Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
ACS Nano ; 18(15): 10625-10641, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563322

RESUMO

Development of nanomedicines that can collaboratively scavenge reactive oxygen species (ROS) and inhibit inflammatory cytokines, along with osteogenesis promotion, is essential for efficient osteoarthritis (OA) treatment. Herein, we report the design of a ROS-responsive nanomedicine formulation based on fibronectin (FN)-coated polymer nanoparticles (NPs) loaded with azabisdimethylphoaphonate-terminated phosphorus dendrimers (G4-TBP). The constructed G4-TBP NPs-FN with a size of 268 nm are stable under physiological conditions, can be specifically taken up by macrophages through the FN-mediated targeting, and can be dissociated in the oxidative inflammatory microenvironment. The G4-TBP NPs-FN loaded with G4-TBP dendrimer having intrinsic anti-inflammatory property and FN having both anti-inflammatory and antioxidative properties display integrated functions of ROS scavenging, hypoxia attenuation, and macrophage M2 polarization, thus protecting macrophages from apoptosis and creating designed bone immune microenvironment for stem cell osteogenic differentiation. These characteristics of the G4-TBP NPs-FN lead to their effective treatment of an OA model in vivo to reduce pathological changes of joints including synovitis inhibition and cartilage matrix degradation and simultaneously promote osteogenic differentiation for bone repair. The developed nanomedicine formulation combining the advantages of both bioactive phosphorus dendrimers and FN to treat OA may be developed for immunomodulatory therapy of different inflammatory diseases.


Assuntos
Dendrímeros , Nanopartículas , Osteoartrite , Humanos , Espécies Reativas de Oxigênio/metabolismo , Osteogênese , Dendrímeros/uso terapêutico , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Fósforo/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-38456205

RESUMO

The application of nanotechnology in biological and medical fields have resulted in the creation of new devices, supramolecular systems, structures, complexes, and composites. Dendrimers are relatively new nanotechnological polymers with unique features; they are globular in shape, with a topological structure formed by monomeric subunit branches diverging to the sides from the central nucleus. This review analyzes the main features of dendrimers and their applications in biology and medicine regarding cancer treatment. Dendrimers have applications that include drug and gene carriers, antioxidant agents, imaging agents, and adjuvants, but importantly, dendrimers can create complex nanosized constructions that combine features such as drug/gene carriers and imaging agents. Dendrimer-based nanosystems include different metals that enhance oxidative stress, polyethylene glycol to provide biosafety, an imaging agent (a fluorescent, radioactive, magnetic resonance imaging probe), a drug or/and nucleic acid that provides a single or dual action on cells or tissues. One of major benefit of dendrimers is their easy release from the body (in contrast to metal nanoparticles, fullerenes, and carbon nanotubes), allowing the creation of biosafe constructions. Some dendrimers are already clinically approved and are being used as drugs, but many nanocomplexes are currently being studied for clinical practice. In summary, dendrimers are very useful tool in the creation of complex nanoconstructions for personalized nanomedicine. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Dendrímeros , Nanotubos de Carbono , Neoplasias , Dendrímeros/uso terapêutico , Portadores de Fármacos/uso terapêutico , Nanotecnologia , Nanomedicina/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
3.
ACS Appl Mater Interfaces ; 16(3): 4071-4088, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194589

