Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 963
Filtrar
1.
BMC Biol ; 19(1): 260, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895240

RESUMO

BACKGROUND: The integrity of microtubule filament networks is essential for the roles in diverse cellular functions, and disruption of its structure or dynamics has been explored as a therapeutic approach to tackle diseases such as cancer. Microtubule-interacting drugs, sometimes referred to as antimitotics, are used in cancer therapy to target and disrupt microtubules. However, due to associated side effects on healthy cells, there is a need to develop safer drug regimens that still retain clinical efficacy. Currently, many questions remain open regarding the extent of effects on cellular physiology of microtubule-interacting drugs at clinically relevant and low doses. Here, we use super-resolution microscopies (single-molecule localization and optical fluctuation based) to reveal the initial microtubule dysfunctions caused by nanomolar concentrations of colcemid. RESULTS: We identify previously undetected microtubule (MT) damage caused by clinically relevant doses of colcemid. Short exposure to 30-80 nM colcemid results in aberrant microtubule curvature, with a trend of increased curvature associated to increased doses, and curvatures greater than 2 rad/µm, a value associated with MT breakage. Microtubule fragmentation was detected upon treatment with ≥ 100 nM colcemid. Remarkably, lower doses (< 20 nM after 5 h) led to subtle but significant microtubule architecture remodelling characterized by increased curvature and suppression of microtubule dynamics. CONCLUSIONS: Our results support the emerging hypothesis that microtubule-interacting drugs induce non-mitotic effects in cells, and establish a multi-modal imaging assay for detecting and measuring nanoscale microtubule dysfunction. The sub-diffraction visualization of these less severe precursor perturbations compared to the established antimitotic effects of microtubule-interacting drugs offers potential for improved understanding and design of anticancer agents.


Assuntos
Citoesqueleto , Microtúbulos , Demecolcina/farmacologia , Microscopia de Fluorescência
2.
Sci Rep ; 11(1): 10771, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031462

RESUMO

The knowledge of cell mechanics is required to understand cellular processes and functions, such as the movement of cells, and the development of tissue engineering in cancer therapy. Cell mechanical properties depend on a variety of factors, such as cellular environments, and may also rely on external factors, such as the ambient temperature. The impact of temperature on cell mechanics is not clearly understood. To explore the effect of temperature on cell mechanics, we employed magnetic tweezers to apply a force of 1 nN to 4.5 µm superparamagnetic beads. The beads were coated with fibronectin and coupled to human epithelial breast cancer cells, in particular MCF-7 and MDA-MB-231 cells. Cells were measured in a temperature range between 25 and 45 °C. The creep response of both cell types followed a weak power law. At all temperatures, the MDA-MB-231 cells were pronouncedly softer compared to the MCF-7 cells, whereas their fluidity was increased. However, with increasing temperature, the cells became significantly softer and more fluid. Since mechanical properties are manifested in the cell's cytoskeletal structure and the paramagnetic beads are coupled through cell surface receptors linked to cytoskeletal structures, such as actin and myosin filaments as well as microtubules, the cells were probed with pharmacological drugs impacting the actin filament polymerization, such as Latrunculin A, the myosin filaments, such as Blebbistatin, and the microtubules, such as Demecolcine, during the magnetic tweezer measurements in the specific temperature range. Irrespective of pharmacological interventions, the creep response of cells followed a weak power law at all temperatures. Inhibition of the actin polymerization resulted in increased softness in both cell types and decreased fluidity exclusively in MDA-MB-231 cells. Blebbistatin had an effect on the compliance of MDA-MB-231 cells at lower temperatures, which was minor on the compliance MCF-7 cells. Microtubule inhibition affected the fluidity of MCF-7 cells but did not have a significant effect on the compliance of MCF-7 and MDA-MB-231 cells. In summary, with increasing temperature, the cells became significant softer with specific differences between the investigated drugs and cell lines.


Assuntos
Actinas/metabolismo , Neoplasias da Mama/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Demecolcina/farmacologia , Fibronectinas/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Tiazolidinas/farmacologia , Fenômenos Biomecânicos , Neoplasias da Mama/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes/química , Linhagem Celular Tumoral , Demecolcina/química , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Células MCF-7 , Nanopartículas Magnéticas de Óxido de Ferro/química , Microtúbulos/efeitos dos fármacos , Temperatura , Tiazolidinas/química
3.
Biochem Biophys Res Commun ; 520(2): 257-262, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31594640

RESUMO

Based on a previous finding that fusion of a somatic cell with an embryonic stem (ES) cell reprogrammed the somatic cell, genes for reprogramming transcription factors were selected and induced pluripotent stem (iPS) cell technology was developed. The cell fusion itself produced a tetraploid cell. To avoid nuclear fusion, a method for cytoplasmic fusion using a microtunnel device was developed. However, the ES cell was too small for cell pairing at the device. Therefore, in the present study, ES cell enlargement was carried out with the colchicine derivative demecolcine (DC). DC induced enlargement of ES cells without loss of their stemness. When an enlarged ES cell was paired with a somatic cell in the microtunnel device, cytoplasmic fusion was observed. The present method may be useful for further development of reprogramming techniques for iPS cell preparation without gene transfection.


