Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Am J Bot ; 110(11): e16254, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37938809

RESUMO

PREMISE: Glacial/interglacial cycles and topographic complexity are both considered to have shaped today's diverse phylogeographic patterns of taxa from unglaciated eastern North America (ENA). However, few studies have focused on the phylogeography and population dynamics of wide-ranging ENA herbaceous species occurring in forest understory habitat. We examined the phylogeographic pattern and evolutionary history of Podophyllum peltatum L., a widely distributed herb inhabiting deciduous forests of ENA. METHODS: Using chloroplast DNA (cpDNA) sequences and nuclear microsatellite loci, we investigated the population structure and genetic diversity of the species. Molecular dating, demographic history analyses, and ecological niche modeling were also performed to illustrate the phylogeographic patterns. RESULTS: Our cpDNA results identified three main groups that are largely congruent with boundaries along the Appalachian Mountains and the Mississippi River, two major geographic barriers in ENA. Populations located to the east of the Appalachians and along the central Appalachians exhibited relatively higher levels of genetic diversity. Extant lineages may have diverged during the late Miocene, and range expansions of different groups may have happened during the Pleistocene glacial/interglacial cycles. CONCLUSIONS: Our findings indicate that geographic barriers may have started to facilitate the population divergence in P. peltatum before the Pleistocene. Persistence in multiple refugia, including areas around the central Appalachians during the Quaternary glacial period, and subsequent expansions under hospitable climatic condition, especially westward expansion, are likely responsible for the species' contemporary genetic structure and phylogeographic pattern.


Assuntos
Podophyllum peltatum , Filogeografia , Podophyllum peltatum/genética , DNA de Cloroplastos/genética , DNA de Cloroplastos/química , Demografia , Região dos Apalaches , Plantas/genética , Variação Genética , Filogenia
2.
Genome Biol Evol ; 12(10): 1841-1857, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32722748

RESUMO

Chloroplast genomes (cpDNA) in angiosperms are usually highly conserved. Although rearrangements have been observed in some lineages, such as Passiflora, the mechanisms that lead to rearrangements are still poorly elucidated. In the present study, we obtained 20 new chloroplast genomes (18 species from the genus Passiflora, and Dilkea retusa and Mitostemma brevifilis from the family Passifloraceae) in order to investigate cpDNA evolutionary history in this group. Passiflora cpDNAs vary in size considerably, with ∼50 kb between shortest and longest. Large inverted repeat (IR) expansions were identified, and at the extreme opposite, the loss of an IR was detected for the first time in Passiflora, a rare event in angiosperms. The loss of an IR region was detected in Passiflora capsularis and Passiflora costaricensis, a species in which occasional biparental chloroplast inheritance has previously been reported. A repertory of rearrangements such as inversions and gene losses were detected, making Passiflora one of the few groups with complex chloroplast genome evolution. We also performed a phylogenomic study based on all the available cp genomes and our analysis implies that there is a need to reconsider the taxonomic classifications of some species in the group.


Assuntos
DNA de Cloroplastos/química , Rearranjo Gênico , Genoma de Cloroplastos , Passiflora/genética , Filogenia , Sequências Repetidas Invertidas , Passiflora/química , Passiflora/classificação
3.
PLoS One ; 14(11): e0225469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31765416

