Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.448
Filtrar
1.
Oncogene ; 41(29): 3694-3704, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732801

RESUMO

Ewing sarcoma breakpoint region 1 (EWSR1) is a member of FET (FUS/EWSR1/TAF15) RNA-binding family of proteins. The Ewing sarcoma oncoprotein EWS-FLI1 has been extensively studied, while much less is known about EWSR1 itself, especially the potential role of EWSR1 in response to DNA damage. Here, we found that UV irradiation induces acetylation of EWSR1, which is required for its nucleoli translocation. We identified K423, K432, K438, K640, and K643 as the major acetylation sites, p300/CBP and HDAC3/HDAC10 as the major acetyltransferases and deacetylases, respectively. Mechanically, UV-induced EWSR1 acetylation repressed its interaction with spliceosomal component U1C, which caused abnormal splicing of CHK2, suppressing the activity of CHK2 in response to UV irradiation. Taken together, our findings uncover acetylation as a novel regulatory modification of EWSR1, and is essential for its function in DNA damage response.


Assuntos
Quinase do Ponto de Checagem 2 , Dano ao DNA , Proteína EWS de Ligação a RNA , Sarcoma de Ewing , Acetilação , Processamento Alternativo/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Proteínas de Fusão Oncogênica/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética
2.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216108

RESUMO

With the advent of human civilization and anthropogenic activities in the shade of urbanization and global climate change, plants are exposed to a complex set of abiotic stresses. These stresses affect plants' growth, development, and yield and cause enormous crop losses worldwide. In this alarming scenario of global climate conditions, plants respond to such stresses through a highly balanced and finely tuned interaction between signaling molecules. The abiotic stresses initiate the quick release of reactive oxygen species (ROS) as toxic by-products of altered aerobic metabolism during different stress conditions at the cellular level. ROS includes both free oxygen radicals {superoxide (O2•-) and hydroxyl (OH-)} as well as non-radicals [hydrogen peroxide (H2O2) and singlet oxygen (1O2)]. ROS can be generated and scavenged in different cell organelles and cytoplasm depending on the type of stimulus. At high concentrations, ROS cause lipid peroxidation, DNA damage, protein oxidation, and necrosis, but at low to moderate concentrations, they play a crucial role as secondary messengers in intracellular signaling cascades. Because of their concentration-dependent dual role, a huge number of molecules tightly control the level of ROS in cells. The plants have evolved antioxidants and scavenging machinery equipped with different enzymes to maintain the equilibrium between the production and detoxification of ROS generated during stress. In this present article, we have focused on current insights on generation and scavenging of ROS during abiotic stresses. Moreover, the article will act as a knowledge base for new and pivotal studies on ROS generation and scavenging.


Assuntos
Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/fisiologia , Animais , Mudança Climática , Dano ao DNA/fisiologia , Humanos , Peroxidação de Lipídeos/fisiologia , Transdução de Sinais/fisiologia
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042797

RESUMO

Srs2 is a superfamily 1 (SF1) helicase that participates in several pathways necessary for the repair of damaged DNA. Srs2 regulates formation of early homologous recombination (HR) intermediates by actively removing the recombinase Rad51 from single-stranded DNA (ssDNA). It is not known whether and how Srs2 itself is down-regulated to allow for timely HR progression. Rad54 and Rdh54 are two closely related superfamily 2 (SF2) motor proteins that promote the formation of Rad51-dependent recombination intermediates. Rad54 and Rdh54 bind tightly to Rad51-ssDNA and act downstream of Srs2, suggesting that they may affect the ability of Srs2 to dismantle Rad51 filaments. Here, we used DNA curtains to determine whether Rad54 and Rdh54 alter the ability of Srs2 to disrupt Rad51 filaments. We show that Rad54 and Rdh54 act synergistically to greatly restrict the antirecombinase activity of Srs2. Our findings suggest that Srs2 may be accorded only a limited time window to act and that Rad54 and Rdh54 fulfill a role of prorecombinogenic licensing factors.


