Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
BMC Plant Biol ; 24(1): 396, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745125

RESUMO

BACKGROUND: Dendrobium officinale Kimura et Migo, a renowned traditional Chinese orchid herb esteemed for its significant horticultural and medicinal value, thrives in adverse habitats and contends with various abiotic or biotic stresses. Acid invertases (AINV) are widely considered enzymes involved in regulating sucrose metabolism and have been revealed to participate in plant responses to environmental stress. Although members of AINV gene family have been identified and characterized in multiple plant genomes, detailed information regarding this gene family and its expression patterns remains unknown in D. officinale, despite their significance in polysaccharide biosynthesis. RESULTS: This study systematically analyzed the D. officinale genome and identified four DoAINV genes, which were classified into two subfamilies based on subcellular prediction and phylogenetic analysis. Comparison of gene structures and conserved motifs in DoAINV genes indicated a high-level conservation during their evolution history. The conserved amino acids and domains of DoAINV proteins were identified as pivotal for their functional roles. Additionally, cis-elements associated with responses to abiotic and biotic stress were found to be the most prevalent motif in all DoAINV genes, indicating their responsiveness to stress. Furthermore, bioinformatics analysis of transcriptome data, validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct organ-specific expression patterns of DoAINV genes across various tissues and in response to abiotic stress. Examination of soluble sugar content and interaction networks provided insights into stress release and sucrose metabolism. CONCLUSIONS: DoAINV genes are implicated in various activities including growth and development, stress response, and polysaccharide biosynthesis. These findings provide valuable insights into the AINV gene amily of D. officinale and will aid in further elucidating the functions of DoAINV genes.


Assuntos
Dendrobium , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , beta-Frutofuranosidase , Dendrobium/genética , Dendrobium/enzimologia , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Estresse Fisiológico/genética , Genes de Plantas
2.
Physiol Plant ; 176(2): e14286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618752

RESUMO

Shoot branching fundamentally influences plant architecture and agricultural yield. However, research on shoot branching in Dendrobium catenatum, an endangered medicinal plant in China, remains limited. In this study, we identified a transcription factor DcERF109 as a key player in shoot branching by regulating the expression of strigolactone (SL) receptors DWARF 14 (D14)/ DECREASED APICAL DOMINANCE 2 (DAD2). The treatment of D. catenatum seedlings with GR24rac/TIS108 revealed that SL can significantly repress the shoot branching in D. catenatum. The expression of DcERF109 in multi-branched seedlings is significantly higher than that of single-branched seedlings. Ectopic expression in Arabidopsis thaliana demonstrated that overexpression of DcERF109 resulted in significant shoot branches increasing and dwarfing. Molecular and biochemical assays demonstrated that DcERF109 can directly bind to the promoters of AtD14 and DcDAD2.2 to inhibit their expression, thereby positively regulating shoot branching. Inhibition of DcERF109 by virus-induced gene silencing (VIGS) resulted in decreased shoot branching and improved DcDAD2.2 expression. Moreover, overexpression of DpERF109 in A. thaliana, the homologous gene of DcERF109 in Dendrobium primulinum, showed similar phenotypes to DcERF109 in shoot branch and plant height. Collectively, these findings shed new insights into the regulation of plant shoot branching and provide a theoretical basis for improving the yield of D. catenatum.


Assuntos
Arabidopsis , Dendrobium , Compostos Heterocíclicos com 3 Anéis , Lactonas , Dendrobium/genética , Agricultura , Plântula , Transdução de Sinais
3.
BMC Genomics ; 25(1): 342, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575876

RESUMO

BACKGROUND: Dendrobium huoshanense, a traditional medicinal and food plant, has a rich history of use. Recently, its genome was decoded, offering valuable insights into gene function. However, there is no comprehensive gene functional analysis platform for D. huoshanense. RESULT: To address this, we created a platform for gene function analysis and comparison in D. huoshanense (DhuFAP). Using 69 RNA-seq samples, we constructed a gene co-expression network and annotated D. huoshanense genes by aligning sequences with public protein databases. Our platform contained tools like Blast, gene set enrichment analysis, heatmap analysis, sequence extraction, and JBrowse. Analysis revealed co-expression of transcription factors (C2H2, GRAS, NAC) with genes encoding key enzymes in alkaloid biosynthesis. We also showcased the reliability and applicability of our platform using Chalcone synthases (CHS). CONCLUSION: DhuFAP ( www.gzybioinformatics.cn/DhuFAP ) and its suite of tools represent an accessible and invaluable resource for researchers, enabling the exploration of functional information pertaining to D. huoshanense genes. This platform stands poised to facilitate significant biological discoveries in this domain.


