Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Mol Biol Rep ; 49(1): 179-188, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34686990

RESUMO

BACKGROUND: Vega Island is located off the eastern tip of the Antarctic Peninsula (Maritime Antarctica), in the Weddell Sea. In this study, we used metabarcoding to investigate green algal DNA sequence diversity present in sediments from three lakes on Vega Island (Esmeralda, Copépodo, and Pan Negro Lakes). METHODS AND RESULTS: Total DNA was extracted and the internal transcribed spacer 2 region of the nuclear ribosomal DNA was used as a DNA barcode for molecular identification. Green algae were represented by sequences representing 78 taxa belonging to Phylum Chlorophyta, of which 32% have not previously been recorded from Antarctica. Sediment from Pan Negro Lake generated the highest number of DNA reads (11,205), followed by Esmeralda (9085) and Copépodo (1595) Lakes. Esmeralda Lake was the richest in terms of number of taxa (59), with Copépodo and Pan Negro Lakes having 30 taxa each. Bray-Curtis dissimilarity among lakes was high (~ 0.80). The Order Chlamydomonadales (Chlorophyceae) gave the highest contribution in terms of numbers of taxa and DNA reads in all lakes. The most abundant taxon was Chlorococcum microstigmatum. CONCLUSIONS: The study confirms the utility of DNA metabarcoding in assessing potential green algal diversity in Antarctic lakes, generating new Antarctic records.


Assuntos
Clorófitas/classificação , Código de Barras de DNA Taxonômico/métodos , DNA Intergênico/genética , DNA Ribossômico/genética , Regiões Antárticas , Clorófitas/genética , DNA de Algas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Lagos , Filogenia , Análise de Sequência de DNA
2.
Mikrochim Acta ; 188(4): 117, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33687553

RESUMO

A reagent-less DNA sensor has been developed exploiting a combination of gold nanoparticles, modified primers, and isothermal amplification. It is applied to the determination ofKarlodinium armiger, a toxic microalgae, as a model analyte to demonstrate this generic platform. Colloidal gold nanoparticles with an average diameter of 14 ± 0.87 nm were modified with a mixed self-assembled monolayer of thiolated 33-mer DNA probes and (6-mercaptohexyl) ferrocene. Modified primers, exploiting a C3 spacer between the primer-binding site and an engineered single-stranded tail, were used in an isothermal recombinase polymerase amplification reaction to produce an amplicon by two single-stranded tails. These tails were designed to be complementary to a gold electrode tethered capture oligo probe, and an oligo probe immobilized on the gold nanoparticles, respectively. The time required for hybridization of the target tailed DNA with the surface immobilized probe and reporter probe immobilized on AuNPs was optimized and reduced to 10 min, in both cases. Amplification time was further optimized to be 40 min to ensure the maximum signal. Under optimal conditions, the limit of detection was found to be 1.6 fM of target dsDNA. Finally, the developed biosensor was successfully applied to the detection of genomic DNA extracted from a seawater sample that had been spiked with K. armiger cells. The demonstrated generic electrochemical genosensor can be exploited for the detection of any DNA sequence and ongoing work is moving towards an integrated system for use at the point-of-need.


Assuntos
Sondas de DNA/química , DNA de Algas/análise , Compostos Ferrosos/química , Nanopartículas Metálicas/química , Metalocenos/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Sondas de DNA/genética , DNA de Algas/genética , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/genética , Limite de Detecção , Microalgas/química , Hibridização de Ácido Nucleico , Água do Mar/análise , Água do Mar/microbiologia
3.
Commun Biol ; 4(1): 220, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594237

RESUMO

Palaeogenomics has greatly increased our knowledge of past evolutionary and ecological change, but has been restricted to the study of species that preserve either as or within fossils. Here we show the potential of shotgun metagenomics to reveal population genomic information for a taxon that does not preserve in the body fossil record, the algae Nannochloropsis. We shotgun sequenced two lake sediment samples dated to the Last Glacial Maximum and reconstructed full chloroplast and mitochondrial genomes to explore within-lake population genomic variation. This revealed two major haplogroups for each organellar genome, which could be assigned to known varieties of N. limnetica, although we show that at least three haplotypes were present using our minimum haplotype diversity estimation method. These approaches demonstrate the utility of lake sedimentary ancient DNA (sedaDNA) for population genomic analysis, thereby opening the door to environmental palaeogenomics, which will unlock the full potential of sedaDNA.


