair (RADAR) sequencing is a DNA sequencing workflow that overcomes these limitations and enables detection and quantitation of DNA damage sites in any organism on a genome-wide scale. RADAR-seq works by replacing DNA damage sites with a patch of modified bases that can be directly detected by Pacific Biosciences Single-Molecule Real Time sequencing. Here, we present three protocols that enable detection of thymine dimers and ribonucleotides in bacterial and archaeal genomes. Basic Protocol 1 enables construction of a reference genome required for RADAR-seq analyses. Basic Protocol 2 describes how to locate, quantitate, and compare thymine dimer levels in Escherichia coli exposed to varying amounts of UV light. Basic Protocol 3 describes how to locate, quantitate, and compare ribonucleotide levels in wild-type and ΔRNaseH2 Thermococcus kodakarensis. Importantly, all three protocols provide in-depth steps for data analysis. Together they serve as proof-of-principle experiments that will allow users to adapt the protocols to locate and quantitate a wide variety of DNA damage sites in any organism. © 2022 New England Biolabs. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Constructing a reference genome utilizing SMRT sequencing Basic Protocol 2: Mapping and quantitating genomic thymine dimer formation in untreated versus UV-irradiated E. coli using RADAR-seq Basic Protocol 3: Mapping and quantitating genomic ribonucleotide incorporation in wildtype versus ΔRNaseH2 T. kodakarensis using RADAR-seq.


Assuntos
Reparo do DNA , Dímeros de Pirimidina , Dímeros de Pirimidina/genética , Reparo do DNA/genética , Escherichia coli/genética , Dano ao DNA/genética , Ribonucleotídeos , Genoma Arqueal
9.
PLoS Genet ; 18(9): e1010426, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36155646

RESUMO

Nucleotide excision repair is the primary repair mechanism that removes UV-induced DNA lesions in placentals. Unrepaired UV-induced lesions could result in mutations during DNA replication. Although the mutagenesis of pyrimidine dimers is reasonably well understood, the direct effects of replication fork progression on nucleotide excision repair are yet to be clarified. Here, we applied Damage-seq and XR-seq techniques and generated replication maps in synchronized UV-treated HeLa cells. The results suggest that ongoing replication stimulates local repair in both early and late replication domains. Additionally, it was revealed that lesions on lagging strand templates are repaired slower in late replication domains, which is probably due to the imbalanced sequence context. Asymmetric relative repair is in line with the strand bias of melanoma mutations, suggesting a role of exogenous damage, repair, and replication in mutational strand asymmetry.


Assuntos
Dímeros de Pirimidina , Raios Ultravioleta , DNA/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Células HeLa , Humanos , Dímeros de Pirimidina/genética , Raios Ultravioleta/efeitos adversos
10.
PLoS Genet ; 18(4): e1010167, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35486666

RESUMO

Ultraviolet light causes DNA lesions that are removed by nucleotide excision repair (NER). The efficiency of NER is conditional to transcription and chromatin structure. UV induced photoproducts are repaired faster in the gene transcribed strands than in the non-transcribed strands or in transcriptionally inactive regions of the genome. This specificity of NER is known as transcription-coupled repair (TCR). The discovery of pervasive non-coding RNA transcription (ncRNA) advocates for ubiquitous contribution of TCR to the repair of UV photoproducts, beyond the repair of active gene-transcribed strands. Chromatin rules transcription, and telomeres form a complex structure of proteins that silences nearby engineered ectopic genes. The essential protective function of telomeres also includes preventing unwanted repair of double-strand breaks. Thus, telomeres were thought to be transcriptionally inert, but more recently, ncRNA transcription was found to initiate in subtelomeric regions. On the other hand, induced DNA lesions like the UV photoproducts must be recognized and repaired also at the ends of chromosomes. In this study, repair of UV induced DNA lesions was analyzed in the subtelomeric regions of budding yeast. The T4-endonuclease V nicking-activity at cyclobutene pyrimidine dimer (CPD) sites was exploited to monitor CPD formation and repair. The presence of two photoproducts, CPDs and pyrimidine (6,4)-pyrimidones (6-4PPs), was verified by the effective and precise blockage of Taq DNA polymerase at these sites. The results indicate that UV photoproducts in silenced heterochromatin are slowly repaired, but that ncRNA transcription enhances NER throughout one subtelomeric element, called Y', and in distinct short segments of the second, more conserved element, called X. Therefore, ncRNA-transcription dependent TCR assists global genome repair to remove CPDs and 6-4PPs from subtelomeric DNA.