Assuntos
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Reprodutibilidade dos Testes
4.
BMC Plant Biol ; 24(1): 230, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561687

RESUMO

BACKGROUND: Dendrobium spp. comprise a group of tropical orchids with ornamental and medicinal value. Dendrobium spp. are sensitive to low temperature, and the underlying cold response regulatory mechanisms in this group are unclear. To understand how these plants respond to cold stress, we compared the transcriptomic responses of the cold-tolerant cultivar 'Hongxing' (HX) and the cold-sensitive cultivar 'Sonia Hiasakul' (SH) to cold stress. RESULTS: Chemometric results showed that the physiological response of SH in the later stages of cold stress is similar to that of HX throughout the cold treatment. Orthogonal partial least squares discriminant analysis (OPLS-DA) revealed that soluble protein content and peroxidase activity are key physiological parameters for assessing the cold tolerance of these two Dendrobium spp. cultivars. Additionally, weighted gene co-expression network analysis (WGCNA) results showed that many cold response genes and metabolic pathways significantly associated with the physiological indices were enriched in the 12 detected modules. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses of the 105 hub genes showed that Dendrobium spp. adapt to cold stress by regulating signal transduction, phytohormones, transcription factors, protein translation and modification, functional proteins, biosynthesis and metabolism, cell structure, light, and the circadian clock. Hub genes of the cold stress response network included the remorin gene pp34, the abscisic acid signaling pathway-related genes PROTEIN PHOSPATASE 2 C (PP2C), SNF1-RELATED PROTEIN KINASE 2 (SnRK2), ABRE-BINDING FACTOR 1 (ABF1) and SKI-INTERACTING PROTEIN 17 (SKIP17), the Ca2+ signaling-related GTP diphosphokinase gene CRSH1, the carbohydrate-related gene STARCH SYNTHASE 2 (SS2), the cell wall biosynthesis gene CINNAMYL ALCOHOL DEHYDROGENASE (CAD7), and the endocytosis-related gene VACUOLAR PROTEIN SORTING-ASSOCIATED PROTEIN 52 A (VPS52A). CONCLUSIONS: The cold-responsive genes and metabolic pathways of Dendrobium spp. revealed in this study provide important insight to enable the genetic enhancement of cold tolerance in Dendrobium spp., and to facilitate cold tolerance breeding in related plants.


Assuntos
Resposta ao Choque Frio , Dendrobium , Resposta ao Choque Frio/genética , Dendrobium/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
5.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1195-1210, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658157

RESUMO

To investigate the potential roles of stress-activated protein kinase (SAPK) gene family members in Dendrobium officinale, we employed multiple bioinformatics methods to identify the members of this family. The physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, and cis-acting elements of each D. officinale SAPK (DoSAPK) member were analyzed. In addition, their expression profiles in different tissues and under the low-temperature or salt stress treatment were determined by real-time fluorescence quantitative PCR. The results showed that D. officinale carried eight DoSAPK family members, which belonged to three groups (groups Ⅰ, Ⅱ, and Ⅲ). These genes were located on seven chromosomes, and there were two pairs of genes with replication. The DoSAPK members within the same group had similar gene structures, conserved motifs, and secondary structures. The cis-acting elements in the promoter regions of DoSAPK genes included abundant hormone and stress response elements. DoSAPK family members presented tissue-specific expression in D. officinale. Furthermore, they were differentially expressed under the low-temperature or salt stress treatment, which suggested that they might be involved in the responses to low-temperature and salt stress. Intriguingly, DoSAPK1 might play a role in the abiotic stress responses. The results laid a foundation for in-depth study of the members and roles of the DoSAPK gene family.