Assuntos
Cloroplastos/genética , DNA de Algas/genética , DNA Antigo/análise , Fósseis , Genoma Mitocondrial , Metagenômica , Microalgas/genética , Paleontologia , Polimorfismo de Nucleotídeo Único , Sedimentos Geológicos , Haplótipos , Filogenia
4.
J Appl Microbiol ; 131(1): 257-271, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33275816

RESUMO

AIMS: To search for a set of reference genes for reliable gene expression analysis in the globally important marine coccolithophore Emiliania huxleyi-virus model system. METHODS AND RESULTS: Fifteen housekeeping genes (CDKA, CYP15, EFG3, POLAI, RPL30, RPL13, SAMS, COX1, GPB1-2, HSP90, TUA, TUB, UBA1, CAM3 and GAPDH) were evaluated for their stability as potential reference genes for qRT-PCR using ΔCt, geNorm, NormFinder, Bestkeeper and RefFinder software. CDKA, TUA and TUB genes were tested as loading controls for Western blot in the same sample panel. Additionally, target genes associated with cell apoptosis, that is metacaspase genes, were applied to validate the selection of reference genes. The analysis results demonstrated that putative housekeeping genes exhibited significant variations in both mRNA and protein content during virus infection. After a comprehensive analysis with all the algorithms, CDKA and GAPDH were recommended as the most stable reference genes for E huxleyi virus (EhV) infection treatments. For Western blot, significant variation was seen for TUA and TUB, whereas CDKA was stably expressed, consistent with the results of qRT-PCR. CONCLUSIONS: CDKA and GAPDH are the best choice for gene and protein expression analysis than the other candidate reference genes under EhV infection conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: The stable internal control genes identified in this work will help to improve the accuracy and reliability of gene expression analysis and gain insight into complex E. huxleyi-EhV interaction regulatory networks.


Assuntos
Genes Essenciais , Haptófitas/genética , Haptófitas/virologia , Phycodnaviridae/fisiologia , Algoritmos , DNA de Algas/genética , Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Modelos Biológicos , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Software
5.
J Eukaryot Microbiol ; 67(6): 660-670, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32682339

RESUMO

Symbioses between sponges and photosynthetic organisms are very diverse regarding the taxonomy and biogeography of both hosts and symbionts; to date, most research has focused on the exploration of bacterial diversity. The present study aims to characterize the culturable diversity of photosynthetic eukaryotes associated with sponges in the Aegean Sea, on which no information exists. Five microalgae strains were isolated from marine sponges; the strains were characterized by morphological features, and the 18S rRNA, 18S-28S Internal Transcribed Spacer, and ribulose-bisphosphate carboxylase large chain (rbcL) sequences. Our polyphasic approach showed that the strains belonged to the green-alga Acrochaete leptochaete, the diatom Nanofrustulum cf. shiloi, the rhodophyte Acrochaetium spongicola, and the chlorachniophyte Lotharella oceanica. A. leptochaete is reported for the first time in sponges, even though green algae are known to be associated with sponges. Nanofrustulum shiloi was found in association with the sponges Agelas oroides and Chondrilla nucula, whereas information existed only for its association with the species Aplysina aerophoba. Acrochaetium spongicola was found for the first time in association with sponges in the eastern Mediterranean. Moreover, we report herein for the first time a sponge-chlorarachniophycean association. Our research revealed new diversity of microalgae associated with sponges and added new records of sponge species, previously unknown for their association with microalgae.