Assuntos
Fusão Celular/instrumentação , Citoplasma , Células-Tronco Embrionárias/citologia , Animais , Fusão Celular/métodos , Tamanho Celular , Células Cultivadas , Demecolcina/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/fisiologia , Desenho de Equipamento , Regulação da Expressão Gênica/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Camundongos , Células-Tronco Pluripotentes/fisiologia
4.
Reprod Domest Anim ; 54(9): 1258-1264, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31283039

RESUMO

Spermatogonial stem cells (SSC) are promising resources for genetic preservation and restoration of male germ cells in humans and animals. However, no studies have used SSC as donor nuclei in pig somatic cell nuclear transfer (SCNT). This study investigated the potential for use of porcine SSC as a nuclei donor for SCNT and developmental competence of SSC-derived cloned embryos. In addition, demecolcine was investigated to determine whether it could prevent rupture of SSC during SCNT. When the potential of SSC to support embryonic development after SCNT was compared with that of foetal fibroblasts (FF), SSC-derived SCNT embryos showed a higher (p < .05) developmental competence to the blastocyst stage (47.8%) than FF-derived embryos (25.6%). However, when SSC were used as donor nuclei in the SCNT process, cell fusion rates were lower (p < .05) than when FF were used (61.9% vs. 75.8%). Treatment of SSC with demecolcine significantly (p < .05) decreased rupture of SSC during the SCNT procedure (7.5% vs. 18.8%) and increased fusion of cell-oocyte couplets compared with no treatment (74.6% vs. 61.6%). In addition, SSC-derived SCNT embryos showed higher blastocyst formation (48.4%) than FF-derived embryos without (28.4%) and with demecolcine treatment (17.4%), even after demecolcine treatment. Our results demonstrate that porcine SSC are a desirable donor cell type for production of SCNT pig embryos and that demecolcine increases production efficiency of cloned embryos by inhibiting rupture of nuclei donor SSC during SCNT.


Assuntos
Células-Tronco Germinativas Adultas , Clonagem de Organismos/veterinária , Técnicas de Transferência Nuclear/veterinária , Suínos/embriologia , Animais , Clonagem de Organismos/métodos , Demecolcina/farmacologia , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário , Feto/citologia , Fibroblastos/citologia , Moduladores de Tubulina/farmacologia
5.
Dev Comp Immunol ; 89: 7-13, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30071208

RESUMO

The effects of temperature on the progression of White Spot Disease (WSD) have been studied in the freshwater crayfish Pacifastacus leniusculus. In this study, we aimed to understand the reason for previously observed low mortalities with white spot syndrome virus (WSSV) infected crayfish at low temperatures. The susceptibility of freshwater crayfish to WSSV was studied at different temperatures. The mortality rate at 6 °C was zero, meanwhile the animals kept at 22 °C developed WSD symptoms and died in a few days after WSSV injections, however upon transfer of animals from 6 °C to 22 °C the mortality reached 100% indicating that the virus is not cleared at 6 °C. Moreover, the VP28 expression at 6 °C was significantly lower compared to animals kept at 22 °C. We injected animals with demecolcine, an inhibitor that arrests the cell cycle in metaphase, and observed a delayed mortality. Furthermore, the VP28 expression was found to be lower in these animals receiving both injections with WSSV and demecolcine since cell proliferation was inhibited by demecolcine. We quantified WSSV copy numbers and found that virus entry was blocked at 6 °C, but not in demecolcine treatments. We supported this result by quantifying the expression of a clip domain serine protease (PlcSP) which plays an important role for WSSV binding, and we found that the PlcSP expression was inhibited at 6 °C. Therefore, our hypothesis is that the WSSV needs proliferating cells to replicate, and an optimum temperature to enter the host hematopoietic stem cells successfully.