RESUMO

Surgical resection remains the most common method of tumor treatment; however, the high recurrence and metastasis after surgery need to be solved urgently. Herein, we report an injectable zwitterionic hydrogel based on "thiol-ene" click chemistry containing doxorubicin (DOX) and a macrophage membrane (MM)-coated 1-methyl-tryptophan (1-MT)-loaded polyamide-amine dendrimer (P-DOX/1MT) for preventing the postoperative recurrence of tumors. The results indicated that P-DOX/1MT@MM exhibited enhanced recognition and uptake of the dendrimer by tumor cells and induced the immunogenic cell death. In the mice tumor model, the P-DOX/1MT@MM-Gel exhibited high therapeutic efficiency, which could significantly reduce the recurrence of the tumor, including suppressing tumor growth, promoting dendritic cell maturation, and increasing tumor-infiltrating cytotoxic T lymphocytes. The mechanism analysis revealed that the hydrogel greatly reduces the side effects to normal tissues and significantly improves its therapeutic effect. 1MT in the hydrogel is released more rapidly, improving the tumor suppressor microenvironment and increasing the tumor cell sensitivity to DOX. Then, the DOX in the P-DOX/1MT@MM effectively eliminatedo the residual tumor cells and exerted enhanced toxicity. In conclusion, this novel injectable hydrogel that combines chemotherapy and immunotherapy has the property of sequential drug release and is a promising strategy for preventing the postoperative recurrence of tumors.


Assuntos
Dendrímeros , Neoplasias , Animais , Camundongos , Hidrogéis/química , Micelas , Dendrímeros/farmacologia , Dendrímeros/uso terapêutico , Neoplasias/tratamento farmacológico , Doxorrubicina/química , Imunoterapia , Linhagem Celular Tumoral , Microambiente Tumoral
4.
ACS Appl Mater Interfaces ; 15(46): 53273-53282, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37936291

RESUMO

Accurate targeting of therapeutic agents to specific tumor tissues, especially via deep tumor penetration, has been an effective strategy in cancer treatments. Here, we described a flexible nanoplatform, pH-responsive zwitterionic acylsulfonamide betaine-functionalized fourth-generation PAMAM dendrimers (G4-AB), which presented multiple advantages for chemo-photothermal therapy, including template synthesis of ultrasmall copper sulfide (CuS) nanoparticles and further encapsulation of doxorubicin (DOX) (G4-AB-DOX/CuS), long-circulating performance by a relatively large size and zwitterionic surface in a physiological environment, combined size shrinkage, and charge conversions via pH-responsive behavior in an acidic tumor microenvironment (TME). Accordingly, high tumor penetration and positive cell uptake for CuS and DOX have been determined, which triggered an excellent combination treatment under near-infrared irradiation in comparison to the monochemotherapy system and irresponsive chemo-photothermal system. Our study represented great promise in constructing multifunctional carriers for the effective delivery of photothermal nanoparticles and drugs in chemo-photothermal therapy.


Assuntos
Dendrímeros , Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Dendrímeros/uso terapêutico , Terapia Fototérmica , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Fototerapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Cobre/uso terapêutico , Microambiente Tumoral
5.
Cell Mol Neurobiol ; 43(8): 3847-3884, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725199

RESUMO

Alzheimer's disease (AD) is the primary cause of dementia and is characterized by the death of brain cells due to the accumulation of insoluble amyloid plaques, hyperphosphorylation of tau protein, and the formation of neurofibrillary tangles within the cells. AD is also associated with other pathologies such as neuroinflammation, dysfunction of synaptic connections and circuits, disorders in mitochondrial function and energy production, epigenetic changes, and abnormalities in the vascular system. Despite extensive research conducted over the last hundred years, little is established about what causes AD or how to effectively treat it. Given the severity of the disease and the increasing number of affected individuals, there is a critical need to discover effective medications for AD. The US Food and Drug Administration (FDA) has approved several new drug molecules for AD management since 2003, but these drugs only provide temporary relief of symptoms and do not address the underlying causes of the disease. Currently, available medications focus on correcting the neurotransmitter disruption observed in AD, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate (NMDA) receptor, which temporarily alleviates the signs of dementia but does not prevent or reverse the course of AD. Research towards disease-modifying AD treatments is currently underway, including gene therapy, lipid nanoparticles, and dendrimer-based therapy. These innovative approaches aim to target the underlying pathological processes of AD rather than just managing the symptoms. This review discusses the novel aspects of pathogenesis involved in the causation of AD of AD and in recent developments in the therapeutic armamentarium for the treatment of AD such as gene therapy, lipid nanoparticles, and dendrimer-based therapy, and many more.


