Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.349
Filtrar
1.
J Physiol ; 602(10): 2343-2358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38654583

RESUMO

Training rodents in a particularly difficult olfactory-discrimination (OD) task results in the acquisition of the ability to perform the task well, termed 'rule learning'. In addition to enhanced intrinsic excitability and synaptic excitation in piriform cortex pyramidal neurons, rule learning results in increased synaptic inhibition across the whole cortical network to the point where it precisely maintains the balance between inhibition and excitation. The mechanism underlying such precise inhibitory enhancement remains to be explored. Here, we use brain slices from transgenic mice (VGAT-ChR2-EYFP), enabling optogenetic stimulation of single GABAergic neurons and recordings of unitary synaptic events in pyramidal neurons. Quantal analysis revealed that learning-induced enhanced inhibition is mediated by increased quantal size of the evoked inhibitory events. Next, we examined the plasticity of synaptic inhibition induced by long-lasting, intrinsically evoked spike firing in post-synaptic neurons. Repetitive depolarizing current pulses from depolarized (-70 mV) or hyperpolarized (-90 mV) membrane potentials induced long-term depression (LTD) and long-term potentiation (LTP) of synaptic inhibition, respectively. We found a profound bidirectional increase in the ability to induce both LTD, mediated by L-type calcium channels, and LTP, mediated by R-type calcium channels after rule learning. Blocking the GABAB receptor reversed the effect of intrinsic stimulation at -90 mV from LTP to LTD. We suggest that learning greatly enhances the ability to modify the strength of synaptic inhibition of principal neurons in both directions. Such plasticity of synaptic plasticity allows fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule. KEY POINTS: Olfactory discrimination rule learning results in long-lasting enhancement of synaptic inhibition on piriform cortex pyramidal neurons. Quantal analysis of unitary inhibitory synaptic events, evoked by optogenetic minimal stimulation, revealed that enhanced synaptic inhibition is mediated by increased quantal size. Surprisingly, metaplasticity of synaptic inhibition, induced by intrinsically evoked repetitive spike firing, is increased bidirectionally. The susceptibility to both long-term depression (LTD) and long-term potentiation (LTP) of inhibition is enhanced after learning. LTD of synaptic inhibition is mediated by L-type calcium channels and LTP by R-type calcium channels. LTP is also dependent on activation of GABAB receptors. We suggest that learning-induced changes in the metaplasticity of synaptic inhibition enable the fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule.


Assuntos
Camundongos Transgênicos , Plasticidade Neuronal , Células Piramidais , Animais , Plasticidade Neuronal/fisiologia , Camundongos , Células Piramidais/fisiologia , Neurônios GABAérgicos/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Sinapses/fisiologia , Optogenética , Inibição Neural/fisiologia , Córtex Piriforme/fisiologia , Camundongos Endogâmicos C57BL , Depressão Sináptica de Longo Prazo/fisiologia
2.
Mol Brain ; 17(1): 17, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566234

RESUMO

Synaptopodin (SP), an actin-associated protein found in telencephalic neurons, affects activity-dependant synaptic plasticity and dynamic changes of dendritic spines. While being required for long-term depression (LTD) mediated by metabotropic glutamate receptor (mGluR-LTD), little is known about its role in other forms of LTD induced by low frequency stimulation (LFS-LTD) or spike-timing dependent plasticity (STDP). Using electrophysiology in ex vivo hippocampal slices from SP-deficient mice (SPKO), we show that absence of SP is associated with a deficit of LTD at Sc-CA1 synapses induced by LFS-LTD and STDP. As LTD is known to require AMPA- receptors internalization and IP3-receptors calcium signaling, we tested by western blotting and immunochemistry if there were changes in their expression which we found to be reduced. While we were not able to induce LTD, long-term potentiation (LTP), albeit diminished in SPKO, can be recovered by using a stronger stimulation protocol. In SPKO we found no differences in NMDAR, which are the primary site of calcium signalling to induce LTP. Our study shows, for the first time, the key role of the requirement of SP to allow induction of activity-dependant LTD at Sc-CA1 synapses.


Assuntos
Depressão , Colaterais de Schaffer , Animais , Camundongos , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(18): e2316819121, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657042

RESUMO

Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.