Assuntos
DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA Topoisomerases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , DNA Helicases/fisiologia , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/fisiologia , DNA Topoisomerases/fisiologia , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Ligação Proteica/genética , Rad51 Recombinase/metabolismo , Rad51 Recombinase/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
4.
Dev Cell ; 57(2): 277-290.e9, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35077681

RESUMO

Telomeres form unique nuclear compartments that prevent degradation and fusion of chromosome ends by recruiting shelterin proteins and regulating access of DNA damage repair factors. To understand how these dynamic components protect chromosome ends, we combine in vivo biophysical interrogation and in vitro reconstitution of human shelterin. We show that shelterin components form multicomponent liquid condensates with selective biomolecular partitioning on telomeric DNA. Tethering and anomalous diffusion prevent multiple telomeres from coalescing into a single condensate in mammalian cells. However, telomeres coalesce when brought into contact via an optogenetic approach. TRF1 and TRF2 subunits of shelterin drive phase separation, and their N-terminal domains specify interactions with telomeric DNA in vitro. Telomeric condensates selectively recruit telomere-associated factors and regulate access of DNA damage repair factors. We propose that shelterin mediates phase separation of telomeric chromatin, which underlies the dynamic yet persistent nature of the end-protection mechanism.


Assuntos
Complexo Shelterina/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Linhagem Celular , Cromatina/genética , DNA/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/genética , Reparo do DNA/fisiologia , Humanos , Optogenética/métodos , Ligação Proteica/genética , Ligação Proteica/fisiologia , Complexo Shelterina/genética , Complexo Shelterina/fisiologia , Telômero/fisiologia , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética
5.
Life Sci ; 293: 120353, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35074406

RESUMO

AIMS: Piwi-like RNA-mediated gene silencing 4 (PIWIL4) or HIWI2, are seen deregulated in human cancers and possibly play critical roles in tumorigenesis. It is unknown what role HIWI2 plays in the regulation of fibrosarcoma, an early metastatic lethal type of soft tissue sarcoma (STS). The present study aimed to investigate the role of HIWI2 in the tumorigenesis of fibrosarcoma. MAIN METHODS: The expression of HIWI2 in HT1080 fibrosarcoma cells was determined by qRT-PCR and western blotting. The MTT assay, colony formation assay, cell cycle, and PE-AnnexinV/7AAD apoptosis assay using flow cytometry, DNA laddering assay, comet assay, and γH2AX accumulation assay were performed to study the effect of HIWI2 overexpression in HT1080 cells. Further, the effect of silencing of HIWI2 was determined by cell viability assay, transwell migration, and invasion assay. KEY FINDINGS: HIWI2 is under-expressed in STS cell lines and tissues, which is associated with poor disease-free survival, disease-specific survival, and progression-free survival of the patients. Overexpression of HIWI2 in HT1080 cells causes DNA damage by increasing intracellular ROS by inhibiting the expression of antioxidant genes (SOD1, SOD2, GPX1, GPX4, and CAT). Furthermore, an increase in H2AX phosphorylation was observed, which activates p53 that promotes p21 expression and caspase-3 activation, leading to G2/M phase cell cycle arrest and apoptosis. HIWI2 silencing, on the contrary, promotes cell growth, migration, and invasion by activating MMP2 and MMP9. SIGNIFICANCE: These results are the first to show that HIWI2 acts as a tumor suppressor in fibrosarcoma by modulating the ROS/DNA damage/p53 pathway.


Assuntos
Dano ao DNA/fisiologia , Fibrossarcoma/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Proteínas de Ligação a RNA/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Fibrossarcoma/patologia , Humanos , Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/antagonistas & inibidores
6.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35031563

RESUMO

Drugs that block the activity of the methyltransferase EZH2 are in clinical development for the treatment of non-Hodgkin lymphomas harboring EZH2 gain-of-function mutations that enhance its polycomb repressive function. We have previously reported that EZH2 can act as a transcriptional activator in castration-resistant prostate cancer (CRPC). Now we show that EZH2 inhibitors can also block the transactivation activity of EZH2 and inhibit the growth of CRPC cells. Gene expression and epigenomics profiling of cells treated with EZH2 inhibitors demonstrated that in addition to derepressing gene expression, these compounds also robustly down-regulate a set of DNA damage repair (DDR) genes, especially those involved in the base excision repair (BER) pathway. Methylation of the pioneer factor FOXA1 by EZH2 contributes to the activation of these genes, and interaction with the transcriptional coactivator P300 via the transactivation domain on EZH2 directly turns on the transcription. In addition, CRISPR-Cas9-mediated knockout screens in the presence of EZH2 inhibitors identified these BER genes as the determinants that underlie the growth-inhibitory effect of EZH2 inhibitors. Interrogation of public data from diverse types of solid tumors expressing wild-type EZH2 demonstrated that expression of DDR genes is significantly correlated with EZH2 dependency and cellular sensitivity to EZH2 inhibitors. Consistent with these findings, treatment of CRPC cells with EZH2 inhibitors dramatically enhances their sensitivity to genotoxic stress. These studies reveal a previously unappreciated mechanism of action of EZH2 inhibitors and provide a mechanistic basis for potential combination cancer therapies.