RESUMO

Vachellia and Senegalia are the most important genera in the subfamily Mimosoideae (Fabaceae). Recently, species from both genera were separated from the long-characterized Acacia due to their macro-morphological characteristics. However, this morpho-taxonomic differentiation struggles to discriminate some species, for example, Vachellia nilotica and Senegalia senegal. Therefore, sequencing the chloroplast (cp) genomes of these species and determining their phylogenetic placement via conserved genes may help to validate the taxonomy. Hence, we sequenced the cp genomes of V. nilotica and S. senegal, and the results showed that the sizes of the genomes are 165.3 and 162.7 kb, respectively. The cp genomes of both species comprised large single-copy regions (93,849~91,791 bp) and pairs of inverted repeats (IR; 26,093~26,008 bp). The total numbers of genes found in the V. nilotica and S. senegal cp genomes were 135 and 132, respectively. Approximately 123:130 repeats and 290:281 simple sequence repeats were found in the S. senegal and V. nilotica cp genomes, respectively. Genomic characterization was undertaken by comparing these genomes with those of 17 species belonging to related genera in Fabaceae. A phylogenetic analysis of the whole genome dataset and 56 shared genes was undertaken by generating cladograms with the same topologies and placing both species in a new generic system. These results support the likelihood of identifying segregate genera from Acacia with phylogenomic disposition of both V. nilotica and S. senegal in the subfamily Mimosoideae. The current study is the first to obtain complete genomic information on both species and may help to elucidate the genome architecture of these species and evaluate the genetic diversity among species.


Assuntos
Cloroplastos/genética , Fabaceae/genética , Genoma de Cloroplastos , DNA de Cloroplastos/química , DNA de Cloroplastos/isolamento & purificação , DNA de Cloroplastos/metabolismo , Fabaceae/classificação , Genômica , Repetições de Microssatélites/genética , Filogenia , Análise de Sequência de DNA
4.
Sci Rep ; 9(1): 14223, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578340

RESUMO

Male specific DNA sequences were selected from a Diversity Arrays Technology (DArT) mapping study to evaluate their suitability for determination of the sex phenotype among young seedlings in a hop (Humulus lupulus L.) breeding program. Ten male specific DArT markers showed complete linkage with male sex phenotype in three crossing families. Following optimization, four were successfully converted into PCR markers and a multiplex PCR approach for their use was developed. Among 197 plants (97 from the world collection; 100 from three segregating families), 94-100% positive correlation with sex phenotypic data was achieved for the single PCR amplification, whereas the multiplex approach showed 100% correlation. To develop a fast and low-cost method, crude sample multiplex PCR was evaluated in 253 progenies from 14 segregating populations without losing accuracy. The study describes, for the first time, the routine application of molecular markers linked to male sex in an intensive Slovenian hop breeding program. The methods described could be employed for screening of sex at the seedling stage in other hop programs worldwide, thereby saving resources for desirable female plants.


Assuntos
DNA de Plantas/química , Marcadores Genéticos , Humulus/fisiologia , Melhoramento Vegetal , Mapeamento de Sequências Contíguas , DNA de Cloroplastos/química , Humulus/química , Reação em Cadeia da Polimerase Multiplex , Fenótipo , Plântula , Eslovênia
5.
Microbiologyopen ; 8(10): e892, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184446

RESUMO

Operational taxonomic units 94%-95% similar to the known Pedinophyceae were found as a result of high-through sequencing of 18S rDNA V4 amplicons of environmental DNA from the summer picophytoplankton samples from the White Sea. Partial sequence of a ribosomal operon (the 5,298 bp includes partial 18S and 28S rDNA, complete 5.8S rDNA, ITS1, and ITS2 sequences) and a partial 2,112 bp chloroplast 23S rDNA sequence White Sea Pedinophyceae was amplified from metagenomic DNA by specific primers and sequenced. A new phylotype was designated as uncultured Pedinophyceae WS. On Chlorophyta phylogenetic trees the discovered phylotype occupies a basal position in the Marsupiomonadales clade. The synapomorphic base substitutions in rRNA hairpins confirm the relationship of Pedinophyceae WS to Marsupiomonadales and its difference from known genera of the order. The obtained results extend knowledge of picophytoplankton diversity in subarctic waters.