Assuntos
Saccharomyces cerevisiae , Raios Ultravioleta , Cromatina , DNA , Dano ao DNA/genética , Reparo do DNA/genética , Heterocromatina , Dímeros de Pirimidina/genética , RNA não Traduzido/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo , Transcrição Gênica
11.
J Nippon Med Sch ; 89(2): 184-189, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34526460

RESUMO

BACKGROUND: We previously reported that pre-irradiation with infrared radiation A (IRA) eliminated ultraviolet B (UVB) -induced cyclobutane pyrimidine dimers (CPDs). Accelerated elimination of CPDs could have resulted from enhanced DNA repair and/or enhanced induction of apoptosis. Using Xpa knockout (KO) mice, which are deficient in DNA repair, we examined whether IRA accelerated elimination of CPDs by enhancing DNA repair. METHODS: We have already generated mice harboring epidermal melanocytes that produce only eumelanin and dominant pheomelanin, and no melanin. To obtain such mice with impaired DNA repair ability, we backcrossed them with Xpa KO mice. Three hours before UVB irradiation, the mice were irradiated with IRA, and CPDs and apoptotic cells were examined. RESULTS: Pre-irradiation of Xpa KO mice with IRA before UVB irradiation accelerated removal of CPDs and enhanced apoptotic changes. CONCLUSION: These results indicate that enhancement of UVB-induced apoptosis and acceleration of removal of CPDs by pre-irradiation with IRA does not depend on DNA damage repair.


Assuntos
Dano ao DNA , Reparo do DNA , Animais , Apoptose , Humanos , Camundongos , Dímeros de Pirimidina/genética , Raios Ultravioleta/efeitos adversos
12.
Sci Adv ; 7(31)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34330711

RESUMO

Sunlight-associated melanomas carry a unique C-to-T mutation signature. UVB radiation induces cyclobutane pyrimidine dimers (CPDs) as the major form of DNA damage, but the mechanism of how CPDs cause mutations is unclear. To map CPDs at single-base resolution genome wide, we developed the circle damage sequencing (circle-damage-seq) method. In human cells, CPDs form preferentially in a tetranucleotide sequence context (5'-Py-T<>Py-T/A), but this alone does not explain the tumor mutation patterns. To test whether mutations arise at CPDs by cytosine deamination, we specifically mapped UVB-induced cytosine-deaminated CPDs. Transcription start sites (TSSs) were protected from CPDs and deaminated CPDs, but both lesions were enriched immediately upstream of the TSS, suggesting a mutation-promoting role of bound transcription factors. Most importantly, the genomic dinucleotide and trinucleotide sequence specificity of deaminated CPDs matched the prominent mutation signature of melanomas. Our data identify the cytosine-deaminated CPD as the leading premutagenic lesion responsible for mutations in melanomas.