Assuntos
Dano ao DNA/genética , Dano ao DNA/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Ativação Transcricional , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Reparo do DNA/genética , Reparo do DNA/fisiologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo
7.
Mol Pharmacol ; 101(1): 24-32, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34689119

RESUMO

DNA topoisomerases regulate the topological state of DNA, relaxing DNA supercoils and resolving catenanes and knots that result from biologic processes, such as transcription and replication. DNA topoisomerase II (TOP2) enzymes achieve this by binding DNA and introducing an enzyme-bridged DNA double-strand break (DSB) where each protomer of the dimeric enzyme is covalently attached to the 5' end of the cleaved DNA via an active site tyrosine phosphodiester linkage. The enzyme then passes a second DNA duplex through the DNA break, before religation and release of the enzyme. However, this activity is potentially hazardous to the cell, as failure to complete religation leads to persistent TOP2 protein-DNA covalent complexes, which are cytotoxic. Indeed, this property of topoisomerase has been exploited in cancer therapy in the form of topoisomerase poisons which block the religation stage of the reaction cycle, leading to an accumulation of topoisomerase-DNA adducts. A number of parallel cellular processes have been identified that lead to removal of these covalent TOP2-DNA complexes, facilitating repair of the resulting protein-free DSB by standard DNA repair pathways. These pathways presumably arose to repair spontaneous stalled or poisoned TOP2-DNA complexes, but understanding their mechanisms also has implications for cancer therapy, particularly resistance to anti-cancer TOP2 poisons and the genotoxic side effects of these drugs. Here, we review recent progress in the understanding of the processing of TOP2 DNA covalent complexes, the basic components and mechanisms, as well as the additional layer of complexity posed by the post-translational modifications that modulate these pathways. SIGNIFICANCE STATEMENT: Multiple pathways have been reported for removal and repair of TOP2-DNA covalent complexes to ensure the timely and efficient repair of TOP2-DNA covalent adducts to protect the genome. Post-translational modifications, such as ubiquitination and SUMOylation, are involved in the regulation of TOP2-DNA complex repair. Small molecule inhibitors of these post-translational modifications may help to improve outcomes of TOP2 poison chemotherapy, for example by increasing TOP2 poison cytotoxicity and reducing genotoxicity, but this remains to be determined.


Assuntos
Reparo do DNA/fisiologia , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Quebras de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Reparo do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/fisiologia
8.
Plant J ; 109(3): 490-507, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34741364

RESUMO

Being sessile organisms, plants are ubiquitously exposed to stresses that can affect the DNA replication process or cause DNA damage. To cope with these problems, plants utilize DNA damage response (DDR) pathways, consisting of both highly conserved and plant-specific elements. As a part of this DDR, cell cycle checkpoint control mechanisms either pause the cell cycle, to allow DNA repair, or lead cells into differentiation or programmed cell death, to prevent the transmission of DNA errors in the organism through mitosis or to its offspring via meiosis. The two major DDR cell cycle checkpoints control either the replication process or the G2/M transition. The latter is largely overseen by the plant-specific SOG1 transcription factor, which drives the activity of cyclin-dependent kinase inhibitors and MYB3R proteins, which are rate limiting for the G2/M transition. By contrast, the replication checkpoint is controlled by different players, including the conserved kinase WEE1 and likely the transcriptional repressor RBR1. These checkpoint mechanisms are called upon during developmental processes, in retrograde signaling pathways, and in response to biotic and abiotic stresses, including metal toxicity, cold, salinity, and phosphate deficiency. Additionally, the recent expansion of research from Arabidopsis to other model plants has revealed species-specific aspects of the DDR. Overall, it is becoming evidently clear that the DNA damage checkpoint mechanisms represent an important aspect of the adaptation of plants to a changing environment, hence gaining more knowledge about this topic might be helpful to increase the resilience of plants to climate change.