Assuntos
Biodiversidade , DNA Ambiental/genética , Filogenia , Fitoplâncton/classificação , Fitoplâncton/genética , Água do Mar/microbiologia , Regiões Árticas , Análise por Conglomerados , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA Ambiental/química , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 23S/genética , RNA Ribossômico 28S/genética , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA
6.
PLoS One ; 14(2): e0211340, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30716116

RESUMO

Artemisia selengenesis is not only a health food, but also a well-known traditional Chinese medicine. Only a fraction of the chloroplast (cp) genome data of Artemisia has been reported and chloroplast genomic materials have been widely used in genomic evolution studies, molecular marker development, and phylogenetic analysis of the genus Artemisia, which makes evolutionary studies, genetic improvement, and phylogenetic identification very difficult. In this study, the complete chloroplast genome of A. selengensis was compared with that of other species within Artemisia and phylogenetic analyses was conducted with other genera in the Asteraceae family. The results showed that A. selengensis is an AT-rich species and has a typical quadripartite structure that is 151,215 bp in length. Comparative genome analyses demonstrated that the available chloroplast genomes of species of Artemisia were well conserved in terms of genomic length, GC contents, and gene organization and order. However, some differences, which may indicate evolutionary events, were found, such as a re-inversion event within the Artemisia genus, an unequal duplicate phenomenon of the ycf1 gene because of the expansion and contraction of the IR region, and the fast-evolving regions. Repeated sequences analysis showed that Artemisia chloroplast genomes presented a highly similar pattern of SSR or LDR distribution. A total of 257 SSRs and 42 LDRs were identified in the A. selengensis chloroplast genome. The phylogenetic analysis showed that A. selengensis was sister to A. gmelinii. The findings of this study will be valuable in further studies to understand the genetic diversity and evolutionary history of Asteraceae.


Assuntos
Artemisia/genética , Cloroplastos/genética , Genoma de Cloroplastos , Artemisia/classificação , Asteraceae/genética , Composição de Bases , Cloroplastos/classificação , Hibridização Genômica Comparativa , DNA de Cloroplastos/química , DNA de Cloroplastos/isolamento & purificação , DNA de Cloroplastos/metabolismo , Repetições de Microssatélites/genética , Filogenia , Plantas Medicinais/genética , Análise de Sequência de DNA
7.
Protist ; 169(6): 803-825, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30448592

RESUMO

The diatom genus Orthoseira Thwaites (Bacillariophyta) is a ubiquitous taxon in aerial diatom assemblages, with species found globally. Cylindrical cell shape and radial symmetry of this genus has led to its historical placement in the Coscinodiscophyceae ('radial centric' diatoms), but its systematic relationships have remained uncertain. We present a five-gene phylogeny, based on nuclear (nSSU rDNA) and chloroplast (rbcL, psbC, psbA, and psaB) genes to determine the phylogenetic placement of Orthoseira among the diatoms. The concatenated multi-gene phylogenies and nSSU-only gene tree demonstrate that Orthoseira is deeply embedded within a clade of the Mediophyceae ('multipolar centric' diatoms). Throughout all phylogenetic analyses, Orthoseira was shown to be sister to the genera Terpsinoë and Hydrosera. Through comparison of topologies reflecting competing hypotheses about the placement of Orthoseira, it was determined that the hypothesis that Orthoseira, represented here by O. dendroteres and O. roeseana, is a member of the Melosirales should be rejected. Therefore, lack of morphological similarity between Hydrosera, Orthoseira, and Terpsinoë is hypothesized to be the result of changes in habitat preferences that lead to an ancient divergence event between the Orthoseirales and the Hydrosera, Terpsinoë clade.


Assuntos
Diatomáceas/classificação , Diatomáceas/genética , Filogenia , Proteínas de Cloroplastos/genética , Análise por Conglomerados , DNA de Algas/química , DNA de Algas/genética , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
8.
Sci Rep ; 8(1): 8813, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891978

RESUMO

Typha is a cosmopolitan aquatic plant genus that includes species with widespread distributions. It is a relatively ancient genus with an abundant fossil record dating back to the Paleogene. However, the details of its biogeographic history have remained unclear until now. In this study, we present a revised molecular phylogeny using sequences of seven chloroplast DNA markers from nine species sampled from various regions in order to infer the biogeographic history of the genus. Two clades were recovered with robust support. Typha minima and T. elephantina comprised one clade, and the other clade included the remaining seven species, which represented a polytomy of four robustly supported subclades. Two widespread species, T. angustifolia and T. domingensis, were revealed to be paraphyletic, indicating the need for taxonomic revision. Divergence time estimation suggested that Typha had a mid-Eocene crown origin, and its diversification occurred in the Middle and Late Miocene. Ancestral area reconstruction showed that Typha possibly originated from eastern Eurasia. Both dispersal via the Beringian Land Bridge and recent transoceanic dispersal may have influenced the intercontinental distribution of Typha species.