Assuntos
Doença de Alzheimer , Dendrímeros , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Dendrímeros/metabolismo , Dendrímeros/uso terapêutico , Inibidores da Colinesterase , Emaranhados Neurofibrilares/metabolismo , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo
6.
Macromol Biosci ; 23(11): e2300188, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37300444

RESUMO

Recently, several immunotherapeutic strategies are extensively studied and entered clinical investigation, suggesting their potential to lead a new generation of cancer therapy. Particularly, a cancer vaccine that combines tumor-associated antigens and immune adjuvants with a nanocarrier holds huge promise for inducing specific antitumor immune responses. Hyperbranched polymers, such as dendrimers and branched polyethylenimine (PEI) possessing abundant positively charged amine groups and inherent proton sponge effect are ideal carriers of antigens. Much effort is devoted to design dendrimer/branched PEI-based cancer vaccines. Herein, the recent advances in the design of dendrimer/branched PEI-based cancer vaccines for immunotherapy are reviewed. The future perspectives with regard to the development of dendrimer/branched PEI-based cancer vaccines are also briefly discussed.


Assuntos
Vacinas Anticâncer , Dendrímeros , Neoplasias , Humanos , Vacinas Anticâncer/uso terapêutico , Dendrímeros/farmacologia , Dendrímeros/uso terapêutico , Neoplasias/terapia , Imunoterapia , Polietilenoimina , Polímeros
7.
ACS Biomater Sci Eng ; 9(7): 4288-4301, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37307155

RESUMO

The present study was aimed to synthesize, characterize, and evaluate the angiopep-2 grafted PAMAM dendrimers (Den, G 3.0 NH2) with and without PEGylation for the targeted and better delivery approach of temozolomide (TMZ) for the management of glioblastoma multiforme (GBM). Den-ANG and Den-PEG2-ANG conjugates were synthesized and characterized by 1H NMR spectroscopy. The PEGylated (TMZ@Den-PEG2-ANG) and non-PEGylated (TMZ@Den-ANG) drug loaded formulations were prepared and characterized for particle size, zeta potential, entrapment efficiency, and drug loading. An in vitro release study at physiological (pH 7.4) and acidic pH (pH 5.0) was performed. Preliminary toxicity studies were performed through hemolytic assay in human RBCs. MTT assay, cell uptake, and cell cycle analysis were performed to evaluate the in vitro efficacy against GBM cell lines (U87MG). Finally, the formulations were evaluated in vivo in a Sprague-Dawley rat model for pharmacokinetics and organ distribution analysis. The 1H NMR spectra confirmed the conjugation of angiopep-2 to both PAMAM and PEGylated PAMAM dendrimers, as the characteristic chemical shifts were observed in the range of 2.1 to 3.9 ppm. AFM results revealed that the surface of Den-ANG and Den-PEG2-ANG conjugates were rough. The particle size and zeta potential of TMZ@Den-ANG were observed to be 229.0 ± 17.8 nm and 9.06 ± 0.4 mV, respectively, whereas the same for TMZ@Den-PEG2-ANG were found to be 249.6 ± 12.9 nm and 10.9 ± 0.6 mV, respectively. The entrapment efficiency of TMZ@Den-ANG and TMZ@Den-PEG2-ANG were calculated to be 63.27 ± 5.1% and 71.48 ± 4.3%, respectively. Moreover, TMZ@Den-PEG2-ANG showed a better drug release profile with a controlled and sustained pattern at PBS pH 5.0 than at pH 7.4. The ex vivo hemolytic study revealed that TMZ@Den-PEG2-ANG was biocompatible in nature as it showed 2.78 ± 0.1% hemolysis compared to 4.12 ± 0.2% hemolysis displayed by TMZ@Den-ANG. The outcomes of the MTT assay inferred that TMZ@Den-PEG2-ANG possessed maximum cytotoxic effects against U87MG cells with IC50 values of 106.62 ± 11.43 µM (24 h) and 85.90 ± 9.12 µM (48 h). In the case of TMZ@Den-PEG2-ANG, the IC50 values were reduced by 2.23-fold (24 h) and 1.36-fold (48 h) in comparison to pure TMZ. The cytotoxicity findings were further confirmed by significantly higher cellular uptake of TMZ@Den-PEG2-ANG. Cell cycle analysis of the formulations suggested that the PEGylated formulation halts the cell cycle at G2/M phase with S-phase inhibition. In the in vivo studies, the half-life (t1/2) values of TMZ@Den-ANG and TMZ@Den-PEG2-ANG were enhanced by 2.22 and 2.76 times, respectively, than the pure TMZ. After 4 h of administration, the brain uptake values of TMZ@Den-ANG and TMZ@Den-PEG2-ANG were found to be 2.55 and 3.35 times, respectively, higher than that of pure TMZ. The outcomes of various in vitro and ex vivo experiments promoted the use of PEGylated nanocarriers for the management of GBM. Angiopep-2 grafted PEGylated PAMAM dendrimers can be potential and promising drug carriers for the targeted delivery of antiglioma drugs directly to the brain.