Assuntos
Absorção Fisiológica/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Dano ao DNA/genética , Estresse Fisiológico/genética , Absorção Fisiológica/fisiologia , Dano ao DNA/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estresse Fisiológico/fisiologia , Fatores de Transcrição
9.
Exp Neurol ; 347: 113900, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34695425

RESUMO

During the pathogenesis of Parkinson's disease (PD), aggregation of alpha-synuclein (αSyn) induces a vicious cycle of cellular impairments that lead to neurodegeneration. Consequently, removing toxic αSyn aggregates constitutes a plausible strategy against PD. In this work, we tested whether stimulating the autolysosomal degradation of αSyn aggregates through the Ras-related in brain 7 (Rab7) pathway can reverse αSyn-induced cellular impairment and prevent neurodegeneration in vivo. The disease-related A53T mutant of αSyn was expressed in primary neurons and in dopaminergic neurons of the rat brain simultaneously with wild type (WT) Rab7 or the T22N mutant as negative control. The cellular integrity was quantified by morphological and biochemical analyses. In primary neurons, WT Rab7 rescued the αSyn-induced loss of neurons and neurites. Furthermore, Rab7 decreased the amount of reactive oxygen species and the amount of Triton X-100 insoluble αSyn. In rat brain, WT Rab7 reduced αSyn-induced loss of dopaminergic axon terminals in the striatum and the loss of dopaminergic dendrites in the substantia nigra pars reticulata. Further, WT Rab7 lowered αSyn pathology as quantified by phosphorylated αSyn staining. Finally, WT Rab7 attenuated αSyn-induced DNA damage in primary neurons and rat brain. In brief, Rab7 reduced αSyn-induced pathology, ameliorated αSyn-induced neuronal degeneration, oxidative stress and DNA damage. These findings indicate that Rab7 is able to disrupt the vicious cycle of cellular impairment, αSyn pathology and neurodegeneration present in PD. Stimulation of Rab7 and the autolysosomal degradation pathway could therefore constitute a beneficial strategy for PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , alfa-Sinucleína/biossíntese , alfa-Sinucleína/toxicidade , proteínas de unión al GTP Rab7/biossíntese , proteínas de unión al GTP Rab7/farmacologia , Animais , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
10.
Mol Cell Biol ; 42(2): e0031021, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34898277

RESUMO

RASSF6, a member of the tumor suppressor Ras-association domain family (RASSF) proteins, regulates cell cycle arrest and apoptosis via p53 and plays a tumor suppressor role. We previously reported that RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. In this study, we demonstrated that RASSF6 has nuclear localization and nuclear export signals and that DNA damage triggers the nuclear accumulation of RASSF6. We found that RASSF6 directly binds to BAF53, the component of SWI/SNF complex. DNA damage induces CDK9-mediated phosphorylation of BAF53, which enhances the interaction with RASSF6 and increases the amount of RASSF6 in the nucleus. Subsequently, RASSF6 augments the interaction between BAF53 and BAF60a, another component of the SWI/SNF complex, and further promotes the interaction of BAF53 and BAF60a with p53. BAF53 silencing or BAF60a silencing attenuates RASSF6-mediated p53 target gene transcription and apoptosis. Thus, RASSF6 is involved in the regulation of DNA damage-induced complex formation, including BAF53, BAF60a, and p53.


Assuntos
Actinas/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/metabolismo , Actinas/genética , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/genética , Quinase 9 Dependente de Ciclina/genética , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Am J Physiol Cell Physiol ; 322(2): C136-C150, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936503

RESUMO

Mitochondria are primarily involved in energy production through the process of oxidative phosphorylation (OXPHOS). Increasing evidence has shown that mitochondrial function impacts a plethora of different cellular activities, including metabolism, epigenetics, and innate immunity. Like the nucleus, mitochondria own their genetic material, but this organellar genome is circular, present in multiple copies, and maternally inherited. The mitochondrial DNA (mtDNA) encodes 37 genes that are solely involved in OXPHOS. Maintenance of mtDNA, through replication and repair, requires the import of nuclear DNA-encoded proteins. Thus, mitochondria completely rely on the nucleus to prevent mitochondrial genetic alterations. As most cells contain hundreds to thousands of mitochondria, it follows that the shear number of organelles allows for the buffering of dysfunction-at least to some extent-before tissue homeostasis becomes impaired. Only red blood cells lack mitochondria entirely. Impaired mitochondrial function is a hallmark of aging and is involved in a number of different disorders, including neurodegenerative diseases, diabetes, cancer, and autoimmunity. Although alterations in mitochondrial processes unrelated to OXPHOS, such as fusion and fission, contribute to aging and disease, maintenance of mtDNA integrity is critical for proper organellar function. Here, we focus on how mtDNA damage contributes to cellular dysfunction and health outcomes.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Animais , Humanos , Mitocôndrias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
12.
Mol Biol Rep ; 49(2): 1201-1211, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34792728