Assuntos
Filogenia , Filogeografia , Typhaceae/classificação , Typhaceae/genética , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Análise por Conglomerados , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , Marcadores Genéticos
9.
Sci Rep ; 8(1): 8906, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891987

RESUMO

Obtaining chloroplast (cp) genome sequence is necessary for studying physiological roles in plants. However, it is difficult to use traditional sequencing methods to get cp genome sequences because of the complex procedures of preparing templates. With the advent of next-generation sequencing technology, massive genome sequences can be produced. Thus, a good pipeline to assemble next-generation sequence reads with optimized k-mer length is essential to get whole cp genome sequences. Moreover, adjustment of other parameters is also very important, especially for the assembly of the cp genome. In this study, we developed a pipeline to generate the cp genome for Quercus spinosa. When Quercus rubra was used as a reference, we achieved coverage of 97.75% after optimizing k-mer length as well as other parameters. The efficiency of the pipeline makes it a useful method for cp genome construction in plants. It also provides great perspective on the analysis of cp genome characteristics and evolution.


Assuntos
Biologia Computacional/métodos , Genoma de Cloroplastos , Quercus/genética , Análise de Sequência de DNA/métodos , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
10.
Sci Rep ; 8(1): 8844, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891996

RESUMO

Lindera, a core genus of the Lauraceae family, has important economic uses in eastern Asia and North America. However, its historical diversification has not been clarified. In this study, we report nine newly sequenced Lindera plastomes. The plastomes of these nine Lindera species range from 152,211 (L. nacusua) to 152,968 bp (L. metcalfiana) in length, similar to that of another Lauraceae species, Litsea glutinosa (152,618 bp). The length variation of these plastomes derived from the length variation in the loci ycf1, ycf2, ψycf1, and ndhF-ψycf1. Comparing our sequences with other available plastomes in the Lauraceae indicated that eight hypervariable loci, ihbA-trnG, ndhA, ndhF-rpl32, petA-psbJ, psbK-psbI, rps16, trnS-trnG, and ycf1, could serve as DNA barcodes for species delineation, and that the inverted repeats (IRs) showed contraction/expansion. Further phylogenetic analyses were performed using 32 complete plastomes of Lauraceae and seven barcodes from 14 additional species of Lindera and related species in the core Lauraceae. The results showed that these Lindera species grouped into two or four sub-clades, and that two Litsea species and Laurus nobilis were located in the same sub-clade as five Lindera species. These data support a close relationship between the genera Laurus, Lindera, and Litsea, and suggest that Lindera is polyphyletic.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos , Lindera/classificação , Lindera/genética , Filogenia , China , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , Genes de Cloroplastos , Variação Genética , Genômica , Análise de Sequência de DNA
11.
J Plant Res ; 131(5): 747-758, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948485

RESUMO

The genus Pimpinella L. comprises about 150 species, being one of the largest genera within the family Apiaceae (subfamily Apioideae). Previous molecular phylogenetic studies have shown that Pimpinella is a taxonomically complex group. In this study, evolutionary relationships among representatives from Western Europe have been inferred from phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacer (ITS 1 and ITS 2) and plastid sequences (trnL intron and the trnL-F spacer), with a representative sampling included (168 accessions in the ITS analysis, representing 158 species; and 42 accessions in the cpDNA analysis representing 35 taxa of Pimpinella and closely related species). All analyses resolved that Pimpinella is a non-monophyletic group, and Pimpinella's taxa that grow in Western Europe are part of phylogenetically independent groups that correspond to three different tribes of the subfamily Apioideae: Pimpinelleae (core group), Pyramidoptereae and Smyrnieae.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Pimpinella/genética , Núcleo Celular/genética , Cloroplastos/genética , Classificação , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Íntrons/genética , Filogenia , Análise de Sequência de DNA
12.
Mol Ecol ; 27(10): 2317-2333, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29675939