Assuntos
Microalgas/classificação , Microalgas/genética , Poríferos/microbiologia , Animais , Biodiversidade , DNA de Algas/genética , Interações entre Hospedeiro e Microrganismos , Microalgas/isolamento & purificação , Fotossíntese , Filogenia , RNA Ribossômico 18S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Simbiose
6.
Sci Rep ; 10(1): 12726, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728196

RESUMO

Extreme events are increasing globally with devastating ecological consequences, but the impacts on underlying genetic diversity and structure are often cryptic and poorly understood, hindering assessment of adaptive capacity and ecosystem vulnerability to future change. Using very rare "before" data we empirically demonstrate that an extreme marine heatwave caused a significant poleward shift in genetic clusters of kelp forests whereby alleles characteristic of cool water were replaced by those that predominated in warm water across 200 km of coastline. This "genetic tropicalisation" was facilitated by significant mortality of kelp and other co-occurring seaweeds within the footprint of the heatwave that opened space for rapid local proliferation of surviving kelp genotypes or dispersal and recruitment of spores from warmer waters. Genetic diversity declined and inbreeding increased in the newly tropicalised site, but these metrics were relative stable elsewhere within the footprint of the heatwave. Thus, extreme events such as marine heatwaves not only lead to significant mortality and population loss but can also drive significant genetic change in natural populations.


Assuntos
DNA de Algas/genética , Variação Genética , Kelp/crescimento & desenvolvimento , Adaptação Fisiológica , Mudança Climática , Endogamia , Kelp/genética
7.
Sci Rep ; 10(1): 8279, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427928

RESUMO

Macrocystis pyrifera and Lessonia spicata are economically and ecologically relevant brown seaweeds that recently have been classified as members of two separated families within Laminariales (kelps). Here we describe for the first time the Macrocystis pyrifera x Lessonia spicata hybridization in the wild (Chiloe Island, Southeastern Pacific), where populations of the two parents exist sympatrically. Externally, this hybrid exhibited typical features of its parents M. pyrifera (cylindrical and flexible distal stipes, serrate frond margins and presence of sporophylls) and L. spicata (rigid and flat main stipe and first bifurcation), as well as intermediate features between them (thick unfused haptera in the holdfast). Histological sections revealed the prevalence of mucilage ducts within stipes and fronds (absent in Lessonia) and fully developed unilocular sporangia in the sporophylls. Molecular analyses confirmed the presence of the two parental genotypes for ITS1 nrDNA and the M. pyrifera genotype for two predominantly maternally inherited cytoplasmic markers (COI and rbcLS spacer) in the tissue of the hybrid. A metabolome-wide approach revealed that this hybrid is more chemically reminiscent to M. pyrifera. Nevertheless, several hits were identified as Lessonia exclusive or more remarkably, not present in any of the parent. Meiospores developed into apparently fertile gametophytes, which gave rise to F1 sporophytes that reached several millimeters before suddenly dying. In-vitro reciprocal crossing of Mar Brava gametophytes from both species revealed that although it is rare, interfamilial hybridization between the two species is possible but mostly overcome by pseudogamy of female gametophytes.


Assuntos
Técnicas de Genotipagem/métodos , Laminaria/fisiologia , Macrocystis/fisiologia , Metabolômica/métodos , DNA de Algas/genética , Genótipo , Hibridização Genética , Melhoramento Vegetal , Esporângios/fisiologia , Simpatria
8.
J Eukaryot Microbiol ; 67(3): 393-402, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32003917

RESUMO

Labyrinthulomycetes are mostly fungus-like heterotrophic protists that absorb nutrients in an osmotrophic or phagotrophic manner. Members of order Labyrinthulida produce unique membrane-bound ectoplasmic networks for movement and feeding. Among the various types of labyrinthulids' food substrates, diatoms play an important role due to their ubiquitous distribution and abundant biomass. We isolated and cultivated new diatom consuming Labyrinthulida strains from shallow coastal marine sediments. We described Labyrinthula diatomea n. sp. that differs from all known labyrinthulids in both molecular and morphological features. We provided strain delimitation within the genus Labyrinthula based on ITS sequences via haplotype network construction and compared it with previous phylogenetic surveys.