Assuntos
Dendrobium , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Dendrobium/genética , Dendrobium/enzimologia , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Temperatura Baixa
6.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473979

RESUMO

Many Dendrobium species, which hold a high status and value in traditional Chinese medicine, grow on barks and rocks in the wild, often encountering harsh environments and facing droughts. However, the molecular mechanisms underlying the shift in the photosynthetic pathway induced by drought remain unclear. To address this issue, three Dendrobium species with different photosynthetic pathways were selected for sequencing and transcriptome data analysis after drought treatment. The findings included 134.43 GB of sequencing data, with numerous Differentially Expressed Genes (DEGs) exhibiting different response mechanisms under drought stress. Gene Ontology (GO)-KEGG-based enrichment analysis of DEGs revealed that metabolic pathways contributed to drought tolerance and alterations in photosynthetic pathways. Phosphoenolpyruvate Carboxylase (PEPC) was subjected to phylogenetic tree construction, sequence alignment, and domain analysis. Under drought stress, variations were observed in the PEPC gene structure and expression among different Dendrobium species; the upregulation of Dc_gene2609 expression may be caused by dof-miR-384, which resulted in the shift from C3 photosynthesis to CAM, thereby improving drought tolerance in Dendrobium. This study revealed the expression patterns and roles of PEPC genes in enhancing plant drought tolerance and will provide an important basis for in-depth research on Dendrobium's adaptation mechanisms in arid environments.


Assuntos
Dendrobium , Secas , Dendrobium/genética , Filogenia , Transcriptoma , Perfilação da Expressão Gênica , Fotossíntese , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
7.
Zhongguo Zhong Yao Za Zhi ; 49(1): 70-79, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403340

RESUMO

Flavonoid C-glycosides are a class of natural products that are widely involved in plant defense responses and have diverse pharmacological activities. They are also important active ingredients of Dendrobium huoshanense. Flavanone synthase Ⅱ has been proven to be a key enzyme in the synthesis pathway of flavonoid C-glycosides in plants, and their catalytic product 2-hydroxyflavanone is the precursor compound for the synthesis of various reported flavonoid C-glycosides. In this study, based on the reported amino acid sequence of flavanone synthase Ⅱ, a flavanone synthase Ⅱ gene(DhuFNSⅡ) was screened and verified from the constructed D. huoshanense genome localization database. Functional validation of the enzyme showed that it could in vitro catalyze naringenin and pinocembrin to produce apigenin and chrysin, respectively. The open reading frame(ORF) of DhuFNSⅡ was 1 644 bp in length, encoding 547 amino acids. Subcellular localization showed that the protein was localized on the endoplasmic reticulum. RT-qPCR results showed that DhuFNSⅡ had the highest expression in stems, followed by leaves and roots. The expression levels of DhuFNSⅡ and other target genes in various tissues of D. huoshanense were significantly up-regulated after four kinds of abiotic stresses commonly encountered in the growth process, but the extent of up-regulation varied among treatment groups, with drought and cold stress having more significant effects on gene expression levels. Through the identification and functional analysis of DhuFNSⅡ, this study is expected to contribute to the elucidation of the molecular mechanism of the formation of quality metabolites of D. huoshanense, flavonoid C-glycosides, and provide a reference for its quality formation and scientific cultivation.


Assuntos
Dendrobium , Flavanonas , Dendrobium/genética , Dendrobium/química , Flavanonas/metabolismo , Flavonoides , Clonagem Molecular , Glicosídeos/metabolismo
8.
PeerJ ; 12: e16760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250724

RESUMO

Dendrobium officinale Kimura et Migo is a tonic plant that has both ornamental and medicinal properties. Terpenoids are significant and diverse secondary metabolites in plants, and are one of the important natural active ingredients in D. officinale. The AP2/ERF gene family plays a major role in primary and secondary metabolism. However, the AP2/ERF transcription factor family has not been identified in D. officinale, and it is unclear if it is involved in the regulation of terpenoid biosynthesis. This study identified a sesquiterpene synthetase-ß-patchoulene synthase (DoPAES) using transcriptome and terpenic metabolic profile analyses. A total of 111 members of the AP2/ERF family were identified through the whole genome of D. officinale. The tissue-specific expression and gene co-expression pattern of the DoAP2/ERF family members were analyzed. The results showed that the expression of DoPAES was highly correlated with the expression of DoAP2/ERF89 and DoAP2/ERF47. The yeast one-hybrid (Y1H) assays and dual-luciferase experiments demonstrated that DoAP2/ERF89 and DoAP2/ERF47 could regulate the expression of DoPAES. The transcriptional regulatory effects were examined using homologous transient expression of DoAP2/ERF89 in protocorms of D. officinale. DoAP2/ERF89 positively regulated the biosynthesis of ß-patchoulene. This study showed that DoAP2/ERF89 can bind to the promoter region of DoPAES to control its expression and further regulate the biosynthesis of ß-patchoulene in D. officinale. These results provide new insights on the regulation of terpenoid biosynthesis.