Assuntos
Endocitose , Depressão Sináptica de Longo Prazo , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Receptores de AMPA , Receptores de Glutamato Metabotrópico , Receptores de AMPA/metabolismo , Animais , Fosforilação , Endocitose/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Ratos , Tirosina/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/metabolismo , Camundongos , Humanos , Neurônios/metabolismo
4.
J Physiol ; 602(9): 2019-2045, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488688

RESUMO

Activation of the cAMP pathway is one of the common mechanisms underlying long-term potentiation (LTP). In the Drosophila mushroom body, simultaneous activation of odour-coding Kenyon cells (KCs) and reinforcement-coding dopaminergic neurons activates adenylyl cyclase in KC presynaptic terminals, which is believed to trigger synaptic plasticity underlying olfactory associative learning. However, learning induces long-term depression (LTD) at these synapses, contradicting the universal role of cAMP as a facilitator of transmission. Here, we developed a system to electrophysiologically monitor both short-term and long-term synaptic plasticity at KC output synapses and demonstrated that they are indeed an exception in which activation of the cAMP-protein kinase A pathway induces LTD. Contrary to the prevailing model, our cAMP imaging found no evidence for synergistic action of dopamine and KC activity on cAMP synthesis. Furthermore, we found that forskolin-induced cAMP increase alone was insufficient for plasticity induction; it additionally required simultaneous KC activation to replicate the presynaptic LTD induced by pairing with dopamine. On the other hand, activation of the cGMP pathway paired with KC activation induced slowly developing LTP, proving antagonistic actions of the two second-messenger pathways predicted by behavioural study. Finally, KC subtype-specific interrogation of synapses revealed that different KC subtypes exhibit distinct plasticity duration even among synapses on the same postsynaptic neuron. Thus, our work not only revises the role of cAMP in synaptic plasticity by uncovering the unexpected convergence point of the cAMP pathway and neuronal activity, but also establishes the methods to address physiological mechanisms of synaptic plasticity in this important model. KEY POINTS: Although presynaptic cAMP increase generally facilitates synapses, olfactory associative learning in Drosophila, which depends on dopamine and cAMP signalling genes, induces long-term depression (LTD) at the mushroom body output synapses. By combining electrophysiology, pharmacology and optogenetics, we directly demonstrate that these synapses are an exception where activation of the cAMP-protein kinase A pathway leads to presynaptic LTD. Dopamine- or forskolin-induced cAMP increase alone is not sufficient for LTD induction; neuronal activity, which has been believed to trigger cAMP synthesis in synergy with dopamine input, is required in the downstream pathway of cAMP. In contrast to cAMP, activation of the cGMP pathway paired with neuronal activity induces presynaptic long-term potentiation, which explains behaviourally observed opposing actions of transmitters co-released by dopaminergic neurons. Our work not only revises the role of cAMP in synaptic plasticity, but also provides essential methods to address physiological mechanisms of synaptic plasticity in this important model system.


Assuntos
AMP Cíclico , Corpos Pedunculados , Plasticidade Neuronal , Animais , Corpos Pedunculados/fisiologia , AMP Cíclico/metabolismo , Plasticidade Neuronal/fisiologia , Dopamina , Potenciação de Longa Duração/fisiologia , Drosophila melanogaster/fisiologia , GMP Cíclico/metabolismo , Sinapses/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
5.
Neurosci Lett ; 826: 137733, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492880

RESUMO

Etomidate (ET) is a widely used intravenous imidazole general anesthetic, which depresses the cerebellar neuronal activity by modulating various receptors activity and synaptic transmission. In this study, we investigated the effects of ET on the cerebellar climbing fiber-Purkinje cells (CF-PC) plasticity in vitro in mice using whole-cell recording technique and pharmacological methods. Our results demonstrated that CF tetanic stimulation produced a mGluR1-dependent long-term depression (LTD) of CF-PC excitatory postsynaptic currents (EPSCs), which was enhanced by bath application of ET (10 µM). Blockade of mGluR1 receptor with JNJ16259685, ET triggered the tetanic stimulation to induce a CF-PC LTD accompanied with an increase in paired-pulse ratio (PPR). The ET-triggered CF-PC LTD was abolished by extracellular administration of an N-methyl-(D)-aspartate (NMDA) receptor antagonist, D-APV, as well as by intracellular blockade of NMDA receptors activity with MK801. Furthermore, blocking cannabinoids 1 (CB1) receptor with AM251 or chelating intracellular Ca2+ with BAPTA, ET failed to trigger the CF-PC LTD. Moreover, the ET-triggered CF-PC LTD was abolished by inhibition of protein kinase A (PKA), but not by inhibition of protein kinase C inhibiter. The present results suggest that ET acts on postsynaptic NMDA receptor resulting in an enhancement of the cerebellar CF-PC LTD through CB1 receptor/PKA cascade in vitro in mice. These results provide new evidence and possible mechanism for ET anesthesia to affect motor learning and motor coordination by regulating cerebellar CF-PC LTD.