Assuntos
Astacoidea/virologia , Vírus da Síndrome da Mancha Branca 1/patogenicidade , Animais , Astacoidea/imunologia , Astacoidea/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Infecções por Vírus de DNA/etiologia , Infecções por Vírus de DNA/veterinária , Demecolcina/farmacologia , Progressão da Doença , Água Doce , Expressão Gênica , Genes Virais , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Hemócitos/virologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Serina Proteases/genética , Temperatura , Proteínas do Envelope Viral/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia
6.
Microb Pathog ; 120: 85-96, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29684541

RESUMO

The appearance of drug-resistant (DR) bacteria in the community is a crucial development, and is associated with increased morbidity, mortality, healthcare costs, and antibiotic use. Natural oil nanoemulsions (NEs) have potential for antimicrobial applications. In the present study, we determined the antimicrobial activity of an NE against DR bacterial pathogens in vitro. The NE comprised Cleome viscosa essential oil, Tween 80 nonionic surfactant, and water. We found that an NE with a droplet size of 7 nm and an oil:surfactant (v/v) ratio of 1:3 was effective against methicillin-resistant Staphylococcus aureus (MRSA), DR Streptococcus pyogenes, and DR extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Fourier-transform infrared (FTIR) spectroscopy revealed that NE treatment modified the functional groups of lipids, proteins, and nucleic acids in DR bacterial cells. Scanning electron microscopy (SEM) showed damage to the cell membranes and walls of NE-treated DR bacteria. These alterations were caused by bioactive compounds with wide-spectrum enzyme-inhibiting activity in the NE, such as ß-sitosterol, demecolcine, campesterol, and heneicosyl formate. The results suggest that the nanoemulsion is effective against DR bacteria, and acts by inhibiting the drug efflux mechanism of DR strains.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Emulsões/farmacologia , Nanoestruturas/química , Antibacterianos/química , Anti-Infecciosos/química , Colesterol/análogos & derivados , Colesterol/farmacologia , Cleome/química , Demecolcina/farmacologia , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanoestruturas/ultraestrutura , Óleos Voláteis/farmacologia , Tamanho da Partícula , Fitosteróis/farmacologia , Extratos Vegetais/farmacologia , Polissorbatos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sitosteroides/farmacologia , Sonicação , Streptococcus pyogenes/efeitos dos fármacos , Tensoativos
7.
J Vis Exp ; (119)2017 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-28117785

RESUMO

Polyploid (mostly tetraploid) cells are often observed in preneoplastic lesions of human tissues and their chromosomal instability has been considered to be responsible for carcinogenesis in such tissues. Although proliferative polyploid cells are requisite for analyzing chromosomal instability of polyploid cells, creating such cells from nontransformed human cells is rather challenging. Induction of tetraploidy by chemical agents usually results in a mixture of diploid and tetraploid populations, and most studies employed fluorescence-activated cell sorting or cloning by limiting dilution to separate tetraploid from diploid cells. However, these procedures are time-consuming and laborious. The present report describes a relatively simple protocol to induce proliferative tetraploid cells from normal human fibroblasts with minimum contamination by diploid cells. Briefly, the protocol is comprised of the following steps: arresting cells in mitosis by demecolcine (DC), collecting mitotic cells after shaking off, incubating collected cells with DC for an additional 3 days, and incubating cells in drug-free medium (They resume proliferation as tetraploid cells within several days). Depending on cell type, the collection of mitotic cells by shaking off might be omitted. This protocol provides a simple and feasible method to establish proliferative tetraploid cells from normal human fibroblasts. Tetraploid cells established by this method could be a useful model for studying chromosome instability and the oncogenic potential of polyploid human cells.


Assuntos
Fibroblastos/metabolismo , Tetraploidia , Linhagem Celular , Proliferação de Células , Instabilidade Cromossômica , DNA/isolamento & purificação , DNA/metabolismo , Demecolcina/farmacologia , Feminino , Fibroblastos/citologia , Citometria de Fluxo , Corantes Fluorescentes/química , Humanos , Cariotipagem , Mitose/efeitos dos fármacos
8.
Methods ; 112: 18-24, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524557