Assuntos
Alquil e Aril Transferases , Dendrobium , Dendrobium/genética , Metabolismo Secundário , Sesquiterpenos de Guaiano , Saccharomyces cerevisiae
9.
Plant Sci ; 340: 111988, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232820

RESUMO

In this study, we investigated the tolerance and accumulation capacity of Dendrobium denneanum Kerr (D.denneanum) by analyzing the growth and physiological changes of D.denneanum under different levels of Zn treatments, and further transcriptome sequencing of D.denneanum leaves to screen and analyze the differentially expressed genes. The results showed that Zn400 treatment (400 mg·kg-1) promoted the growth of D.denneanum while both Zn800 (800 mg·kg-1) and Zn1600 treatment (1600 mg·kg-1) caused stress to D.denneanum. Under Zn800 treatment (800 mg·kg-1), the resistance contribution of physiological indexes was the most obvious: antioxidant system, photosynthetic pigment, osmoregulation, phytochelatins, and ASA-GSH cycle (Ascorbic acid-Glutathione cycle). D.denneanum leaves stored the most Zn, followed by stems and roots. The BCF(Bioconcentration Factor) of the D.denneanum for Zn were all more than 1.0 under different Zn treatments, with the largest BCF (1.73) for Zn400. The transcriptome revealed that there were 1500 differentially expressed genes between Zn800 treatment and group CK, of which 842 genes were up-regulated and 658 genes were down-regulated. The genes such as C4H, PAL, JAZ, MYC2, PP2A, GS, and GST were significantly induced under the Zn treatments. The differentially expressed genes were associated with phenylpropane biosynthesis, phytohormone signaling, and glutathione metabolism. There were three main pathways of response to Zn stress in Dendrobium: antioxidant action, compartmentalization, and cellular chelation. This study provides new insights into the response mechanisms of D.denneanum to Zn stress and helps to evaluate the phytoremediation potential of D.denneanum in Zn-contaminated soils.


Assuntos
Dendrobium , Dendrobium/genética , Antioxidantes , Perfilação da Expressão Gênica , Glutationa , Zinco
10.
Int J Biol Macromol ; 259(Pt 2): 129229, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211913

RESUMO

The medicinal Dendrobium species of Orchidaceae possess significant pharmaceutical value, and modern pharmacological research has shown that Dendrobium contains many important active ingredients. Alkaloids, the crucial components of medicinal Dendrobium, demonstrate beneficial healing properties in cardiovascular, cataract, gastrointestinal, and respiratory diseases. Members of the cytochrome P450 monooxygenase (CYP) gene family play essential roles in alkaloid synthesis, participating in alkaloid terpene skeleton construction and subsequent modifications. Although studies of the CYP family have been conducted in some species, genome-wide characterization and systematic analysis of the CYP family in medicinal Dendrobium remain underexplored. In this study, we identified CYP gene family members in the genomes of four medicinal Dendrobium species recorded in the Pharmacopoeia: D. nobile, D. chrysotoxum, D. catenatum, and D. huoshanense. Further, we analyzed the motif composition, gene replication events, and selection pressure of this family. Syntenic analysis revealed that members of the clan 710 were present on chromosome 18 in three medicinal Dendrobium species, except for D. nobile, indicating a loss of clan 710 occurring in D. nobile. We also conducted an initial screening of the CYP genes involved in alkaloid synthesis through transcriptome sequencing. Quantitative real-time reverse transcription PCR showed that the expression of DnoNew43 and DnoNew50, homologs of secologanin synthase involved in the alkaloid synthesis pathway, was significantly higher in the stems than in the leaves. This result coincided with the distribution of dendrobine content in Dendrobium stems and leaves, indicating that these two genes might be involved in the dendrobine synthesis pathway. Our results give insights into the CYP gene family evolution analysis in four medicinal Dendrobium species for the first time and identify two related genes that may be involved in alkaloid synthesis, providing a valuable resource for further investigations into alkaloid synthesis pathway in Dendrobium and other medicinal plants.