Assuntos
Diatomáceas/classificação , Diatomáceas/citologia , Sedimentos Geológicos/parasitologia , Análise de Sequência de DNA/métodos , DNA de Algas/genética , Diatomáceas/isolamento & purificação , Microscopia , Filogenia , Subunidades Ribossômicas Menores de Eucariotos/genética
9.
Plant J ; 103(1): 184-196, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32031706

RESUMO

Chlorella microalgae are increasingly used for various purposes such as fatty acid production, wastewater processing, or as health-promoting food supplements. A mass spectrometry-based survey of N-glycan structures of strain collection specimens and 80 commercial Chlorella products revealed a hitherto unseen intragenus diversity of N-glycan structures. Differing numbers of methyl groups, pentoses, deoxyhexoses, and N-acetylglucosamine culminated in c. 100 different glycan masses. Thirteen clearly discernible glycan-type groups were identified. Unexpected features included the occurrence of arabinose, of different and rare types of monosaccharide methylation (e.g. 4-O-methyl-N-acetylglucosamine), and substitution of the second N-acetylglucosamine. Analysis of barcode ITS1-5.8S-ITS2 rDNA sequences established a phylogenetic tree that essentially went hand in hand with the grouping obtained by glycan patterns. This brief prelude to microalgal N-glycans revealed a fabulous wealth of undescribed structural features that finely differentiated Chlorella-like microalgae, which are notoriously poor in morphological attributes. In light of the almost identical N-glycan structural features that exist within vertebrates or land plants, the herein discovered diversity is astonishing and argues for a selection pressure only explicable by a fundamental functional role of these glycans.


Assuntos
Chlorella/genética , Polissacarídeos/metabolismo , Chlorella/classificação , Chlorella/metabolismo , DNA de Algas/genética , Variação Genética , Glicosilação , Espectrometria de Massas , Filogenia , Polissacarídeos/química
10.
J Eukaryot Microbiol ; 67(3): 369-382, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31958181

RESUMO

Members of the Watanabea clade of Trebouxiophyceae are genetically diverse and widely distributed in all kinds of habitats, especially in most terrestrial habitats. Ten new strains of terrestrial algae isolated from the tropical rainforest in China, and four published strains were investigated in this study. Morphological observation and molecular phylogenetic analyses based on the 18S, ITS, rbcL, and tufA genes were used to identify the new strains. Four previously described species were reinvestigated to supplement molecular data and autospores' morphological photographs. The phylogenetic analyses based on 18S only, the concatenated dataset of 18S and ITS, as well as the concatenated dataset of rbcL and tufA, showed the same phylogenetic positions and relationships of these new strains. According to the phylogenetic analysis and morphological comparisons results, we described these 10 strains as four new members within the Watanabea clade, Polulichloris yunnanensis sp. nov., Polulichloris ovale sp. nov., Massjukichlorella orientale sp. nov., and Massjukichlorella minus sp. nov., and two known species, Massjukichlorella epiphytica, and Mysteriochloris nanningensis. Additionally, we provide strong evidence proving that Phyllosiphon, Mysteriochloris, Polulichloris, and Desertella all reproduce through unequal sized autospores.