RESUMO

Biodosimetry is an important tool for triage in the case of large-scale radiological or nuclear emergencies, but traditional microscope-based methods can be tedious and prone to scorer fatigue. While the dicentric chromosome assay (DCA) has been adapted for use in triage situations, it is still time-consuming to create and score slides. Recent adaptations of traditional biodosimetry assays to imaging flow cytometry (IFC) methods have dramatically increased throughput. Additionally, recent improvements in image analysis algorithms in the IFC software have resulted in improved specificity for spot counting of small events. In the IFC method for the dicentric chromosome analysis (FDCA), lymphocytes isolated from whole blood samples are cultured with PHA and Colcemid. After incubation, lymphocytes are treated with a hypotonic solution and chromosomes are isolated in suspension, labelled with a centromere marker and stained for DNA content with DRAQ5. Stained individual chromosomes are analyzed on the ImageStream®X (EMD-Millipore, Billerica, MA) and mono- and dicentric chromosome populations are identified and enumerated using advanced image processing techniques. Both the preparation of the isolated chromosome suspensions as well as the image analysis methods were fine-tuned in order to optimize the FDCA. In this paper we describe the method to identify and score centromeres in individual chromosomes by IFC and show that the FDCA method may further improve throughput for triage biodosimetry in the case of large-scale radiological or nuclear emergencies.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Cromossomos Humanos/efeitos da radiação , Citometria por Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Exposição à Radiação/análise , Radiometria/métodos , Antraquinonas/química , Centrômero/efeitos dos fármacos , Centrômero/efeitos da radiação , Centrômero/ultraestrutura , Aberrações Cromossômicas/efeitos dos fármacos , Cromossomos Humanos/efeitos dos fármacos , Cromossomos Humanos/ultraestrutura , Demecolcina/farmacologia , Relação Dose-Resposta à Radiação , Humanos , Citometria por Imagem/instrumentação , Linfócitos/efeitos dos fármacos , Linfócitos/efeitos da radiação , Fito-Hemaglutininas/farmacologia , Coloração e Rotulagem/métodos
9.
Methods Mol Biol ; 1413: 403-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27193863

RESUMO

Small molecule drugs that target microtubules (MTs), many of them natural products, have long been important tools in the MT field. Indeed, tubulin (Tb) was discovered, in part, as the protein binding partner of colchicine. Several anti-MT drug classes also have important medical uses, notably colchicine, which is used to treat gout, familial Mediterranean fever (FMF), and pericarditis, and the vinca alkaloids and taxanes, which are used to treat cancer. Anti-MT drugs have in common that they bind specifically to Tb in the dimer, MT or some other form. However, their effects on polymerization dynamics and on the human body differ markedly. Here we briefly review the most-studied molecules, and comment on their uses in basic research and medicine. Our focus is on practical applications of different anti-MT drugs in the laboratory, and key points that users should be aware of when designing experiments. We also touch on interesting unsolved problems, particularly in the area of medical applications. In our opinion, the mechanism by which any MT drug cures or treats any disease is still unsolved, despite decades of research. Solving this problem for particular drug-disease combinations might open new uses for old drugs, or provide insights into novel routes for treatment.


Assuntos
Descoberta de Drogas , Microtúbulos/metabolismo , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Colchicina/química , Colchicina/farmacologia , Colchicina/uso terapêutico , Demecolcina/química , Demecolcina/farmacologia , Demecolcina/uso terapêutico , Furanos/química , Furanos/farmacologia , Furanos/uso terapêutico , Humanos , Cetonas/química , Cetonas/farmacologia , Cetonas/uso terapêutico , Microtúbulos/química , Multimerização Proteica/efeitos dos fármacos , Estilbenos/química , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Taxoides/química , Taxoides/farmacologia , Taxoides/uso terapêutico , Moduladores de Tubulina/química , Moduladores de Tubulina/uso terapêutico , Alcaloides de Vinca/química , Alcaloides de Vinca/farmacologia , Alcaloides de Vinca/uso terapêutico
10.
J Virol ; 90(13): 6159-70, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27122580

RESUMO

UNLABELLED: The distribution of vesicular stomatitis virus (VSV) nucleocapsids in the cytoplasm of infected cells was analyzed by scanning confocal fluorescence microscopy using a newly developed quantitative approach called the border-to-border distribution method. Nucleocapsids were located near the cell nucleus at early times postinfection (2 h) but were redistributed during infection toward the edges of the cell. This redistribution was inhibited by treatment with nocodazole, colcemid, or cytochalasin D, indicating it is dependent on both microtubules and actin filaments. The role of actin filaments in nucleocapsid mobility was also confirmed by live-cell imaging of fluorescent nucleocapsids of a virus containing P protein fused to enhanced green fluorescent protein. However, in contrast to the overall redistribution in the cytoplasm, the incorporation of nucleocapsids into virions as determined in pulse-chase experiments was dependent on the activity of actin filaments with little if any effect on inhibition of microtubule function. These results indicate that the mechanisms by which nucleocapsids are transported to the farthest reaches of the cell differ from those required for incorporation into virions. This is likely due to the ability of nucleocapsids to follow shorter paths to the plasma membrane mediated by actin filaments. IMPORTANCE: Nucleocapsids of nonsegmented negative-strand viruses like VSV are assembled in the cytoplasm during genome RNA replication and must migrate to the plasma membrane for assembly into virions. Nucleocapsids are too large to diffuse in the cytoplasm in the time required for virus assembly and must be transported by cytoskeletal elements. Previous results suggested that microtubules were responsible for migration of VSV nucleocapsids to the plasma membrane for virus assembly. Data presented here show that both microtubules and actin filaments are responsible for mobility of nucleocapsids in the cytoplasm, but that actin filaments play a larger role than microtubules in incorporation of nucleocapsids into virions.