RESUMO

Plant studies comprise a relatively small proportion of the phylogeographic literature, likely as a consequence of the fundamental challenges posed by the complex genomic structures and life history strategies of these organisms. Comparative plastomics (i.e., comparisons of mutation rates within and among regions of the chloroplast genome) across plant lineages has led to an increased understanding of which markers are likely to provide the most information at low taxonomic levels. However, the extent to which the results of such work have influenced the literature has not been fully assessed, nor has the extent to which plant phylogeographers explicitly analyse markers in time and space, both of which are integral components of the field. Here, we reviewed more than 400 publications from the last decade of plant phylogeography to specifically address the following questions: (i) What is the phylogenetic breadth of studies to date? (ii) What molecular markers have been used, and why were they chosen? (iii) What kinds of markers are most frequently used and in what combinations? (iv) How frequently are divergence time estimation and ecological niche modelling used in plant phylogeography? Our results indicate that chloroplast DNA sequence data remain the primary tool of choice, followed distantly by nuclear DNA sequences and microsatellites. Less than half (42%) of all studies use divergence time estimation, while even fewer use ecological niche modelling (14%). We discuss the implications of our findings, as well as the need for community standards on data reporting.


Assuntos
Filogeografia/métodos , Plantas/genética , Classificação/métodos , DNA de Cloroplastos/química , DNA de Plantas/química , Repetições de Microssatélites , Plantas/classificação
13.
Trends Genet ; 34(4): 270-278, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29329720

RESUMO

While the vast majority of cellular DNA in eukaryotes is contained in long linear strands in chromosomes, we have long recognized some exceptions like mitochondrial DNA, plasmids in yeasts, and double minutes (DMs) in cancer cells where the DNA is present in extrachromosomal circles. In addition, specialized extrachromosomal circles of DNA (eccDNA) have been noted to arise from repetitive genomic sequences like telomeric DNA or rDNA. Recently eccDNA arising from unique (nonrepetitive) DNA have been discovered in normal and malignant cells, raising interesting questions about their biogenesis, function and clinical utility. Here, we review recent results and future directions of inquiry on these new forms of eccDNA.


Assuntos
DNA Circular/genética , DNA Mitocondrial/genética , DNA de Neoplasias/genética , Neoplasias/genética , Células Neoplásicas Circulantes/química , Animais , Cromossomos Humanos/química , Cromossomos Humanos/metabolismo , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA de Cloroplastos/metabolismo , DNA Circular/química , DNA Circular/metabolismo , DNA de Cinetoplasto/química , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Humanos , Kinetoplastida/genética , Kinetoplastida/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Células Neoplásicas Circulantes/metabolismo , Plantas/genética , Plantas/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telômero/química , Telômero/metabolismo
14.
Mol Phylogenet Evol ; 118: 379-391, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29111476

RESUMO

Androdioecy is the rarest sexual system among plants. The majority of androdioecious species are herbaceous plants that have evolved from dioecious ancestors. Nevertheless, some woody and androdioecious plants have hermaphrodite ancestors, as in the Annonaceae, where androdioecious genera have arisen several times in different lineages. The majority of androdioecious species of Annonaceae belong to the Neotropical tribe Malmeeae. In addition to these species, Pseudoxandra spiritus-sancti was recently confirmed to be androdioecious. Here, we describe the morphology of male and bisexual flowers of Pseudoxandra spiritus-sancti, and investigate the evolution of androdioecy in Malmeeae. The phylogeny of tribe Malmeeae was reconstructed using Bayesian inference, maximum parsimony and maximum likelihood of 32 taxa, using DNA sequences of 66 molecular markers of the chloroplast genome, sequenced by next generation sequencing. The reconstruction of ancestral states was performed for characters associated with sexual systems and floral morphology. The phylogenetic analyses reconstructed three main groups in Malmeeae, (Malmea (Cremastosperma, Pseudoxandra)) sister to the rest of the tribe, and (Unonopsis (Bocageopsis, Onychopetalum)) sister to (Mosannona, Ephedranthus, Klarobelia, Oxandra, Pseudephedranthus fragrans, Pseudomalmea, Ruizodendron ovale). Hermaphroditism is plesiomorphic in the tribe, with four independent evolutions of androdieocy, which represents a synapomorphy of two groups, one that includes three genera and 14 species, the other with a single genus of seven species. Male flowers are unisexual from inception and bisexual flowers possess staminodes and functional stamens. Pseudoxandra spiritus-sancti is structurally androdioecious.