Assuntos
Clorófitas/classificação , Proteínas Fúngicas/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA/métodos , Teorema de Bayes , China , Clorófitas/genética , Clorófitas/ultraestrutura , DNA de Algas/genética , DNA Ribossômico/genética , Funções Verossimilhança , Fenótipo , Filogenia
11.
Sci Rep ; 9(1): 17682, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776430

RESUMO

The nucleotides guanosine tetraphosphate and pentaphosphate (together known as (p)ppGpp or magic spot) are produced in plant plastids from GDP/GTP and ATP by RelA-SpoT homologue (RSH) enzymes. In the model plant Arabidopsis (p)ppGpp regulates chloroplast transcription and translation to affect growth, and is also implicated in acclimation to stress. However, little is known about (p)ppGpp metabolism or its evolution in other photosynthetic eukaryotes. Here we studied (p)ppGpp metabolism in the marine diatom Phaeodactylum tricornutum. We identified three expressed RSH genes in the P. tricornutum genome, and determined the enzymatic activity of the corresponding enzymes by heterologous expression in bacteria. We showed that two P. tricornutum RSH are (p)ppGpp synthetases, despite substitution of a residue within the active site believed critical for activity, and that the third RSH is a bifunctional (p)ppGpp synthetase and hydrolase, the first of its kind demonstrated in a photosynthetic eukaryote. A broad phylogenetic analysis then showed that diatom RSH belong to novel algal RSH clades. Together our work significantly expands the horizons of (p)ppGpp signalling in the photosynthetic eukaryotes by demonstrating an unexpected functional, structural and evolutionary diversity in RSH enzymes from organisms with plastids derived from red algae.


Assuntos
Proteínas de Algas/genética , Diatomáceas/enzimologia , Variação Genética , Ligases/genética , Rodófitas/enzimologia , Aclimatação/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Domínio Catalítico , Cloroplastos/metabolismo , DNA de Algas/genética , Escherichia coli/genética , Evolução Molecular , Expressão Gênica , Ligases/metabolismo , Fotossíntese , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Sci Rep ; 9(1): 9514, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31267025

RESUMO

Microalgal Chlorella has been demonstrated to process wastewater efficiently from piggery industry, yet optimization through genetic engineering of such a bio-treatment is currently challenging, largely due to the limited data and knowledge in genomics. In this study, we first investigated the differential growth rates among three wastewater-processing Chlorella strains: Chlorella sorokiniana BD09, Chlorella sorokiniana BD08 and Chlorella sp. Dachan, and the previously published Chlorella sorokiniana UTEX 1602, showing us that BD09 maintains the best tolerance in synthetic wastewater. We then performed genome sequencing and analysis, resulting in a high-quality assembly for each genome with scaffold N50 > 2 Mb and genomic completeness ≥91%, as well as genome annotation with 9,668, 10,240, 9,821 high-confidence gene models predicted for BD09, BD08, and Dachan, respectively. Comparative genomics study unravels that metabolic pathways, which are involved in nitrogen and phosphorus assimilation, were enriched in the faster-growing strains. We found that gene structural variation and genomic rearrangement might contribute to differential capabilities in wastewater tolerance among the strains, as indicated by gene copy number variation, domain reshuffling of orthologs involved, as well as a ~1 Mb-length chromosomal inversion we observed in BD08 and Dachan. In addition, we speculated that an associated bacterium, Microbacterium chocolatum, which was identified within Dachan, play a possible role in synergizing nutrient removal. Our three newly sequenced Chlorella genomes provide a fundamental foundation to understand the molecular basis of abiotic stress tolerance in wastewater treatment, which is essential for future genetic engineering and strain improvement.


Assuntos
Chlorella/genética , Genoma de Planta , Águas Residuárias/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Chlorella/classificação , Chlorella/efeitos dos fármacos , Chlorella/crescimento & desenvolvimento , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , DNA de Algas/química , DNA de Algas/genética , DNA de Algas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Filogenia , Análise de Sequência de DNA , Águas Residuárias/toxicidade
13.
Proc Natl Acad Sci U S A ; 116(30): 15080-15085, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285351