Assuntos
Dendrímeros , Glioblastoma , Ratos , Animais , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Dendrímeros/química , Dendrímeros/uso terapêutico , Hemólise , Linhagem Celular Tumoral , Ratos Sprague-Dawley
8.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982503

RESUMO

Cancer is a result of abnormal cell proliferation. This pathology is a serious health problem since it is a leading cause of death worldwide. Current anti-cancer therapies rely on surgery, radiation, and chemotherapy. However, these treatments still present major associated problems, namely the absence of specificity. Thus, it is urgent to develop novel therapeutic strategies. Nanoparticles, particularly dendrimers, have been paving their way to the front line of cancer treatment, mostly for drug and gene delivery, diagnosis, and disease monitoring. This is mainly derived from their high versatility, which results from their ability to undergo distinct surface functionalization, leading to improved performance. In recent years, the anticancer and antimetastatic capacities of dendrimers have been discovered, opening new frontiers to dendrimer-based chemotherapeutics. In the present review, we summarize the intrinsic anticancer activity of different dendrimers as well as their use as nanocarriers in cancer diagnostics and treatment.


Assuntos
Dendrímeros , Nanopartículas , Neoplasias , Humanos , Dendrímeros/uso terapêutico , Medicina de Precisão , Nanopartículas/uso terapêutico , Portadores de Fármacos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos
9.
Curr Med Chem ; 30(3): 335-355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34375182

RESUMO

Lung cancer is one of the commonest cancers with a significant mortality rate for both genders, particularly in men. Lung cancer is recognized as one of the leading causes of death worldwide, which threatens the lives of over 1.6 million people every day. Although cancer is the leading cause of death in industrialized countries, conventional anticancer medications are unlikely to increase patients' life expectancy and quality of life significantly. In recent years, there are significant advances in the development and applications of nanotechnology in cancer treatment. The superiority of nanostructured approaches is that they act more selectively than traditional agents. This progress led to the development of a novel field of cancer treatment known as nanomedicine. Various formulations based on nanocarriers, including lipids, polymers, liposomes, nanoparticles and dendrimers have opened new horizons in lung cancer therapy. The application and expansion of nano-agents lead to an exciting and challenging research era in pharmaceutical science, especially for the delivery of emerging anti-cancer agents. The objective of this review is to discuss the recent advances in three types of nanoparticle formulations for lung cancer treatments modalities, including liposomes, polymeric micelles, and dendrimers for efficient drug delivery. Afterward, we have summarized the promising clinical data on nanomaterials based therapeutic approaches in ongoing clinical studies.