Assuntos
Citoesqueleto de Actina/metabolismo , Citoplasma/virologia , Microtúbulos/metabolismo , Nucleocapsídeo/metabolismo , Vírus da Estomatite Vesicular Indiana/metabolismo , Montagem de Vírus , Citoesqueleto de Actina/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Citocalasina D/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Demecolcina/farmacologia , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Microscopia Eletrônica de Varredura/métodos , Microtúbulos/efeitos dos fármacos , Nocodazol/farmacologia , Nucleocapsídeo/ultraestrutura , Fosfoproteínas/genética , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Vírus da Estomatite Vesicular Indiana/genética , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/genética , Vírion/efeitos dos fármacos , Vírion/metabolismo , Montagem de Vírus/efeitos dos fármacos
11.
Mol Biosyst ; 12(3): 1006-14, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26822863

RESUMO

Proteochemometric (PCM) methods, which use descriptors of both the interacting species, i.e. drug and the target, are being successfully employed for the prediction of drug-target interactions (DTI). However, unavailability of non-interacting dataset and determining the applicability domain (AD) of model are a main concern in PCM modeling. In the present study, traditional PCM modeling was improved by devising novel methodologies for reliable negative dataset generation and fingerprint based AD analysis. In addition, various types of descriptors and classifiers were evaluated for their performance. The Random Forest and Support Vector Machine models outperformed the other classifiers (accuracies >98% and >89% for 10-fold cross validation and external validation, respectively). The type of protein descriptors had negligible effect on the developed models, encouraging the use of sequence-based descriptors over the structure-based descriptors. To establish the practical utility of built models, targets were predicted for approved anticancer drugs of natural origin. The molecular recognition interactions between the predicted drug-target pair were quantified with the help of a reverse molecular docking approach. The majority of predicted targets are known for anticancer therapy. These results thus correlate well with anticancer potential of the selected drugs. Interestingly, out of all predicted DTIs, thirty were found to be reported in the ChEMBL database, further validating the adopted methodology. The outcome of this study suggests that the proposed approach, involving use of the improved PCM methodology and molecular docking, can be successfully employed to elucidate the intricate mode of action for drug molecules as well as repositioning them for new therapeutic applications.


Assuntos
Interações Medicamentosas , Simulação de Acoplamento Molecular/métodos , Proteômica/métodos , Aldeído Redutase/metabolismo , Antraciclinas/farmacologia , Antineoplásicos/farmacologia , Colchicina/farmacologia , Bases de Dados de Proteínas , Demecolcina/farmacologia , Modelos Biológicos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Reprodutibilidade dos Testes , Sorafenibe , Máquina de Vetores de Suporte
12.
Anim Reprod Sci ; 158: 11-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956201

RESUMO

The present study aimed to facilitate widespread application of a previously described manual method of somatic cell nuclear transfer (SCNT) by investigating the effects of demecolcine (a microtubule-depolymerizing chemical), cytochalasin-B (a microfilament-depolymerizing chemical: 2.5µg/ml for 15min) and MG-132 (a proteasome inhibitor chemical) on the (i) incidence of cytoplasmic protrusion of MII chromosomes, (ii) improvement of manual oocyte enucleation, and (iii) in vitro and in vivo developmental competence of SCNT embryos in the goat. Following in vitro maturation, around 65% of goat oocytes contained a characteristic cytoplasmic protrusion of MII-chromosomes. Treatment with demecolcine (0.4µg/ml for 30min) significantly increased this rate to 92.2±4.5%. Treatment with MG-132 (2µM for 30min) could not improve this rate when used alone (61.4±11.5%), but when combined with demecolcine (86.4±8.1%). Treatment with cytochalasin-B completely suppressed this rate whenever used, either alone (7.7±5.1%) or in combination with demecolcine (3.9±1.3%). In a direct comparison, there was no significant difference in quantity and quality of embryos propagated by the manual vs. micromanipulation-based methods of SCNT (cleavage: 85.3±4.5 vs. 89.5±8.9%, blastocyst: 19.5±4.3 vs. 24.3±4.4%, grade 1 and 2 blastocyst: 33.8±7.1 vs. 29.5±6.3%, total cell count: 125±11.1 vs. 122±10.5, respectively). Furthermore, development to live kids at term was not significant between the two SCNT methods. From both technical and economical points of view, the overall in vitro and in vivo efficiency of this manual method of SCNT proved it a simple, fast and efficient alternative for large scale production of cloned goats.