Assuntos
Melanoma , Dímeros de Pirimidina , Citosina/metabolismo , Dano ao DNA , Desaminação , Humanos , Melanoma/genética , Mutação , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Raios Ultravioleta
13.
Artigo em Inglês | MEDLINE | ID: mdl-34266626

RESUMO

Nucleotide excision repair (NER) is the main pathway to repair bulky DNA damages including pyrimidine dimers, and the genetic dysregulation of NER associated proteins is well known to cause diseases such as cancer and neurological disorder. Other than the genetic defects, 'external factors' such as oxidative stress and environmental chemicals also affect NER. In this study, we examined the impact of extracellular pH on NER. We prepared the culture media, whose pH values are 8.4 (normal condition), 7.6, 6.6 and 6.2 under atmospheric CO2 conditions. Human keratinocytes, HaCaT, slightly died after 48 h incubation in DMEM at pH 8.4, 7.6 and 6.6, while in pH 6.2 condition, marked cell death was induced. UV-induced pyrimidine dimers, pyrimidine (6-4) pyrimidone photoproducts (6-4PPs) and cyclobutane pyrimidine dimers (CPDs), were effectively repaired at 60 min and 24 h, respectively, which were remarkably inhibited at pH 6.6 and 6.2. The associated repair molecule, TFIIH, was accumulated to the damaged sites 5 min after UVC irradiation in all pH conditions, but the release was delayed as the pH got lower. Furthermore, accumulation of XPG at 5 min was delayed at pH 6.2 and 6.6, and the release at 60 min was completely suppressed. At the low pH, the DNA synthesis at the gaps created by incision of oligonucleotides containing pyrimidine dimers was significantly delayed. In this study, we found that the low extracellular pH inhibited NER pathway. This might partially contribute to carcinogenesis in inflamed tissues, which exhibit acidic pH.


Assuntos
Reparo do DNA/genética , Morte Celular/genética , Morte Celular/fisiologia , Células Cultivadas , Dano ao DNA/genética , Dano ao DNA/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Fibroblastos/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia , Dímeros de Pirimidina/genética , Raios Ultravioleta/efeitos adversos
14.
Biochem Biophys Res Commun ; 554: 89-93, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33784511

RESUMO

Under natural conditions, plants are exposed to solar ultraviolet (UV) radiation, which damages chromosomal DNA. Although plant responses to UV-induced DNA damage have recently been elucidated in detail, revealing a set of DNA repair mechanisms and translesion synthesis (TLS), limited information is currently available on UV-induced mutations in plants. We previously reported the development of a supF-based system for the detection of a broad spectrum of mutations in the chromosomal DNA of Arabidopsis. In the present study, we used this system to investigate UV-induced mutations in plants. The irradiation of supF-transgenic plants with UV-C (500 and 1000 J/m2) significantly increased mutation frequencies (26- and 45-fold, respectively). G:C to A:T transitions (43-67% of base substitutions) dominated in the mutation spectrum and were distributed throughout single, tandem, and multiple base substitutions. Most of these mutations became undetectable with the subsequent illumination of UV-irradiated plants with white light for photoreactivation (PR). These results indicated that not only G:C to A:T single base substitutions, but also tandem and multiple base substitutions were caused by two major UV-induced photoproducts, cyclobutane-type pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4 PPs). In contrast, a high proportion of A:T to T:A transversions (56% of base substitutions) was a characteristic feature of the mutation spectrum obtained from photoreactivated plants. These results define the presence of the characteristic feature of UV-induced mutations, and provide insights into DNA repair mechanisms in plants.


Assuntos
Arabidopsis/genética , Arabidopsis/efeitos da radiação , Cromossomos de Plantas/efeitos da radiação , DNA de Plantas/efeitos da radiação , Mutação , Arabidopsis/crescimento & desenvolvimento , Sequência de Bases , Plantas Geneticamente Modificadas , Dímeros de Pirimidina/biossíntese , Dímeros de Pirimidina/genética , Análise de Sequência de DNA/métodos , Raios Ultravioleta
15.
Nat Protoc ; 16(4): 2190-2212, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731963