Assuntos
Alcaloides , Dendrobium , Dendrobium/genética , Alcaloides/genética , Alcaloides/análise , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Terpenos/metabolismo
11.
Front Biosci (Landmark Ed) ; 29(1): 1, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38287794

RESUMO

BACKGROUND: R2R3-MYB genes comprise one of the largest and most important gene families in plants, and are involved in the regulation of plant growth and development as well as responses to abiotic stresses. However, the functions of R2R3-MYB genes in Dendrobium nobile remains largely unknown. METHODS: Here, a comprehensive genome-wide analysis of D. nobile R2R3-MYB genes was performed, in which phylogenic relationships, gene structures, motif composition, chromosomal locations, collinearity analysis, and cis-acting elements were investigated. Moreover, the expression patterns of selected DnMYB genes were analyzed in various tissues and under different abiotic stresses. RESULTS: In total, 125 DnMYB genes were identified in the D. nobile genome, and were subdivided into 26 groups based on phylogenetic analysis. Most genes in the same subgroup showed similar exon/intron structure and motif composition. All the DnMYB genes were mapped to 19 chromosomes with the co-linearity relationship. Reverse transcription-quantitative real-time PCR (RT-qPCR) results showed that 8 DnMYBs exhibited different expression patterns in different plant tissues, and were differentially expressed in response to abscisic acid, methyl jasmonate, low-temperature stress. CONCLUSIONS: This work contributes to a comprehensive understanding of the R2R3-MYB gene family in D. nobile, and provides candidate genes for future research on abiotic stress in this plant.


Assuntos
Dendrobium , Genes myb , Dendrobium/genética , Dendrobium/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Ácido Abscísico , Regulação da Expressão Gênica de Plantas
12.
Plant Physiol Biochem ; 206: 108226, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039587

RESUMO

Flavonoids are momentous bioactive ingredients in orchid plant Dendrobium catenatum (D. catenatum), which are bioactive compounds with great medical and commercial potential. However, the accurate dissection of flavonoids profiling and their accumulation mechanism are largely unknown. In this study, methyl jasmonate (MeJA) treatment was used to investigate the change of flavonoids content and transcripts in two D. catenatum clones (A6 and B1). We identified 40 flavonoids using liquid chromatograph mass spectrometer (LC-MS). By weighted gene co-expressed network analysis (WGCNA) of flavonoids content and transcript expression of MeJA-treated samples, 37 hub genes were identified. Among them, DcCHIL, DcFLS, and DcDFR were highly correlation with two key transcription factors DcWRKY3/4 by correlation analysis of large-scale transcriptome data and above hub genes expression. Furthermore, transient overexpression of DcWRKY3/4 in tobacco leaves significantly increased the content of flavonoids. This study identified flavonoid profiling and built a new approach to mine regulatory mechanism of flavonoids in D. catenatum. These valuable flavonoids and gene resources will be key for understanding and harnessing natural flavonoids products in pharmaceuticals and foods industry of D. catenatum.


Assuntos
Acetatos , Ciclopentanos , Dendrobium , Oxilipinas , Transcriptoma , Flavonoides/metabolismo , Dendrobium/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
13.
Molecules ; 28(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067620

RESUMO

Dendrobium nobile Lindl., as an endangered medicinal plant within the genus Dendrobium, is widely distributed in southwestern China and has important ecological and economic value. There are a variety of metabolites with pharmacological activity in D. nobile. The alkaloids and polysaccharides contained within D. nobile are very important active components, which mainly have antiviral, anti-tumor, and immunity improvement effects. However, the changes in the compounds and functional genes of D. nobile induced by methyl jasmonate (MeJA) are not clearly understood. In this study, the metabolome and transcriptome of D. nobile were analyzed after exposure to MeJA. A total of 377 differential metabolites were obtained through data analysis, of which 15 were related to polysaccharide pathways and 35 were related to terpenoids and alkaloids pathways. Additionally, the transcriptome sequencing results identified 3256 differentially expressed genes that were discovered in 11 groups. Compared with the control group, 1346 unigenes were differentially expressed in the samples treated with MeJA for 14 days (TF14). Moreover, the expression levels of differentially expressed genes were also significant at different growth and development stages. According to GO and KEGG annotations, 189 and 99 candidate genes were identified as being involved in terpenoid biosynthesis and polysaccharide biosynthesis, respectively. In addition, the co-expression analysis indicated that 238 and 313 transcription factors (TFs) may contribute to the regulation of terpenoid and polysaccharide biosynthesis, respectively. Through a heat map analysis, fourteen terpenoid synthetase genes, twenty-three cytochrome P450 oxidase genes, eight methyltransferase genes, and six aminotransferase genes were identified that may be related to dendrobine biosynthesis. Among them, one sesquiterpene synthase gene was found to be highly expressed after the treatment with MeJA and was positively correlated with the content of dendrobine. This study provides important and valuable metabolomics and transcriptomic information for the further understanding of D. nobile at the metabolic and molecular levels and provides candidate genes and possible intermediate compounds for the dendrobine biosynthesis pathway, which lays a certain foundation for further research on and application of Dendrobium.