RESUMO

Understanding how trophic dynamics drive variation in biodiversity is essential for predicting the outcomes of trophic downgrading across the world's ecosystems. However, assessing the biodiversity of morphologically cryptic lineages can be problematic, yet may be crucial to understanding ecological patterns. Shifts in keystone predation that favor increases in herbivore abundance tend to have negative consequences for the biodiversity of primary producers. However, in nearshore ecosystems, coralline algal cover increases when herbivory is intense, suggesting that corallines may uniquely benefit from trophic downgrading. Because many coralline algal species are morphologically cryptic and their diversity has been globally underestimated, increasing the resolution at which we distinguish species could dramatically alter our conclusions about the consequences of trophic dynamics for this group. In this study, we used DNA barcoding to compare the diversity and composition of cryptic coralline algal assemblages at sites that differ in urchin biomass and keystone predation by sea otters. We show that while coralline cover is greater in urchin-dominated sites (or "barrens"), which are subject to intense grazing, coralline assemblages in these urchin barrens are significantly less diverse than in kelp forests and are dominated by only 1 or 2 species. These findings clarify how food web structure relates to coralline community composition and reconcile patterns of total coralline cover with the widely documented pattern that keystone predation promotes biodiversity. Shifts in coralline diversity and distribution associated with transitions from kelp forests to urchin barrens could have ecosystem-level effects that would be missed by ignoring cryptic species' identities.


Assuntos
Biodiversidade , Lontras/fisiologia , Filogenia , Rodófitas/classificação , Ouriços-do-Mar/fisiologia , Animais , Antozoários/fisiologia , Recifes de Corais , Código de Barras de DNA Taxonômico , DNA de Algas/genética , Ecossistema , Cadeia Alimentar , Kelp/classificação , Kelp/genética , Oceano Pacífico , Comportamento Predatório/fisiologia , Rodófitas/genética
14.
Elife ; 82019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31149898

RESUMO

The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics that impact our understanding of the origin of metabolic processes and the role of organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT candidates share a close phylogenetic relationship with prokaryotes that live in similar habitats as the Cyanidiales and encode functions related to polyextremophily. HGT candidates differ from native genes in GC-content, number of splice sites, and gene expression. HGT candidates are more prone to loss, which may explain the absence of a eukaryotic pan-genome. Therefore, the lack of a pan-genome and cumulative effects fail to provide substantive arguments against our hypothesis of recurring HGT followed by differential loss in eukaryotes. The maintenance of 1% HGTs, even under selection for genome reduction, underlines the importance of non-endosymbiosis related foreign gene acquisition.


Assuntos
Adaptação Biológica , Evolução Molecular , Transferência Genética Horizontal , Rodófitas/genética , Proteínas de Algas/genética , DNA de Algas/genética
15.
J Microbiol Biotechnol ; 29(6): 952-961, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31154744

RESUMO

Chlorella spp. are green algae that are found across wide-ranging habitats from deserts to arctic regions, with various strains having adapted to survive under diverse environmental conditions. In this study, two novel Chlorella strains (ABC-002, ABC-008) were isolated from a freshwater lake in South Korea during the winter season and examined for possible use in the biofuel production process. The comparison of ABC-002 and ABC-008 strains with Chlorella vulgaris UTEX265 under two different temperatures (10°C, 25°C) revealed their cold-tolerant phenotypes as well as high biomass yields. The maximum quantum yields of UTEX25, ABC- 002, and ABC-008 at 10°C were 0.5594, 0.6747, and 0.7150, respectively, providing evidence of the relatively higher cold-resistance capabilities of these two strains. Furthermore, both the biomass yields and lipid content of the two novel strains were found to be higher than those of UTEX265; the overall lipid productivities of ABC-002 and ABC-008 were 1.7 ~ 2.8 fold and 1.6 ~ 4.2 fold higher compared to that of UTEX265, respectively. Thus, the high biomass and lipid productivity over a wide range of temperatures indicate that C. vulgaris ABC-002 and ABC-008 are promising candidates for applications in biofuel productions via outdoor biomass cultivation.