RESUMO

BACKGROUND: The potential protective properties of carvacrol (CRV), which possesses various biological and pharmacological properties, against lung toxicity caused by cadmium (Cd), a major environmental pollutant, were investigated in the present study. METHODS AND RESULTS: In the study, rats were given 25 or 50 mg/kg CRV orally 30 min after administrating 25 mg/kg cadmium chloride for seven days. Subsequently, the levels of 8-OHdG, MMP-2, and MMP-9, as well as markers of oxidative stress, inflammation, and apoptosis, were analyzed in the lung tissue of the animals. The results revealed that CRV exhibited antioxidant characteristics and raised SOD, CAT, GPx, and CAT levels and decreased the MDA levels induced by Cd. It also suppressed proinflammatory cytokines by lowering the levels of CRV NF-κB and p38 MAPK, thus exerting an anti-inflammatory effect against Cd. It was found that the levels of Bax, Caspase-3, and cytochrome c increased by Cd were decreased by the application of CRV. CRV also showed an anti-apoptotic effect by increasing Bcl-2 levels. The levels of 8-OHdG, MMP2, and MMP9, which increased with Cd administration, were observed to reduce after treatment with CRV. CONCLUSIONS: The results indicate that CRV has protective properties against Cd-induced lung toxicity.


Assuntos
Cimenos/farmacologia , Dano ao DNA/fisiologia , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Cádmio/efeitos adversos , Cádmio/farmacologia , Cloreto de Cádmio/metabolismo , Linhagem Celular Tumoral , Cimenos/metabolismo , Dano ao DNA/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Rim/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Metaloproteases/efeitos dos fármacos , Metaloproteases/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
13.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948185

RESUMO

Testicular ischemia reperfusion injury (tIRI) causes oxidative stress-induced DNA damage leading to germ cell apoptosis (GCA). The aim of the study is to establish a direct link between JAK2 activation and the DNA damage response (DDR) signaling pathways and their role in tIRI-induced GCA using AG490, a JAK2 specific inhibitor. Male Sprague Dawley rats (n = 36) were divided into three groups: sham, unilateral tIRI and tIRI + AG490 (40 mg/kg). During tIRI, augmentation in the phosphorylation levels of the JAK2/STAT1/STAT3 was measured by immunohistochemistry. Observed spermatogenic arrest was explained by the presence of considerable levels of DSB, AP sites and 8OHdG and activation of caspase 9, caspase 3 and PARP, which were measured by colorimetric assays and TUNEL. The ATM/Chk2/H2AX and ATR/Chk1 pathways were also activated as judged by their increased phosphorylation using Western blot. These observations were all prevented by AG490 inhibition of JAK2 activity. Our findings demonstrate that JAK2 regulates tIRI-induced GCA, oxidative DNA damage and activation of the ATM/Chk2/H2AX and ATR/Chk1 DDR pathways, but the cell made the apoptosis decision despite DDR efforts.


Assuntos
Reparo do DNA/fisiologia , Janus Quinase 2/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Apoptose/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Caspase 3 , Quinase 1 do Ponto de Checagem/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/fisiologia , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/fisiologia , Inibidores de Janus Quinases/farmacologia , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/fisiopatologia , Fator de Transcrição STAT1 , Fator de Transcrição STAT3 , Espermatogênese , Testículo/metabolismo , Testículo/fisiologia , Tirfostinas/farmacologia
14.
Nat Commun ; 12(1): 6515, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764289

RESUMO

The post-translational modification of proteins with ubiquitin (Ub) and Ub-like modifiers (Ubls) represents one of the most important regulators in eukaryotic biology. Polymeric Ub/Ubl chains of distinct topologies control the activity, stability, interaction and localization of almost all cellular proteins and elicit a variety of biological outputs. Our ability to characterize the roles of distinct Ub/Ubl topologies and to identify enzymes and receptors that create, recognize and remove these modifications is however hampered by the difficulty to prepare them. Here we introduce a modular toolbox (Ubl-tools) that allows the stepwise assembly of Ub/Ubl chains in a flexible and user-defined manner facilitated by orthogonal sortase enzymes. We demonstrate the universality and applicability of Ubl-tools by generating distinctly linked Ub/Ubl hybrid chains, and investigate their role in DNA damage repair. Importantly, Ubl-tools guarantees straightforward access to target proteins, site-specifically modified with distinct homo- and heterotypic (including branched) Ub chains, providing a powerful approach for studying the functional impact of these complex modifications on cellular processes.