Assuntos
Citocalasina B/farmacologia , Demecolcina/farmacologia , Cabras , Leupeptinas/farmacologia , Técnicas de Transferência Nuclear/veterinária , Oócitos/citologia , Animais , Núcleo Celular , Clonagem de Organismos/métodos , Inibidores de Cisteína Proteinase/farmacologia , Oócitos/efeitos dos fármacos , Moduladores de Tubulina/farmacologia
13.
Mol Reprod Dev ; 82(6): 489-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25982990

RESUMO

The objective of this study was to examine the effects of colcemid treatment during oocyte in vitro maturation (IVM) and embryonic development after parthenogenetic activation (PA) and somatic-cell nucleus transfer (SCNT) in pigs. Immature oocytes were treated with colcemid from 0 to 22, 38 to 42, or 0 to 22 hr followed by 38 to 42 hr during IVM (designated as COL0-22, COL38-42, and COL0-22/38-42, respectively). The proportion of oocytes reaching the germinal vesicle (GV)/GV breakdown (GVBD) stage after 22 hr of IVM was higher in COL0-22 (98.4%) than in controls not exposed to colcemid (68.7%). The proportion of metaphase-II (MII) oocytes after 30 hr of IVM was higher in control (79.6%) than in COL0-22 oocytes (61.7%); overall nuclear progression to the MII stage was not influenced by colcemid treatment by the end of the IVM period (93.8, 86.7, 86.8, and 84.8% for control, COL0-22, COL38-42, and COL0-22/38-42, respectively). COL0-22 oocytes showed higher intra-oocyte glutathione content (1.7 vs. 1.0-1.3 pixels/oocyte) and increased blastocyst formation after PA (68.7% vs. 42.5-52.2%) and SCNT (39.4% vs. 16.3-28.6%) than control, COL38-42, and COL0-22/38-42 oocytes. Colcemid treatment for 0-22 and 0-22/38-42 hr of IVM also stimulated the expression of cyclin-dependent kinase 1 (CDK1), proliferating cell nuclear antigen (PCNA), and extracellular signal-regulated kinase 2 (ERK2) mRNAs. Our results thus demonstrate that the presence of colcemid during the early stage of IVM stimulates preimplantation development of PA and SCNT porcine embryos by improving the cytoplasmic microenvironment.


Assuntos
Blastocisto/metabolismo , Clonagem de Organismos , Citoplasma/metabolismo , Demecolcina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Meiose/efeitos dos fármacos , Oócitos/metabolismo , Animais , Feminino , Suínos
14.
Cell Struct Funct ; 40(1): 51-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25736016

RESUMO

Although most cell lines undergo mitotic arrest after prolonged exposure to microtubule inhibitors, some cells subsequently exit this state and become tetraploid. Among these cells, limited numbers of rodent cells are known to undergo multinucleation to generate multiple small independent nuclei, or micronuclei by prolonged colcemid treatment. Micronuclei are thought to be formed when cells shift to a pseudo G1 phase, during which the onset of chromosomal decondensation allows individual chromosomes distributed throughout the cell to serve as sites for the reassembly of nuclear membranes. To better define this process, we used long-term live cell imaging to observe micronucleation induced in mouse A9 cells by treating with the microtubule inhibitor colcemid. Our observations confirm that nuclear envelope formation occurs when mitotic-arrested cells shift to a pseudo G1 phase and adopt a tetraploid state, accompanied by chromosome decondensation. Unexpectedly, only a small number of cells containing large micronuclei were formed. We found that tetraploid micronucleated cells proceeded through an additional cell cycle, shifting to a pseudo G1 phase and forming octoploid micronucleated cells that were smaller and more numerous compared with the tetraploid micronucleated cells. Our data suggest that micronucleation occur when cells shift from mitotic arrest to a pseudo G1 phase, and demonstrate that, rather than being a single event, micronucleation is an inducible recurrent process that leads to the formation of progressively smaller and more numerous micronuclei.