Assuntos
Aclimatação/fisiologia , Biocombustíveis , Chlorella vulgaris/classificação , Chlorella vulgaris/fisiologia , Temperatura Baixa , Metabolismo dos Lipídeos , Microbiologia da Água , Biomassa , DNA de Algas/genética , Ácidos Graxos/química , Lipídeos/biossíntese , Lipídeos/química , Filogenia , RNA Ribossômico 18S/genética , República da Coreia , Especificidade da Espécie
16.
Sci Rep ; 9(1): 578, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679622

RESUMO

Coralline algae form extensive maerl and rhodolith habitats that support a rich biodiversity. Calcium carbonate harvesting as well as trawling activities threatens this ecosystem. Eleven species were recorded so far as maerl-forming in NE Atlantic, but identification based on morphological characters is unreliable. As for most red algae, we now use molecular characters to resolve identification of these taxa. However, obtaining DNA sequences requires time and resource demanding methods. The purpose of our study was to improve methods for achieving simple DNA extraction, amplification, sequencing and sequence analysis to allow robust identification of maerl species and other coralline algae. Our novel and easy DNA preparation method for coralline algae was of sufficient quality for qPCR amplification and sequencing of all 47 tested samples. The new psbA qPCR assay successfully amplified a 350 bp fragment identifying six species and uncovering two new Operational Taxonomic Units. Molecular results were corroborated with anatomical examination using i.e. scanning electron microscopy. Finally, the qPCR assay was coupled with High Resolution Melt analysis that successfully differentiated the closely related species Lithothamnion erinaceum and L. cf. glaciale. This DNA preparation and qPCR technique should vitalize coralline research by reducing time and cost associated with molecular systematics.


Assuntos
Antozoários/microbiologia , Código de Barras de DNA Taxonômico/métodos , DNA de Algas/isolamento & purificação , Desnaturação de Ácido Nucleico , Complexo de Proteína do Fotossistema II/genética , Rodófitas/classificação , Rodófitas/genética , Animais , DNA de Algas/química , DNA de Algas/genética , Rodófitas/enzimologia
17.
PLoS One ; 14(1): e0210986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30677063

RESUMO

Recent molecular data has strongly suggested that field-collected cysts of snow algae that are morphologically identifiable as the zygotes of Chloromonas nivalis are composed of multiple species. Motile vegetative cells, however, have not been directly obtained from these cysts because of the difficulties involved in inducing their germination. Recently, our comparative molecular analyses, using both field-collected and cultured materials, demonstrated that one Japanese lineage of "C. nivalis zygotes" belongs to C. miwae. Herein, we examined another Japanese lineage of field-collected "C. nivalis zygotes" and a new strain originating from Japan. Our molecular data demonstrated that these two different life cycle stages are conspecific, and that they represent a new species that we herein describe as C. muramotoi sp. nov., based on the vegetative and asexual morphological characteristics of the strain. Multigene phylogenetic analyses showed that this new species was sister to C. miwae. Scanning electron microscopy demonstrated that the cysts of C. muramotoi are different from those of C. miwae, based on the arrangement of the flanges developing on the cell wall.


Assuntos
Clorofíceas/classificação , Clorofíceas/genética , Clorofíceas/ultraestrutura , DNA de Algas/genética , Japão , Microscopia Eletrônica de Transmissão , Filogenia , Análise de Sequência de DNA , Neve , Especificidade da Espécie , Zigoto/ultraestrutura
18.
Biosci Rep ; 39(1)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30530569

RESUMO

Chlamydomonas reinhardtii, the unicellular green algae, is the model organism for studies in various physiological processes and for bioindustrial applications. To explore the molecular mechanisms underlying physiological processes or to establish engineered cell lines, the exogenous DNA needs to be integrated into the genome for the insertional mutagenesis or transgene expression. However, the amount of selected marker DNA is not seriously considered in the existing electroporation methods for mutants library construction. Here, we reported a rapid-and-high-efficiency transformation technique for cell-walled strains using square-wave electroporation system. The final yield with this electroporation method was 2-6 × 103 transformants per µg exogenous DNA for cell-walled strains in a strain-dependent manner. In general, this electroporation technique was the easy and applicable way to build a mutant library for screening phenotypes of interest.