Assuntos
Annonaceae/classificação , Annonaceae/anatomia & histologia , Annonaceae/genética , Teorema de Bayes , Evolução Biológica , Cloroplastos/genética , DNA de Cloroplastos/química , DNA de Cloroplastos/isolamento & purificação , DNA de Cloroplastos/metabolismo , Flores/anatomia & histologia , Flores/genética , Funções Verossimilhança , Microscopia Eletrônica de Varredura , Fenótipo , Filogenia , Análise de Sequência de DNA
15.
Mol Ecol Resour ; 18(3): 407-423, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29172252

RESUMO

The mitogenome is rarely used to reconstruct the evolutionary history of plants, contrary to nuclear and plastid markers. Here, we evaluate the usefulness of mitochondrial DNA for molecular evolutionary studies in Oleaceae, in which cases of cytoplasmic male sterility (CMS) and of potentially contrasted organelle inheritance are known. We compare the diversity and the evolution of mitochondrial and chloroplast genomes by focusing on the olive complex and related genera. Using high-throughput techniques, we reconstructed complete mitogenomes (ca. 0.7 Mb) and plastomes (ca. 156 kb) for six olive accessions and one Chionanthus. A highly variable organization of mitogenomes was observed at the species level. In olive, two specific chimeric genes were identified in the mitogenome of lineage E3 and may be involved in CMS. Plastid-derived regions (mtpt) were observed in all reconstructed mitogenomes. Through phylogenetic reconstruction, we demonstrate that multiple integrations of mtpt regions have occurred in Oleaceae, but mtpt regions shared by all members of the olive complex derive from a common ancestor. We then assembled 52 conserved mitochondrial gene regions and complete plastomes of ten additional accessions belonging to tribes Oleeae, Fontanesieae and Forsythieae. Phylogenetic congruence between topologies based on mitochondrial regions and plastomes suggests a strong disequilibrium linkage between both organellar genomes. Finally, while phylogenetic reconstruction based on plastomes fails to resolve the evolutionary history of maternal olive lineages in the Mediterranean area, their phylogenetic relationships were successfully resolved with complete mitogenomes. Overall, our study demonstrates the great potential of using mitochondrial DNA in plant phylogeographic and metagenomic studies.


Assuntos
DNA Mitocondrial/química , Genoma Mitocondrial , Oleaceae/genética , Filogenia , DNA de Cloroplastos/química , Evolução Molecular , Genoma de Cloroplastos , Metagenômica/métodos
16.
Plant Cell Rep ; 37(2): 307-328, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29086003