Assuntos
Etomidato , Camundongos , Animais , Etomidato/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Sinapses/fisiologia , Cerebelo/fisiologia , Plasticidade Neuronal/fisiologia , Células de Purkinje/fisiologia , Transmissão Sináptica , Anestésicos Intravenosos/farmacologia
6.
Cell Rep ; 43(4): 113839, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38507409

RESUMO

Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.


Assuntos
Calcineurina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Homeostase , Sinapses , Animais , Sinapses/metabolismo , Sinapses/fisiologia , Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos
7.
Brain Struct Funct ; 229(3): 639-655, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37690045

RESUMO

Hippocampal afferent inputs, terminating on proximal and distal subfields of the cornus ammonis (CA), enable the functional discrimination of 'what' (item identity) and 'where' (spatial location) elements of a spatial representation. This kind of information is supported by structures such as the retrosplenial cortex (RSC). Spatial content learning promotes the expression of hippocampal synaptic plasticity, particularly long-term depression (LTD). In the CA1 region, this is specifically facilitated by the learning of item-place features of a spatial environment. Gene-tagging, by means of time-locked fluorescence in situ hybridization (FISH) to detect nuclear expression of immediate early genes, can reveal neuronal populations that engage in experience-dependent information encoding. In the current study, using FISH, we examined if learning-facilitated LTD results in subfield-specific information encoding in the hippocampus and RSC. Rats engaged in novel exploration of small items during stimulation of Schaffer collateral-CA1 synapses. This resulted in LTD (> 24 h). FISH, to detect nuclear expression of Homer1a, revealed that the distal-CA1 and proximal-CA3 subcompartments were particularly activated by this event. By contrast, all elements of the proximodistal cornus ammonis-axis showed equal nuclear Homer1a expression following LTD induction solely by means of afferent stimulation. The RSC exhibited stronger nuclear Homer1a expression in response to learning-facilitated LTD, and to novel item-place experience, compared to LTD induced by sole afferent stimulation in CA1. These results show that both the cornus ammonis and RSC engage in differentiated information encoding of item-place learning that is salient enough, in its own right, to drive the expression of hippocampal LTD. These results also reveal a novel role of the RSC in item-place learning.


Assuntos
Giro do Cíngulo , Depressão Sináptica de Longo Prazo , Ratos , Animais , Hibridização in Situ Fluorescente , Depressão Sináptica de Longo Prazo/fisiologia , Hipocampo/metabolismo , Aprendizagem Espacial/fisiologia , Plasticidade Neuronal , Sinapses , Expressão Gênica , Potenciação de Longa Duração/fisiologia , Região CA1 Hipocampal/metabolismo
8.
Exp Neurol ; 373: 114652, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103709

RESUMO

Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development.


Assuntos
Plasticidade Neuronal , Canais de Potássio de Domínios Poros em Tandem , Ratos , Animais , Plasticidade Neuronal/fisiologia , Córtex Cerebral , Hipocampo/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Transmissão Sináptica/fisiologia , Córtex Pré-Frontal , Antidepressivos/farmacologia , Depressão Sináptica de Longo Prazo/fisiologia
9.
Cells ; 12(12)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37371058

RESUMO

Group I metabotropic glutamate receptors (mGluRI), including mGluR1 and mGluR5 subtypes, modulate essential brain functions by affecting neuronal excitability, intracellular calcium dynamics, protein synthesis, dendritic spine formation, and synaptic transmission and plasticity. Nowadays, it is well appreciated that the mGluRI-dependent long-term depression (LTD) of glutamatergic synaptic transmission (mGluRI-LTD) is a key mechanism by which mGluRI shapes connectivity in various cerebral circuitries, directing complex brain functions and behaviors, and that it is deranged in several neurological and psychiatric illnesses, including neurodevelopmental disorders, neurodegenerative diseases, and psychopathologies. Here, we will provide an updated overview of the physiopathology of mGluRI-LTD, by describing mechanisms of induction and regulation by endogenous mGluRI interactors, as well as functional physiological implications and pathological deviations.