Assuntos
Ciclo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Microtúbulos/efeitos dos fármacos , Animais , Células CHO , Cromossomos/efeitos dos fármacos , Cricetinae , Cricetulus , Demecolcina/farmacologia , Fase G1/efeitos dos fármacos , Humanos , Camundongos , Mitose/efeitos dos fármacos , Imagem Molecular , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/metabolismo , Ploidias
15.
Zygote ; 23(6): 852-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25318529

RESUMO

As the standard enucleation method in mammalian nuclear transfer is invasive and damaging to cytoplast spatial organization, alternative procedures have been developed over recent years. Among these techniques, chemically induced enucleation (IE) is especially interesting because it does not employ ultraviolet light and reduces the amount of cytoplasm eliminated during the procedure. The objective of this study was to optimize the culture conditions with demecolcine of pre-activated bovine oocytes for chemically IE, and to evaluate nuclear and microtubule organization in cytoplasts obtained by this technique and their viability. In the first experiment, a negative effect on oocyte activation was verified when demecolcine was added at the beginning of the process, reducing activation rates by approximately 30%. This effect was not observed when demecolcine was added to the medium after 1.5 h of activation. In the second experiment, although a reduction in the number of microtubules was observed in most oocytes, these structures did not disappear completely during assessment. Approximately 50% of treated oocytes presented microtubule reduction at the end of the evaluation period, while 23% of oocytes were observed to exhibit the complete disappearance of these structures and 28% exhibited visible microtubules. These findings indicated the lack of immediate microtubule repolymerization after culture in demecolcine-free medium, a fact that may negatively influence embryonic development. However, cleavage rates of 63.6-70.0% and blastocyst yield of 15.5-24.2% were obtained in the final experiment, without significant differences between techniques, indicating that chemically induced enucleation produces normal embryos.


Assuntos
Cromatina/efeitos dos fármacos , Demecolcina/farmacologia , Microtúbulos/efeitos dos fármacos , Técnicas de Transferência Nuclear , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Animais , Blastocisto/fisiologia , Bovinos , Técnicas de Cultura de Células , Cromatina/ultraestrutura , Feminino , Técnicas de Maturação in Vitro de Oócitos , Masculino , Partenogênese/efeitos dos fármacos , Moduladores de Tubulina/farmacologia
16.
J Cell Biol ; 206(6): 779-97, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25225338

RESUMO

Mechanisms by which microtubule plus ends interact with regions of cell-cell contact during tissue development and morphogenesis are not fully understood. We characterize a previously unreported interaction between the microtubule binding protein end-binding 1 (EB1) and the desmosomal protein desmoplakin (DP), and demonstrate that DP-EB1 interactions enable DP to modify microtubule organization and dynamics near sites of cell-cell contact. EB1 interacts with a region of the DP N terminus containing a hotspot for pathogenic mutations associated with arrhythmogenic cardiomyopathy (AC). We show that a subset of AC mutations, in addition to a mutation associated with skin fragility/woolly hair syndrome, impair gap junction localization and function by misregulating DP-EB1 interactions and altering microtubule dynamics. This work identifies a novel function for a desmosomal protein in regulating microtubules that affect membrane targeting of gap junction components, and elucidates a mechanism by which DP mutations may contribute to the development of cardiac and cutaneous diseases.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Conexina 43/metabolismo , Desmoplaquinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Células COS , Comunicação Celular , Linhagem Celular , Chlorocebus aethiops , Demecolcina/farmacologia , Desmogleína 2/genética , Desmoplaquinas/genética , Desmossomos/fisiologia , Junções Comunicantes/genética , Junções Comunicantes/patologia , Células HEK293 , Humanos , Morfogênese , Mutação , Interferência de RNA , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Moduladores de Tubulina/farmacologia
17.
PLoS One ; 9(9): e106546, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25208094

RESUMO

Digital holographic microscopy (DHM) has emerged as a powerful non-invasive tool for cell analysis. It has the capacity to analyse multiple parameters simultaneously, such as cell- number, confluence and phase volume. This is done while cells are still adhered and growing in their culture flask. The aim of this study was to investigate whether DHM was able to monitor drug-induced cell cycle arrest in cultured cells and thus provide a non-disruptive alternative to flow cytometry. DHM parameters from G1 and G2/M cell cycle arrested L929 mouse fibroblast cells were collected. Cell cycle arrest was verified with flow cytometry. This study shows that DHM is able to monitor phase volume changes corresponding to either a G1 or G2/M cell cycle arrest. G1-phase arrest with staurosporine correlated with a decrease in the average cell phase volume and G2/M-phase arrest with colcemid and etoposide correlated with an increase in the average cell phase volume. Importantly, DHM analysis of average cell phase volume was of comparable accuracy to flow cytometric measurement of cell cycle phase distribution as recorded following dose-dependent treatment with etoposide. Average cell phase volume changes in response to treatment with cell cycle arresting compounds could therefore be used as a DHM marker for monitoring cell cycle arrest in cultured mammalian cells.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Holografia/métodos , Microscopia/métodos , Animais , Linhagem Celular , Demecolcina/farmacologia , Relação Dose-Resposta a Droga , Etoposídeo/farmacologia , Camundongos , Estaurosporina/farmacologia
18.
J Biomed Opt ; 19(5): 057008, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24828071