RESUMO

KEY MESSAGE: The plastome of Linum usitatissimum was completely sequenced allowing analyses of evolution of genome structure, RNA editing sites, molecular markers, and indicating the position of Linaceae within Malpighiales. Flax (Linum usitatissimum L.) is an economically important crop used as food, feed, and industrial feedstock. It belongs to the Linaceae family, which is noted by high morphological and ecological diversity. Here, we reported the complete sequence of flax plastome, the first species within Linaceae family to have the plastome sequenced, assembled and characterized in detail. The plastome of flax is a circular DNA molecule of 156,721 bp with a typical quadripartite structure including two IRs of 31,990 bp separating the LSC of 81,767 bp and the SSC of 10,974 bp. It shows two expansion events from IRB to LSC and from IRB to SSC, and a contraction event in the IRA-LSC junction, which changed significantly the size and the gene content of LSC, SSC and IRs. We identified 109 unique genes and 2 pseudogenes (rpl23 and ndhF). The plastome lost the conserved introns of clpP gene and the complete sequence of rps16 gene. The clpP, ycf1, and ycf2 genes show high nucleotide and aminoacid divergence, but they still possibly retain the functionality. Moreover, we also identified 176 SSRs, 20 tandem repeats, and 39 dispersed repeats. We predicted in 18 genes a total of 53 RNA editing sites of which 32 were not found before in other species. The phylogenetic inference based on 63 plastid protein-coding genes of 38 taxa supports three major clades within Malpighiales order. One of these clades has flax (Linaceae) sister to Chrysobalanaceae family, differing from earlier studies that included Linaceae into the euphorbioid clade.


Assuntos
Linho/genética , Genomas de Plastídeos/genética , Linaceae/genética , Plastídeos/genética , Edição de RNA , Sítios de Ligação/genética , Proteínas de Cloroplastos/genética , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , Evolução Molecular , Genes de Cloroplastos/genética , Linaceae/classificação , Filogenia , Análise de Sequência de DNA
17.
Mol Phylogenet Evol ; 118: 286-305, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29017853

RESUMO

The Arracacia clade (Apiaceae, Apioideae) is a heterogeneous assemblage of 12 genera, comprising 111 known species distributed in high montane temperate and sub-alpine habitats of meso- and South America. Previous studies have indicated that the genera Arracacia, Coulterophytum, and Prionosciadium are polyphyletic, but for the most part relationships among the members of the clade are largely unknown. Initially, cladistic analyses of nrDNA ITS sequences were carried out on 212 accessions (122 taxa), representing 92 species of the Arracacia clade and outgroups from the closely-related páramo genera Cotopaxia, Niphogeton, and Perissocoeleum and members of the Perennial Endemic North American clade and its allies. Using the ITS results to inform sampling of a small subset of taxa, a pilot study examining the phylogenetic utility of 20 noncoding chloroplast loci was subsequently performed to identify those regions most useful at resolving relationships. A cost-benefit analysis determined that five loci (trnQ-5'rps16, trnD-trnT, rpl32-trnL, psbD-trnT, ndhA intron) would maximize resolution and branch support in the clade. Cladistic analyses of four of these loci (trnQ-5'rps16, trnD-trnT, rpl32-trnL, ndhA intron) and the ITS region, separately and combined, revealed that Arracacia, Coaxana, Coulterophytum, Prionosciadium, and Rhodosciadium are each polyphyletic and that Donnellsmithia and Myrrhidendron are each monophyletic. Although most relationships in the Arracacia clade and among the closely-related genera Cotopaxia, Niphogeton, and Perissocoeleum are poorly resolved and supported, ten groups are recognized for future revisionary studies. Polyploidy and rapid species radiation have likely confounded generic circumscriptions and interpretation of relationships.


Assuntos
Apiaceae/classificação , Apiaceae/genética , Sequência de Bases , Teorema de Bayes , Núcleo Celular/genética , DNA de Cloroplastos/química , DNA de Cloroplastos/isolamento & purificação , DNA de Cloroplastos/metabolismo , Loci Gênicos , Íntrons , Filogenia , Plastídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNA
18.
Sci Rep ; 7(1): 5751, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720853

RESUMO

Lilium is a large genus that includes approximately 110 species distributed throughout cold and temperate regions of the Northern Hemisphere. The species-level phylogeny of Lilium remains unclear; previous studies have found universal markers but insufficient phylogenetic signals. In this study, we present the use of complete chloroplast genomes to explore the phylogeny of this genus. We sequenced nine Lilium chloroplast genomes and retrieved seven published chloroplast genomes for comparative and phylogenetic analyses. The genomes ranged from 151,655 bp to 153,235 bp in length and had a typical quadripartite structure with a conserved genome arrangement and moderate divergence. A comparison of sixteen Lilium chloroplast genomes revealed ten mutation hotspots. Single nucleotide polymorphisms (SNPs) for any two Lilium chloroplast genomes ranged from 8 to 1,178 and provided robust data for phylogeny. Except for some of the shortest internodes, phylogenetic relationships of the Lilium species inferred from the chloroplast genome obtained high support, indicating that chloroplast genome data will be useful to help resolve the deeper branches of phylogeny.