Assuntos
Alcaloides , Dendrobium , Transcriptoma , Dendrobium/genética , Dendrobium/metabolismo , Extratos Vegetais/metabolismo , Alcaloides/metabolismo , Terpenos/metabolismo , Metaboloma , Polissacarídeos/metabolismo
14.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139293

RESUMO

The PEBP gene family plays a significant role in regulating flower development and formation. To understand its function in Dendrobium chrysotoxum and D. nobile flowering, we identified 22 PEBP genes (11 DchPEBPs and 11 DnoPEBPs) from both species. We conducted analyses on their conserved domains and motifs, phylogenetic relationships, chromosome distribution, collinear correlation, and cis elements. The classification results showed that the 22 PEBPs were mainly divided into three clades, as follows: FT, MFT, and TFL1. A sequence analysis showed that most PEBP proteins contained five conserved domains, while a gene structure analysis revealed that 77% of the total PEBP genes contained four exons and three introns. The promoter regions of the 22 PEBPs contained several cis elements related to hormone induction and light response. This suggests these PEBPs could play a role in regulating flower development by controlling photoperiod and hormone levels. Additionally, a collinearity analysis revealed three pairs of duplicate genes in the genomes of both D. chrysotoxum and D. nobile. Furthermore, RT-qPCR has found to influence the regulatory effect of DchPEBPs on the development of flower organs (sepals, petals, lip, ovary, and gynostemium) during the flowering process (bud, transparent stage, and initial bloom). The results obtained imply that DchPEBP8 and DchPEBP9 play a role in the initial bloom and that DchPEBP7 may inhibit flowering processes. Moreover, DchPEBP9 may potentially be involved in the development of reproductive functionality. PEBPs have regulatory functions that modulate flowering. FT initiates plant flowering by mediating photoperiod and temperature signals, while TFL1 inhibits flowering processes. These findings provide clues for future studies on flower development in Dendrobium.


Assuntos
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Plantas/metabolismo , Hormônios
15.
PeerJ ; 11: e16644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111654

RESUMO

Background: Dendrobium, one of the largest genera in Orchidaceae, is popular not only for its aesthetic appeal but for its significant medicinal value. Growth-regulating factors (GRFs) play an essential role in plant growth and development. However, there is still a lack of information about the evolution and biological function analysis of the GRF gene family among Dendrobiumspecies. Methods: Growth-regulating factors from Dendrobium officinale Kimura et Migo and Dendrobium chrysotoxum Lindl. were identified by HMMER and BLAST. Detailed bioinformatics analysis was conducted to explore the evolution and function of GRF gene family in D. officinale and D. chrysotoxum using genomic data, transcriptome data and qRT-PCR technology. Results: Here, we evaluated the evolution of the GRF gene family based on the genome sequences of D. officinale and D. chrysotoxum. Inferred from phylogenetic trees, the GRF genes were classified into two clades, and each clade contains three subclades. Sequence comparison analysis revealed relatively conserved gene structures and motifs among members of the same subfamily, indicating a conserved evolution of GRF genes within Dendrobiumspecies. However, considering the distribution of orthologous DoGRFs and DcGRFs, and the differences in the number of GRFs among species, we suggest that the GRF gene family has undergone different evolutionary processes. A total of 361 cis-elements were detected, with 33, 141, and 187 related to plant growth and development, stress, and hormones, respectively. The tissue-specific expression of GRFs showed that DoGRF8 may have a significant function in the stem elongation of D. officinale. Moreover, four genes were up-regulated under Methyl-jasmonic acid/methyl jasmonate (MeJA) treatment, showing that DoGRFs and DcGRFs play a crucial role in stress response. These findings provide valuable information for further investigations into the evolution and function of GRF genes in D. officinale and D. chrysotoxum.