RESUMO

This work presents the development of a protocol based on the dynamic laser speckle designed to monitor the reaction of cancer cells of line MEL-RC08 to the application of the drug Colcemid in two different concentrations: 0.2 and 0.4 µg/mL. The protocol was designed using the forward scattering approach with an He-Ne laser of 632.8 nm illuminating the samples, a control, and two variations of Colcemid, being monitored along 8 h. The data were analyzed numerically in the time and in the frequency domain, and the results presented the ability of the technique to monitor the action of the drug, particularly Colcemid (0.4 µg/mL).


Assuntos
Demecolcina/farmacologia , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Lasers , Melanoma/química , Análise de Variância , Antineoplásicos Fitogênicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Melanoma/metabolismo
19.
Mutat Res ; 762: 10-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24582839

RESUMO

Aneuploidy, a change in the number of chromosomes, plays an essential role in tumorigenesis. Our previous study demonstrated that a loss of a whole chromosome is induced in human lymphocytes by colcemid, a well-known aneugen. Here, to clarify the mechanism for colcemid-induced chromosome loss, we investigated the relationship between chromosome loss and DNA fragmentation in human lymphoblastoid cells treated with colcemid (an aneugen) compared with methyl methanesulfonate (MMS; a clastogen). We analyzed the number of fluorescence in situ hybridization (FISH) signals targeted for a whole chromosome 2 in cytokinesis-blocked binucleated TK6 cells and WTK-1 cells treated with colcemid and MMS, and concurrently detected DNA fragmentation by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results revealed that DNA fragmentation occurred in 60% of all binucleated TK6 cells harboring colcemid-induced chromosome loss (30% of micronuclei and 30% of main nuclei). DNA fragmentation was observed in colcemid-induced micronuclei containing a whole chromosome but not in MMS-induced micronuclei containing chromosome fragments. In contrast, colcemid-induced nondisjunction had no effect on induction of DNA fragmentation, suggesting that DNA fragmentation was triggered by micronuclei containing a whole chromosome but not by micronuclei containing chromosome fragments or nondisjunction. In addition, the frequency of binucleated cells harboring chromosome loss with DNA fragmentation in micronuclei or main nuclei was higher in wild-type p53 TK6 cells than in mutated-p53 WTK-1 cells treated with colcemid. Taken together, these present and previous results suggest that colcemid-induced chromosome loss is caused by DNA fragmentation, which is triggered by a micronucleus with a whole chromosome and controlled by the p53-dependent pathway.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 2 , Fragmentação do DNA/efeitos dos fármacos , Demecolcina/farmacologia , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Mutagênicos/farmacologia , Aneuploidia , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Marcação In Situ das Extremidades Cortadas , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/patologia , Metanossulfonato de Metila/farmacologia , Não Disjunção Genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Mol Biosyst ; 10(4): 862-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24493364

RESUMO

The importance of protein-small molecule interaction in drug discovery, medicinal chemistry and biology has driven the development of new analytical methods to disclose the whole interactome of bioactive compounds. To accelerate targets discovery of N-formyl-7-amino-11-cycloamphilectene (CALe), a marine bioactive diterpene isolated from the Vanuatu sponge Axinella sp., a chemoproteomic-based approach has been successfully developed. CALe is a potent anti-inflammatory agent, modulating NO and prostaglandin E2 overproduction by dual inhibition of the enhanced inducible NO synthase expression and cyclo-oxygenase-2 activity, without any evidence of cytotoxic effects. In this paper, several isoforms of tubulin have been identified as CALe off-targets by chemical proteomics combined with bio-physical orthogonal approaches. In the following biological analysis of its cellular effect, CALe was found to protect microtubules against the colcemid depolymerizing effect.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Diterpenos/metabolismo , Microtúbulos/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Tubulina (Proteína)/metabolismo , Animais , Axinella/metabolismo , Ciclo-Oxigenase 2/biossíntese , Inibidores de Ciclo-Oxigenase 2/metabolismo , Demecolcina/farmacologia , Diterpenos/química , Óxido Nítrico Sintase Tipo II/biossíntese , Isoformas de Proteínas/efeitos dos fármacos , Proteômica , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...