Assuntos
DNA de Cloroplastos/genética , Genoma de Cloroplastos/genética , Lilium/genética , Análise de Sequência de DNA/métodos , DNA de Cloroplastos/química , Evolução Molecular , Genes de Cloroplastos/genética , Lilium/classificação , Filogenia , Especificidade da Espécie
19.
Sci Rep ; 7(1): 6514, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747666

RESUMO

Buckwheat is a nutritional and economically crop belonging to Polygonaceae, Fagopyrum. To better understand the mutation patterns and evolution trend in the chloroplast (cp) genome of buckwheat, and found sufficient number of variable regions to explore the phylogenetic relationships of this genus, two complete cp genomes of buckwheat including Fagopyrum dibotrys (F. dibotrys) and Fagopyrum luojishanense (F. luojishanense) were sequenced, and other two Fagopyrum cp genomes were used for comparative analysis. After morphological analysis, the main difference among these buckwheat were height, leaf shape, seeds and flower type. F. luojishanense was distinguishable from the cultivated species easily. Although the F. dibotrys and two cultivated species has some similarity, they different in habit and component contents. The cp genome of F. dibotrys was 159,320 bp while the F. luojishanense was 159,265 bp. 48 and 61 SSRs were found in F. dibotrys and F. luojishanense respectively. Meanwhile, 10 highly variable regions among these buckwheat species were located precisely. The phylogenetic relationships among four Fagopyrum species based on complete cp genomes was showed. The results suggested that F. dibotrys is more closely related to Fagopyrum tataricum. These data provided valuable genetic information for Fagopyrum species identification, taxonomy, phylogenetic study and molecular breeding.


Assuntos
Fagopyrum/anatomia & histologia , Fagopyrum/genética , Genoma de Cloroplastos , Genômica , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , Fagopyrum/classificação , Flores/anatomia & histologia , Variação Genética , Filogenia , Folhas de Planta/anatomia & histologia , Sementes/anatomia & histologia , Análise de Sequência de DNA
20.
Planta Med ; 83(18): 1420-1430, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28651291

RESUMO

Precise, species-level identification of plants in foods and dietary supplements is difficult. While the use of DNA barcoding regions (short regions of DNA with diagnostic utility) has been effective for many inquiries, it is not always a robust approach for closely related species, especially in highly processed products. The use of fully sequenced chloroplast genomes, as an alternative to short diagnostic barcoding regions, has demonstrated utility for closely related species. The U. S. Food and Drug Administration (FDA) has also developed species-specific DNA-based assays targeting plant species of interest by utilizing chloroplast genome sequences. Here, we introduce a repository of complete chloroplast genome sequences called GenomeTrakrCP, which will be publicly available at the National Center for Biotechnology Information (NCBI). Target species for inclusion are plants found in foods and dietary supplements, toxin producers, common contaminants and adulterants, and their close relatives. Publicly available data will include annotated assemblies, raw sequencing data, and voucher information with each NCBI accession associated with an authenticated reference herbarium specimen. To date, 40 complete chloroplast genomes have been deposited in GenomeTrakrCP (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA325670/), and this will be expanded in the future.


Assuntos
Bases de Dados de Ácidos Nucleicos/normas , Genoma de Cloroplastos/genética , Plantas/classificação , Código de Barras de DNA Taxonômico , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , Anotação de Sequência Molecular , Folhas de Planta/classificação , Folhas de Planta/genética , Plantas/genética , Padrões de Referência , Especificidade da Espécie , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...