Assuntos
Dendrímeros , Neoplasias Pulmonares , Feminino , Humanos , Masculino , Dendrímeros/uso terapêutico , Lipossomos , Qualidade de Vida , Neoplasias Pulmonares/tratamento farmacológico , Países Desenvolvidos
10.
Neurotherapeutics ; 20(1): 272-283, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36207570

RESUMO

X-linked adrenoleukodystrophy (ALD) is a genetic disorder that presents neurologically as either a rapid and fatal cerebral demyelinating disease in childhood (childhood cerebral adrenoleukodystrophy; ccALD) or slow degeneration of the spinal cord in adulthood (adrenomyeloneuropathy; AMN). All forms of ALD result from mutations in the ATP Binding Cassette Subfamily D Member (ABCD) 1 gene, encoding a peroxisomal transporter responsible for the import of very long chain fatty acids (VLCFA) and results mechanistically in a complex array of dysfunction, including endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, and inflammation. Few therapeutic options exist for these patients; however, an additional peroxisomal transport protein (ABCD2) has been successfully targeted previously for compensation of dysfunctional ABCD1. 4-Phenylbutyrate (4PBA), a potent activator of the ABCD1 homolog ABCD2, is FDA approved, but use for ALD has been stymied by a short half-life and thus a need for unfeasibly high doses. We conjugated 4PBA to hydroxyl polyamidoamine (PAMAM) dendrimers (D-4PBA) to a create a long-lasting and intracellularly targeted approach which crosses the blood-brain barrier to upregulate Abcd2 and its downstream pathways. Across two studies, Abcd1 knockout mice administered D-4PBA long term showed neurobehavioral improvement and increased Abcd2 expression. Furthermore, when the conjugate was administered early, significant reduction of VLCFA and improved survival of spinal cord neurons was observed. Taken together, these data show improved efficacy of D-4PBA compared to previous studies of free 4PBA alone, and promise for D-4PBA in the treatment of complex and chronic neurodegenerative diseases using a dendrimer delivery platform that has shown successes in recent clinical trials. While recovery in our studies was partial, combined therapies on the dendrimer platform may offer a safe and complete strategy for treatment of ALD.


Assuntos
Adrenoleucodistrofia , Encéfalo , Dendrímeros , Animais , Camundongos , Adrenoleucodistrofia/tratamento farmacológico , Adrenoleucodistrofia/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dendrímeros/farmacologia , Dendrímeros/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Camundongos Knockout
11.
ACS Appl Mater Interfaces ; 14(42): 47445-47460, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36218307

RESUMO

A challenge in neurology is the lack of efficient brain-penetrable neuroprotectants targeting multiple disease mechanisms. Plasmonic gold nanostars are promising candidates to deliver standard-of-care drugs inside the brain but have not been trialed as carriers for neuroprotectants. Here, we conjugated custom-made peptide dendrimers (termed H3/H6), encompassing motifs of the neurotrophic S100A4-protein, onto star-shaped and spherical gold nanostructures (H3/H6-AuNS/AuNP) and evaluated their potential as neuroprotectants and interaction with neurons. The H3/H6 nanostructures crossed a model blood-brain barrier, bound to plasma membranes, and induced neuritogenesis with the AuNS, showing higher potency/efficacy than the AuNP. The H3-AuNS/NP protected neurons against oxidative stress, the H3-AuNS being more potent, and against Parkinson's or Alzheimer's disease (PD/AD)-related cytotoxicity. Unconjugated S100A4 motifs also decreased amyloid beta-induced neurodegeneration, introducing S100A4 as a player in AD. Using custom-made dendrimers coupled to star-shaped nanoparticles is a promising route to activate multiple neuroprotective pathways and increase drug potency to treat neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Dendrímeros , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/química , Peptídeos beta-Amiloides , Dendrímeros/farmacologia , Dendrímeros/uso terapêutico , Neurônios , Ouro/química , Doença de Alzheimer/tratamento farmacológico
12.
Int J Biol Macromol ; 220: 920-933, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987365