RESUMO

UV radiation may lead to melanoma and nonmelanoma skin cancers by causing helix-distorting DNA damage such as cyclobutane pyrimidine dimers (CPDs). These DNA lesions, if located in important genes and not repaired promptly, are mutagenic and may eventually result in carcinogenesis. Examining CPD formation and repair processes across the genome can shed light on the mutagenesis mechanisms associated with UV damage in relevant cancers. We recently developed CPD-Seq, a high-throughput and single-nucleotide resolution sequencing technique that can specifically capture UV-induced CPD lesions across the genome. This novel technique has been increasingly used in studies of UV damage and can be adapted to sequence other clinically relevant DNA lesions. Although the library preparation protocol has been established, a systematic protocol to analyze CPD-Seq data has not been described yet. To streamline the various general or specific analysis steps, we developed a protocol named CPDSeqer to assist researchers with CPD-Seq data processing. CPDSeqer can accommodate both a single- and multiple-sample experimental design, and it allows both genome-wide analyses and regional scrutiny (such as of suspected UV damage hotspots). The runtime of CPDSeqer scales with raw data size and takes roughly 4 h per sample with the possibility of acceleration by parallel computing. Various guiding graphics are generated to help diagnose the performance of the experiment and inform regional enrichment of CPD formation. UV damage comparison analyses are set forth in three analysis scenarios, and the resulting HTML pages report damage directional trends and statistical significance. CPDSeqer can be accessed at https://github.com/shengqh/cpdseqer .


Assuntos
Dímeros de Pirimidina/genética , Análise de Sequência de DNA/métodos , Bases de Dados Genéticas , Regulação da Expressão Gênica , Genoma , Humanos , Nucleossomos/metabolismo , Controle de Qualidade , Raios Ultravioleta
16.
Genes Genet Syst ; 95(6): 281-289, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33551431

RESUMO

Photoreactivation is a mechanism in which photolyase directly repairs either cyclobutane pyrimidine dimers (CPDs) or (6-4) photoproducts [(6-4) PPs] caused by ultraviolet (UV) light. In the filamentous fungus Neurospora crassa, some UV-sensitive mutants such as mus-44 have been reported to exhibit a partial photoreactivation defect (PPD) phenotype, but its mechanism has not been elucidated for a long time. In this study, the N. crassa CPD photolyase PHR was overexpressed in the Δmus-44 strain, but photoreactivation ability was not increased. Furthermore, Escherichia coli CPD photolyase or Arabidopsis thaliana (6-4) PP photolyase was also introduced into Δmus-44; however, the PPD phenotype was not complemented. These results suggested that the PPD phenotype in N. crassa is not caused by residual unrepaired pyrimidine dimers, which are the main type of DNA damage caused by UV irradiation. Finally, we revealed that Δmus-44, but not the Δmus-43 strain, which does not show the PPD phenotype, displayed higher sensitivity with increasing dose rate of UV. Moreover, Δmus-44 was also sensitive to an interstrand crosslinking agent. This indicates that the high dose of UV in our experimental condition induces DNA damage other than pyrimidine dimers, and that such damage is a likely cause of the PPD phenotype.


Assuntos
Reparo do DNA , Desoxirribodipirimidina Fotoliase/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Dímeros de Pirimidina/genética , Tolerância a Radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desoxirribodipirimidina Fotoliase/genética , Proteínas Fúngicas/genética , Fenótipo , Transgenes , Raios Ultravioleta
17.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526704

RESUMO

In this study, absorption, fluorescence, synchronous fluorescence, and Raman spectra of nonirradiated and ultraviolet (UV)-irradiated thymine solutions were recorded in order to detect thymine dimer formation. The thymine dimer formation, as a function of irradiation dose, was determined by Raman spectroscopy. In addition, the formation of a mutagenic (6-4) photoproduct was identified by its synchronous fluorescence spectrum. Our spectroscopic data suggest that the rate of conversion of thymine to thymine dimer decreases after 20 min of UV irradiation, owing to the formation of an equilibrium between the thymine dimers and monomers. However, the formation of the (6-4) photoproduct continued to increase with UV irradiation. In addition, the Raman spectra of nonirradiated and irradiated calf thymus DNA were recorded, and the formation of thymine dimers was detected. The spectroscopic data presented make it possible to determine the mechanism of thymine dimer formation, which is known to be responsible for the inhibition of DNA replication that causes bacteria inactivation.