Assuntos
Dendrobium , Dendrobium/genética , Filogenia , Transcriptoma , Genes de Plantas
16.
Biomolecules ; 13(11)2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-38002331

RESUMO

Orchid seeds lack endosperms and depend on mycorrhizal fungi for germination and nutrition acquisition under natural conditions. Piriformospora indica is a mycorrhizal fungus that promotes seed germination and seedling development in epiphytic orchids, such as Dendrobium nobile. To understand the impact of P. indica on D. nobile seed germination, we examined endogenous hormone levels by using liquid chromatography-mass spectrometry. We performed transcriptomic analysis of D. nobile protocorm at two developmental stages under asymbiotic germination (AG) and symbiotic germination (SG) conditions. The result showed that the level of endogenous IAA in the SG protocorm treatments was significantly higher than that in the AG protocorm treatments. Meanwhile, GA3 was only detected in the SG protocorm stages. IAA and GA synthesis and signaling genes were upregulated in the SG protocorm stages. Exogenous GA3 application inhibited fungal colonization inside the protocorm, and a GA biosynthesis inhibitor (PAC) promoted fungal colonization. Furthermore, we found that PAC prevented fungal hyphae collapse and degeneration in the protocorm, and differentially expressed genes related to cell wall metabolism were identified between the SG and AG protocorm stages. Exogenous GA3 upregulated SRC2 and LRX4 expression, leading to decreased fungal colonization. Meanwhile, GA inhibitors upregulated EXP6, EXB16, and EXP10-2 expression, leading to increased fungal colonization. Our findings suggest that GA regulates the expression of cell wall metabolism genes in D. nobile, thereby inhibiting the establishment of mycorrhizal symbiosis.


Assuntos
Dendrobium , Micorrizas , Simbiose , Dendrobium/genética , Germinação
17.
BMC Plant Biol ; 23(1): 586, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993773

RESUMO

BACKGROUND: Mitochondrial genomes are essential for deciphering the unique evolutionary history of seed plants. However, the rules of their extreme variation in genomic size, multi-chromosomal structure, and foreign sequences remain unresolved in most plant lineages, which further hindered the application of mitogenomes in phylogenetic analyses. RESULTS: Here, we took Dendrobium (Orchidaceae) which shows the great divergence of morphology and difficulty in species taxonomy as the study focus. We first de novo assembled two complete mitogenomes of Dendrobium wilsonii and Dendrobium henanense that were 763,005 bp and 807,551 bp long with multichromosomal structures. To understand the evolution of Dendrobium mitogenomes, we compared them with those of four other orchid species. The results showed great variations of repetitive and chloroplast-derived sequences in Dendrobium mitogenomes. Moreover, the intergenic content of Dendrobium mitogenomes has undergone expansion during evolution. We also newly sequenced mitogenomes of 26 Dendrobium species and reconstructed phylogenetic relationships of Dendrobium based on genomic mitochondrial and plastid data. The results indicated that the existence of chloroplast-derived sequences made the mitochondrial phylogeny display partial characteristics of the plastid phylogeny. Additionally, the mitochondrial phylogeny provided new insights into the phylogenetic relationships of Dendrobium species. CONCLUSIONS: Our study revealed the evolution of Dendrobium mitogenomes and the potential of mitogenomes in deciphering phylogenetic relationships at low taxonomic levels.


Assuntos
Dendrobium , Genoma Mitocondrial , Orchidaceae , Filogenia , Orchidaceae/genética , Dendrobium/genética , Genoma Mitocondrial/genética , Genômica/métodos , Sequência de Bases
18.
Int J Biol Macromol ; 253(Pt 8): 127599, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871722