Assuntos
Polímeros/química , Ubiquitina/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Ubiquitina/genética , Ubiquitinação/genética , Ubiquitinação/fisiologia
15.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34799452

RESUMO

Programmed death ligand 1 (PD-L1), an immune-checkpoint protein expressed on cancer cells, also functions independently of the immune system. We found that PD-L1 inhibits the killing of cancer cells in response to DNA damage in an immune-independent manner by suppressing their acute response to type I interferon (IFN; IFN-I). In addition, PD-L1 plays a critical role in sustaining high levels of constitutive expression in cancer cells of a subset of IFN-induced genes, the IFN-related DNA damage resistance signature (IRDS) which, paradoxically, protects cancer cells. The cyclic GMP-AMP synthase-stimulator of the IFN genes (cGAS-STING) pathway is constitutively activated in a subset of cancer cells in the presence of high levels of PD-L1, thus leading to a constitutive, low level of IFN-ß expression, which in turn increases IRDS expression. The constitutive low level of IFN-ß expression is critical for the survival of cancer cells addicted to self-produced IFN-ß. Our study reveals immune-independent functions of PD-L1 that inhibit cytotoxic acute responses to IFN-I and promote protective IRDS expression by supporting protective chronic IFN-I responses, both of which enhance the resistance of cancer cells to DNA damage.


Assuntos
Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Dano ao DNA/fisiologia , Interferon Tipo I/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Interferon Tipo I/genética , Interferon beta , Interferon gama/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Nucleotidiltransferases , Transdução de Sinais , Microambiente Tumoral
16.
Life Sci ; 287: 120128, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774874

RESUMO

Glioblastoma is the most frequent and malignant brain tumor. The median survival for this disease is approximately 15 months, and despite all the available treatment strategies employed, it remains an incurable disease. Preclinical and clinical research have shown that the resistance process related to DNA damage repair pathways, glioma stem cells, blood-brain barrier selectivity, and dose-limiting toxicity of systemic treatment leads to poor clinical outcomes. In this context, the advent of drug delivery systems associated with localized treatment seems to be a promising and versatile alternative to overcome the failure of the current treatment approaches. In order to bypass therapeutic tumor resistance mechanisms, more effective combinatorial therapies should be identified, such as the use of cytotoxic drugs combined with the inhibition of DNA damage response (DDR)-related targets. Additionally, critical reasoning about the delivery approach and administration route in brain tumors treatment innovation is essential. The outcomes of future experimental studies regarding the association of delivery systems, alternative treatment routes, and DDR targets are expected to lead to the development of refined therapeutic interventions. Novel therapeutic approaches could improve the life's quality of glioblastoma patients and increase their survival rate.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/tendências , Desenvolvimento de Medicamentos/tendências , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Dano ao DNA/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Desenvolvimento de Medicamentos/métodos , Glioblastoma/metabolismo , Humanos
17.
Sci Rep ; 11(1): 20582, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663822

RESUMO

PrimPol is a novel Primase-Polymerase that synthesizes RNA and DNA primers de novo and extents from these primers as a DNA polymerase. Animal PrimPol is involved in nuclear and mitochondrial DNA replication by virtue of its translesion DNA synthesis (TLS) and repriming activities. Here we report that the plant model Arabidopsis thaliana encodes a functional PrimPol (AtPrimPol). AtPrimPol is a low fidelity and a TLS polymerase capable to bypass DNA lesions, like thymine glycol and abasic sites, by incorporating directly across these lesions or by skipping them. AtPrimPol is also an efficient primase that preferentially recognizes the single-stranded 3'-GTCG-5' DNA sequence, where the 3'-G is cryptic. AtPrimPol is the first DNA polymerase that localizes in three cellular compartments: nucleus, mitochondria, and chloroplast. In vitro, AtPrimPol synthesizes primers that are extended by the plant organellar DNA polymerases and this reaction is regulated by organellar single-stranded binding proteins. Given the constant exposure of plants to endogenous and exogenous DNA-damaging agents and the enzymatic capabilities of lesion bypass and re-priming of AtPrimPol, we postulate a predominant role of this enzyme in avoiding replication fork collapse in all three plant genomes, both as a primase and as a TLS polymerase.