Assuntos
Dano ao DNA/efeitos da radiação , DNA/genética , Dímeros de Pirimidina/genética , Timina/química , Animais , Bovinos , DNA/química , DNA/efeitos da radiação , Dano ao DNA/genética , Dímeros de Pirimidina/química , Dímeros de Pirimidina/efeitos da radiação , Espectrometria de Fluorescência , Análise Espectral Raman , Timina/efeitos da radiação , Raios Ultravioleta/efeitos adversos
18.
Nucleic Acids Res ; 49(2): 891-901, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33347579

RESUMO

An abnormally high rate of UV-light related mutations appears at transcription factor binding sites (TFBS) across melanomas. The binding of transcription factors (TFs) to the DNA impairs the repair of UV-induced lesions and certain TFs have been shown to increase the rate of generation of these lesions at their binding sites. However, the precise contribution of these two elements to the increase in mutation rate at TFBS in these malignant cells is not understood. Here, exploiting nucleotide-resolution data, we computed the rate of formation and repair of UV-lesions within the binding sites of TFs of different families. We observed, at certain dipyrimidine positions within the binding site of TFs in the Tryptophan Cluster family, an increased rate of formation of UV-induced lesions, corroborating previous studies. Nevertheless, across most families of TFs, the observed increased mutation rate within the entire DNA region covered by the protein results from the decreased repair efficiency. While the rate of mutations across all TFBS does not agree with the amount of UV-induced lesions observed immediately after UV exposure, it strongly agrees with that observed after 48 h. This corroborates the determinant role of the impaired repair in the observed increase of mutation rate.


Assuntos
Dano ao DNA , Reparo do DNA , DNA de Neoplasias/efeitos da radiação , Melanoma/genética , Mutagênese , Neoplasias Cutâneas/genética , Fatores de Transcrição/metabolismo , Raios Ultravioleta/efeitos adversos , Sítios de Ligação , Mapeamento Cromossômico , DNA de Neoplasias/genética , Humanos , Mutação , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Sequenciamento Completo do Genoma
19.
Genes (Basel) ; 11(12)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276692

RESUMO

In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , DNA de Plantas/genética , Raios Ultravioleta/efeitos adversos , Animais , Genes de Plantas/genética , Humanos , Mutação/genética , Plantas/genética , Dímeros de Pirimidina/genética
20.
Nucleic Acids Res ; 48(22): 12845-12857, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270891

RESUMO

Photolyases are ubiquitously occurring flavoproteins for catalyzing photo repair of UV-induced DNA damages. All photolyases described so far have a bilobal architecture with a C-terminal domain comprising flavin adenine dinucleotide (FAD) as catalytic cofactor and an N-terminal domain capable of harboring an additional antenna chromophore. Using sequence-similarity network analysis we discovered a novel subgroup of the photolyase/cryptochrome superfamily (PCSf), the NewPHLs. NewPHL occur in bacteria and have an inverted topology with an N-terminal catalytic domain and a C-terminal domain for sealing the FAD binding site from solvent access. By characterizing two NewPHL we show a photochemistry characteristic of other PCSf members as well as light-dependent repair of CPD lesions. Given their common specificity towards single-stranded DNA many bacterial species use NewPHL as a substitute for DASH-type photolyases. Given their simplified architecture and function we suggest that NewPHL are close to the evolutionary origin of the PCSf.


Assuntos
Criptocromos/genética , DNA de Cadeia Simples/genética , Desoxirribodipirimidina Fotoliase/genética , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Domínio Catalítico/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , DNA de Cadeia Simples/efeitos da radiação , Desoxirribodipirimidina Fotoliase/efeitos da radiação , Methylobacterium/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efeitos da radiação , Rhodobacteraceae/genética , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...