RESUMO

Non-healing wounds have long been the subject of scientific and clinical investigations. Despite breakthroughs in understanding the biology of delayed wound healing, only limited advances have been made in properly treating wounds. Recently, research into nucleic acids (NAs) such as small-interfering RNA (siRNA), microRNA (miRNA), plasmid DNA (pDNA), aptamers, and antisense oligonucleotides (ASOs) has resulted in the development of a latest therapeutic strategy for wound healing. In this regard, dendrimers, scaffolds, lipid nanoparticles, polymeric nanoparticles, hydrogels, and metal nanoparticles have all been explored as NA delivery techniques. However, the translational possibility of NA remains a substantial barrier. As a result, different NAs must be identified, and their distribution method must be optimized. This review explores the role of NA-based therapeutics in various stages of wound healing and provides an update on the most recent findings in the development of NA-based nanomedicine and biomaterials, which may offer the potential for the invention of novel therapies for this long-term condition. Further, the challenges and potential for miRNA-based techniques to be translated into clinical applications are also highlighted.


Assuntos
Dendrímeros , MicroRNAs , Ácidos Nucleicos , Materiais Biocompatíveis , DNA , Dendrímeros/uso terapêutico , Hidrogéis , Lipossomos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Nanopartículas , Ácidos Nucleicos/uso terapêutico , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Cicatrização
13.
Biomaterials ; 288: 121690, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35965114

RESUMO

Current treatments for Alzheimer's disease (AD) that focus on inhibition of Aß aggregation failed to show effectiveness in people who already had Alzheimer's symptoms. Strategies that synergistically exert neuroprotection and alleviation of oxidative stress could be a promising approach to correct the pathological brain microenvironment. Based on the key roles of microglia in modulation of AD microenvironment, we describe here the development of Prussian blue/polyamidoamine (PAMAM) dendrimer/Angiopep-2 (PPA) nanoparticles that can regulate the mitophagy of microglia as a potential AD treatment. PPA nanoparticles exhibit superior blood-brain barrier (BBB) permeability and exert synergistic effects of ROS scavenging and restoration of mitochondrial function of microglia. PPA nanoparticles effectively reduce neurotoxic Aß aggregate and rescue the cognitive functions in APP/PS1 model mice. Together, our data suggest that these multifunctional dendrimer nanoparticles exhibit efficient neuroprotection and microglia modulation and can be exploited as a promising approach for the treatment of AD.


Assuntos
Doença de Alzheimer , Dendrímeros , Nanopartículas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Dendrímeros/uso terapêutico , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Microglia , Mitofagia
14.
Drug Res (Stuttg) ; 72(8): 417-423, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35931069

RESUMO

Alzheimer disease is a neurodegenerative disease that is signified by cognitive decline, memory loss, and erratic behavior. Dendrimers are a type of polymer that has a well-defined structure, a high degree of molecular uniformity, and a low polydispersity which have shown to be effective intracellular drug carriers for bring down the in numerous cases. The data reported by the clinical trials and chemical bonds of dendrimers loading and biological properties that may be used in the bringing out the treatment of nano formulation for Alzheimer disease. Below-range dendrimers have an unlocked figure, but higher-range dendrimers have a more globular and dense structure so handling is difficult. Dendrimers are similar in size to a variety of biological structures; for example, fifth-generation polyamidoamine (PAMAM) dendrimers are similar in size and shape to haemoglobin (5.5 nm diameter). Each generation of dendrimer is described in terms of size, shape, molecular weight, and the number of surface functional groups, with increasing growth specified in terms of 'generation number.' In contrast, Hawker and Frechet were the first to report the convergent approach. A stepwise repeating reaction strategy is used to synthesize dendrimers radically from a central core. The value of dendrimers as drug carriers is discussed in this paper. The information presented in this article can provide useful references for further studies on making dendrimers and applications.