Assuntos
Proteínas de Arabidopsis/metabolismo , DNA Primase/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , DNA/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , Mitocôndrias/metabolismo , Enzimas Multifuncionais/metabolismo
18.
Dev Cell ; 56(18): 2607-2622.e6, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34534458

RESUMO

Atg6Beclin 1 mediates autophagy and endosomal trafficking. We investigated how Atg6 influences replication stress. Combining genetic, genomic, metabolomic, and proteomic approaches, we found that the Vps34-Vps15-Atg6Beclin 1-Vps38UVRAG-phosphatydilinositol-3 phosphate (PtdIns(3)P) axis sensitizes cells to replication stress by favoring the degradation of plasma membrane amino acid (AA) transporters via endosomal trafficking and ESCRT proteins, while the PtdIns(3)P phosphatases Ymr1 and Inp53 promote survival to replication stress by reversing this process. An impaired AA uptake triggers activation of Gcn2, which attenuates protein synthesis by phosphorylating eIF2α. Mec1Atr-Rad53Chk1/Chk2 activation during replication stress further hinders translation efficiency by counteracting eIF2α dephosphorylation through Glc7PP1. AA shortage-induced hyperphosphorylation of eIF2α inhibits the synthesis of 65 stress response proteins, thus resulting in cell sensitization to replication stress, while TORC1 promotes cell survival. Our findings reveal an integrated network mediated by endosomal trafficking, translational control pathways, and checkpoint kinases linking AA availability to the response to replication stress.


Assuntos
Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , Endossomos/metabolismo , Proteína Beclina-1/metabolismo , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras
19.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576157

RESUMO

DNA damage and mitochondrial dysfunction are defining characteristics of aged vascular smooth muscle cells (VSMCs) found in atherosclerosis. Pink1 kinase regulates mitochondrial homeostasis and recycles dysfunctional organelles critical for maintaining energetic homeostasis. Here, we generated a new vascular-specific Pink1 knockout and assessed its effect on VSMC-dependent atherogenesis in vivo and VSMC energetic metabolism in vitro. A smooth muscle cell-specific and MHC-Cre-inducible flox'd Pink1f/f kinase knockout was made on a ROSA26+/0 and ApoE-/- C57Blk6/J background. Mice were high fat fed for 10 weeks and vasculature assessed for physiological and pathogical changes. Mitochondrial respiratory activity was then assessed in wild-type and knockout animals vessels and isolated cells for their reliance on oxidative and glycolytic metabolism. During atherogenesis, we find that Pink1 knockout affects development of plaque quality rather than plaque quantity by decreasing VSMC and extracellular matrix components, collagen and elastin. Pink1 protein is important in the wild-type VSMC response to metabolic stress and induced a compensatory increase in hexokinase II, which catalyses the first irreversible step in glycolysis. Pink1 appears to play an important role in VSMC energetics during atherogenesis but may also provide insight into the understanding of mitochondrial energetics in other diseases where the regulation of energetic switching between oxidative and glycolytic metabolism is found to be important.


Assuntos
Músculo Liso Vascular/metabolismo , Proteínas Quinases/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Dano ao DNA/genética , Dano ao DNA/fisiologia , Glicólise/genética , Glicólise/fisiologia , Camundongos , Camundongos Knockout , Microdissecção , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Fosforilação/genética , Fosforilação/fisiologia , Proteínas Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
20.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576203

RESUMO

Electromagnetic fields (EMFs) disrupt the electrochemical balance of biological membranes, thereby causing abnormal cation movement and deterioration of the function of membrane voltage-gated ion channels. These can trigger an increase of oxidative stress (OS) and the impairment of all cellular functions, including DNA damage and subsequent carcinogenesis. In this review we focus on the main mechanisms of OS generation by EMF-sensitized NADPH oxidase (NOX), the involved OS biochemistry, and the associated key biological effects.


Assuntos
NADPH Oxidases/metabolismo , Animais , Dano ao DNA/fisiologia , Campos Eletromagnéticos , Humanos , NADPH Oxidases/genética , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...