RESUMO

Dendrobium huoshanense, a traditional Chinese medicine prized for its horticultural and medicinal properties, thrives in an unfavorable climate and is exposed to several adverse environmental conditions. Acid invertase (AINV), a widely distributed enzyme that has been demonstrated to play a significant role in response to environmental stresses. However, the identification of the AINV gene family in D. huoshanense, the collinearity between relative species, and the expression pattern under external stress have yet to be resolved. We systematically retrieved the D. huoshanense genome and screened out four DhAINV genes, which were further classified into two subfamilies by the phylogenetic analysis. The evolutionary history of AINV genes in D. huoshanense was uncovered by comparative genomics investigations. The subcellular localization predicted that the DhVINV genes may be located in the vacuole, while the DhCWINV genes may be located in the cell wall. The exon/intron structures and conserved motifs of DhAINV genes were found to be highly conserved in two subclades. The conserved amino acids and catalytic motifs in DhAINV proteins were determined to be critical to their function. Notably, the cis-acting elements in all DhAINV genes were mainly relevant to abiotic stresses and light response. In addition, the expression profile coupled with qRT-PCR revealed the typical expression patterns of DhAINV in response to diverse abiotic stresses. Our findings could be beneficial to the characterization and further investigation of AINV functions in Dendrobium plants.


Assuntos
Dendrobium , beta-Frutofuranosidase , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Dendrobium/genética , Filogenia , Técnicas de Amplificação de Ácido Nucleico , Estresse Fisiológico/genética
19.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762622

RESUMO

The TCP gene family are plant-specific transcription factors that play important roles in plant growth and development. Dendrobium chrysotoxum, D. nobile, and D. huoshanense are orchids with a high ornamental value, but few studies have investigated the specific functions of TCPs in Dendrobium flower development. In this study, we used these three Dendrobium species to analyze TCPs, examining their physicochemical properties, phylogenetic relationships, gene structures, and expression profiles. A total of 50 TCPs were identified across three Dendrobium species; they were divided into two clades-Class-I (PCF subfamily) and Class-II (CIN and CYC/TB1 subfamilies)-based on their phylogenetic relationships. Our sequence logo analysis showed that almost all Dendrobium TCPs contain a conserved TCP domain, as well as the existence of fewer exons, and the cis-regulatory elements of the TCPs were mostly related to light response. In addition, our transcriptomic data and qRT-PCR results showed that DchTCP2 and DchTCP13 had a significant impact on lateral organs. Moreover, changes in the expression level of DchTCP4 suggested its important role in the phenotypic variation of floral organs. Therefore, this study provides a significant reference for the further exploration of TCP gene functions in the regulation of different floral organs in Dendrobium orchids.


Assuntos
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Filogenia , Fatores de Transcrição/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
20.
Int J Biol Macromol ; 252: 126406, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598828

RESUMO

Plants can bind excessive heavy metals by synthesizing compounds to alleviate the harm caused by heavy metals. To reveal the mechanism by which Dendrobium nobile alleviates zinc stress, metabolome combined transcriptome analysis was used in this research. The results showed that zinc was mainly enriched in the roots and leaves and the biomass of the roots and leaves of D. nobile decreased significantly by 18.21 % and 49.22 % (P < 0.05) compared to the control (CK), respectively. Meanwhile, the contents of nonprotein thiol(NPT), glutathione(GSH), and phytochelatins (PCs) in the roots were significantly increased by 48.8 %, 78.3 %, and 45.4 % compared to CK, respectively. Through TEM testing, it was found that D. nobile exhibited toxic symptoms. Metabolome analysis showed that the metabolites of D. nobile under zinc stress were mainly enriched in biosynthesis of other secondary metabolites and carbohydrate metabolism. Nova-seq results identified 1202 differentially expressed genes(DEGs), of which 603 were upregulated and 599 were downregulated. Through GO and KEGG annotation analysis of these DEGs, it was found that PMR6 and PECS-2.1, SS1 and GLU3 genes were significantly upregulated, leading to an increase in the biosynthesis of xylan, pectin, starch and other polysaccharides in D. nobile. These polysaccharides can form a "Polysaccharide-Zn" with excess zinc. Meanwhile, the GSTs in glutathione metabolism were significantly upregulated, leading to a significant increase in the content of NPT, GSH, and PCs. These zinc complexes were transported to vacuoles through ABC transporters for compartmentalization, effectively alleviating the damage of zinc. The results can provide new insights for phytoremediation and quality assurance of medicinal D. nobile.


Assuntos
Dendrobium , Dendrobium/genética , Zinco , Perfilação da Expressão Gênica , Polissacarídeos , Metabolismo dos Carboidratos , Glutationa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...