Assuntos
Doença de Alzheimer , Dendrímeros , Doenças Neurodegenerativas , Doença de Alzheimer/tratamento farmacológico , Dendrímeros/química , Dendrímeros/uso terapêutico , Portadores de Fármacos/química , Humanos , Polímeros
15.
Sci Transl Med ; 14(654): eabo2652, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35857827

RESUMO

Hyperinflammation triggered by SARS-CoV-2 is a major cause of disease severity, with activated macrophages implicated in this response. OP-101, a hydroxyl-polyamidoamine dendrimer-N-acetylcysteine conjugate that specifically targets activated macrophages, improves outcomes in preclinical models of systemic inflammation and neuroinflammation. In this multicenter, randomized, double-blind, placebo-controlled, adaptive phase 2a trial, we evaluated safety and preliminary efficacy of OP-101 in patients with severe COVID-19. Twenty-four patients classified as having severe COVID-19 with a baseline World Health Organization seven-point ordinal scale of ≥5 were randomized to receive a single intravenous dose of placebo (n = 7 patients) or OP-101 at 2 (n = 6), 4 (n = 6), or 8 mg/kg (n = 5 patients). All study participants received standard of care, including corticosteroids. OP-101 at 4 mg/kg was better than placebo at decreasing inflammatory markers; OP-101 at 4 and 8 mg/kg was better than placebo at reducing neurological injury markers, (neurofilament light chain and glial fibrillary acidic protein). Risk for the composite outcome of mechanical ventilation or death at 30 and 60 days after treatment was 71% (95% CI: 29%, 96%) for placebo and 18% (95% CI: 4%, 43%; P = 0.021) for the pooled OP-101 treatment arms. At 60 days, 3 of 7 patients given placebo and 14 of 17 OP-101-treated patients were surviving. No drug-related adverse events were reported. These data show that OP-101 was well tolerated and may have potential to treat systemic inflammation and neuronal injury, reducing morbidity and mortality in hospitalized patients with severe COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Dendrímeros , Dendrímeros/uso terapêutico , Método Duplo-Cego , Humanos , Inflamação/tratamento farmacológico , Respiração Artificial , SARS-CoV-2 , Resultado do Tratamento
16.
Curr Drug Metab ; 23(10): 781-799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35676850

RESUMO

Breast cancer is the most prevalent cancer in women around the world, having a sudden spread nowadays because of the poor sedentary lifestyle of people. Comprising several subtypes, one of the most dangerous and aggressive ones is triple-negative breast cancer or TNBC. Even though conventional surgical approaches like single and double mastectomy and preventive chemotherapeutic approaches are available, they are not selective to cancer cells and are only for symptomatic treatment. A new branch called nanotechnology has emerged in the last few decades that offers various novel characteristics, such as size in nanometric scale, enhanced adherence to multiple targeting moieties, active and passive targeting, controlled release, and site-specific targeting. Among various nanotherapeutic approaches like dendrimers, lipid-structured nanocarriers, carbon nanotubes, etc., nanoparticle targeted therapeutics can be termed the best among all for their specific cytotoxicity to cancer cells and increased bioavailability to a target site. This review focuses on the types and molecular pathways involving TNBC, existing treatment strategies, various nanotechnological approaches like exosomes, carbon nanotubes, dendrimers, lipid, and carbon-based nanocarriers, and especially various nanoparticles (NPs) like polymeric, photodynamic, peptide conjugated, antibody-conjugated, metallic, inorganic, natural product capped, and CRISPR based nanoparticles already approved for treatment or are under clinical and pre-clinical trials for TNBC.


Assuntos
Dendrímeros , Nanotubos de Carbono , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Dendrímeros/uso terapêutico , Mastectomia , Nanotecnologia , Lipídeos
17.
Semin Cancer Biol ; 86(Pt 2): 396-419, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35700939

RESUMO

Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.