Assuntos
Chlamydomonas reinhardtii/genética , DNA de Algas/genética , Eletroporação/métodos , Mutagênese Insercional/métodos , Transformação Genética , Chlamydomonas reinhardtii/metabolismo , Clonagem Molecular , DNA de Algas/química , DNA de Algas/metabolismo , Eletroporação/instrumentação , Marcadores Genéticos , Mutagênese Insercional/instrumentação , Plasmídeos/química , Plasmídeos/metabolismo , Transgenes
19.
Microbiome ; 6(1): 225, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558682

RESUMO

BACKGROUND: Utricularia are rootless aquatic carnivorous plants which have recently attracted the attention of researchers due to the peculiarities of their miniaturized genomes. Here, we focus on a novel aspect of Utricularia ecophysiology-the interactions with and within the complex communities of microorganisms colonizing their traps and external surfaces. RESULTS: Bacteria, fungi, algae, and protozoa inhabit the miniature ecosystem of the Utricularia trap lumen and are involved in the regeneration of nutrients from complex organic matter. By combining molecular methods, microscopy, and other approaches to assess the trap-associated microbial community structure, diversity, function, as well as the nutrient turn-over potential of bacterivory, we gained insight into the nutrient acquisition strategies of the Utricularia hosts. CONCLUSIONS: We conclude that Utricularia traps can, in terms of their ecophysiological function, be compared to microbial cultivators or farms, which center around complex microbial consortia acting synergistically to convert complex organic matter, often of algal origin, into a source of utilizable nutrients for the plants.


Assuntos
Bactérias/classificação , Fungos/classificação , Lamiales/microbiologia , Metagenômica/métodos , Organismos Aquáticos/microbiologia , Organismos Aquáticos/fisiologia , Bactérias/genética , Bactérias/isolamento & purificação , DNA de Algas/genética , DNA Bacteriano/genética , DNA Fúngico/genética , Fungos/genética , Fungos/isolamento & purificação , Perfilação da Expressão Gênica/métodos , Lamiales/fisiologia , Consórcios Microbianos , Filogenia
20.
Sci Rep ; 8(1): 17189, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464297

RESUMO

Mesodinium spp. are commonly found in marine and brackish waters, and several species are known to contain red, green, or both plastids that originate from cryptophyte prey. We observed the seasonal succession of Mesodinium spp. in a Japanese brackish lake, and we analysed the origin and diversity of the various coloured plastids within the cells of Mesodinium spp. using a newly developed primer set that specifically targets the cryptophyte nuclear 18S rRNA gene. Mesodinium rubrum isolated from the lake contained only red plastids originating from cryptophyte Teleaulax amphioxeia. We identified novel Mesodinium sp. that contained only green plastids or both red and green plastids originating from cryptophytes Hemiselmis sp. and Teleaulax acuta. Although the morphology of the newly identified Mesodinium sp. was indistinguishable from that of M. rubrum under normal light microscopy, phylogenetic analysis placed this species between the M. rubrum/major species complex and a well-supported lineage of M. chamaeleon and M. coatsi. Close associations were observed in cryptophyte species composition within cells of Mesodinium spp. and in ambient water samples. The appearance of suitable cryptophyte prey is probably a trigger for succession of Mesodinium spp., and the subsequent abundance of Mesodinium spp. appears to be influenced by water temperature and dissolved inorganic nutrients.


Assuntos
Cilióforos/crescimento & desenvolvimento , Cilióforos/parasitologia , Criptófitas/classificação , Criptófitas/crescimento & desenvolvimento , Cilióforos/classificação , Cilióforos/genética , Análise por Conglomerados , Criptófitas/genética , DNA de Algas/química , DNA de Algas/genética , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Japão , Lagos/parasitologia , Filogenia , RNA Ribossômico 18S/genética , Estações do Ano , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...