Assuntos
Dendrímeros , Nanopartículas , Neoplasias , Humanos , Dendrímeros/química , Dendrímeros/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nanotecnologia , Neoplasias/tratamento farmacológico
18.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630713

RESUMO

The application of dendrimeric constructs in medical diagnostics and therapeutics is increasing. Dendrimers have attracted attention due to their compact, spherical three-dimensional structures with surfaces that can be modified by the attachment of various drugs, hydrophilic or hydrophobic groups, or reporter molecules. In the literature, many modified dendrimer systems with various applications have been reported, including drug and gene delivery systems, biosensors, bioimaging contrast agents, tissue engineering, and therapeutic agents. Dendrimers are used for the delivery of macromolecules, miRNAs, siRNAs, and many other various biomedical applications, and they are ideal carriers for bioactive molecules. In addition, the conjugation of dendrimers with antibodies, proteins, and peptides allows for the design of vaccines with highly specific and predictable properties, and the role of dendrimers as carrier systems for vaccine antigens is increasing. In this work, we will focus on a review of the use of dendrimers in cancer diagnostics and therapy. Dendrimer-based nanosystems for drug delivery are commonly based on polyamidoamine dendrimers (PAMAM) that can be modified with drugs and contrast agents. Moreover, dendrimers can be successfully used as conjugates that deliver several substances simultaneously. The potential to develop dendrimers with multifunctional abilities has served as an impetus for the design of new molecular platforms for medical diagnostics and therapeutics.


Assuntos
Dendrímeros , Meios de Contraste , Dendrímeros/química , Dendrímeros/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes
19.
ACS Biomater Sci Eng ; 8(5): 2121-2130, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35395157

RESUMO

Cancer has become the leading cause of human death worldwide, and there is an urgent need to design and develop new oncology drugs. In this study, we report series of cationic amphiphilic dendrons with different hydrophobic alkyl chains (Cn) and different generations (Gx) and demonstrate their use for anticancer applications. The results revealed that lower-generation dendrons (G1) with a longer hydrophobic alkyl chain (C12 and C18) have stronger antitumor activity. Among these dendrons, a lead candidate C12-G1 was identified that demonstrated excellent broad-spectrum antitumor activity in 7 cancer cell lines including highly metastatic tumor cells, while simultaneously, hemolysis was negligible. Mechanistic studies showed that C12-G1 could lead to cytoplasmic leakage and induce cancer cell necrosis through membrane disruption. In addition, C12-G1 showed potent inhibition of tumor growth in a B16-F10 melanoma model. In conclusion, these findings demonstrate that the cationic amphiphilic dendron might be a promising agent for anticancer application.


Assuntos
Dendrímeros , Cátions , Dendrímeros/química , Dendrímeros/farmacologia , Dendrímeros/uso terapêutico , Humanos , Interações Hidrofóbicas e Hidrofílicas
20.
ACS Chem Biol ; 17(4): 762-767, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35285234

RESUMO

The limited therapeutic effects of immunotherapy for most types of cancer stimulates the pursuit for efficient methods to improve its response rate. Herein we report the design and synthesis of a cascade-responsive molecular prodrug for tandem chemoimmunotherapy. This molecular prodrug first releases doxorubicin (DOX) in the mildly acidic tumor microenvironment (TME) to induce immunogenic cell death (ICD) of tumor cells. Caspase 3/7 released during tumor cell apoptosis liberates NLG919 from the prodrug, which inhibits the activity of indoleamine 2,3-dioxygenase (IDO) and results in relief of TME immunosuppression. Meanwhile, tumor-associated antigens and immune stimulatory cytokines released during ICD activate the immune response against the tumor, leading to synergistic chemoimmunotherapy. The efficacy of this prodrug is validated by in vitro and in vivo experiments, demonstrating the success of this strategy for cancer treatment.


Assuntos
Dendrímeros , Nanopartículas , Neoplasias , Pró-Fármacos , Receptores de Antígenos Quiméricos , Linhagem Celular Tumoral , Dendrímeros/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...