Assuntos
Depressão , Depressão Sináptica de Longo Prazo , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Transmissão Sináptica
10.
Hippocampus ; 33(9): 1058-1066, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37254828

RESUMO

Well known as the center for learning and memory, hippocampus is the crucial brain region to study synaptic plasticity in the context of cellular fundamental mechanisms such as long-term depression (LTD) and long-term potentiation (LTP). However, despite years of extensive research, the key to our LTD queries and their induction mechanisms has not been fully understood. Previously, we reported the induction of late-LTD (L-LTD) in the distally located synapses of apical branch of hippocampal CA1 dendrites using strong low-frequency stimulation (SLFS). In contrast synapses at the proximal site could not express L-LTD. Thus, in the present study, we wanted to investigate whether or not synapses of apical dendritic branch at the proximal location could induce and maintain LTD and its related properties in in vitro rat hippocampal slices. Results indicated that the SLFS in the distal and proximal region triggered the plasticity related proteins (PRP) synthesis in both regions, as evident by the induction and maintenance of L-LTD in the distal region by virtue of synaptic and cross-tagging. In addition, the application of emetine at the time of proximal input stimulation prevented the transition of early-LTD (E-LTD) into L-LTD at the distal region, proving PRP synthesis at the proximal site. Further, it was observed that weak low-frequency stimulation (WLFS) could induce E-LTD in the proximal region along with LTD-specific tag-setting at the synapses. In conclusion, the current study suggests unique findings that the synaptic and cross-tagging mediate L-LTD expression is maintained in the proximal location of hippocampus apical CA1 dendrites.


Assuntos
Depressão , Depressão Sináptica de Longo Prazo , Ratos , Animais , Ratos Wistar , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Dendritos/fisiologia
11.
J Biol Chem ; 299(6): 104706, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061000

RESUMO

Learning, memory, and cognition are thought to require synaptic plasticity, specifically including hippocampal long-term potentiation and depression (LTP and LTD). LTP versus LTD is induced by high-frequency stimulation versus low-frequency, but stimulating ß-adrenergic receptors (ßARs) enables LTP induction also by low-frequency stimulation (1 Hz) or theta frequencies (∼5 Hz) that do not cause plasticity by themselves. In contrast to high-frequency stimulation-LTP, such ßAR-LTP requires Ca2+-flux through L-type voltage-gated Ca2+-channels, not N-methyl-D-aspartate-type glutamate receptors. Surprisingly, we found that ßAR-LTP still required a nonionotropic scaffolding function of the N-methyl-D-aspartate-type glutamate receptor: the stimulus-induced binding of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) to its GluN2B subunit that mediates CaMKII movement to excitatory synapses. In hippocampal neurons, ß-adrenergic stimulation with isoproterenol (Iso) transformed LTD-type CaMKII movement to LTP-type movement, resulting in CaMKII movement to excitatory instead of inhibitory synapses. Additionally, Iso enabled induction of a major cell-biological feature of LTP in response to LTD stimuli: increased surface expression of GluA1 fused with super-ecliptic pHluorein. Like for ßAR-LTP in hippocampal slices, the Iso effects on CaMKII movement and surface expression of GluA1 fused with super-ecliptic pHluorein involved L-type Ca2+-channels and specifically required ß2-ARs. Taken together, these results indicate that Iso transforms LTD stimuli to LTP signals by switching CaMKII movement and GluN2B binding to LTP mode.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciação de Longa Duração , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Ácido D-Aspártico/metabolismo , Ácido D-Aspártico/farmacologia , Depressão Sináptica de Longo Prazo/fisiologia , Hipocampo/metabolismo , Sinapses/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Hippocampus ; 33(6): 730-744, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971428

RESUMO

Pyramidal cells in hippocampal area CA2 have synaptic properties that are distinct from the other CA subregions. Notably, this includes a lack of typical long-term potentiation of stratum radiatum synapses. CA2 neurons express high levels of several known and potential regulators of metabotropic glutamate receptor (mGluR)-dependent signaling including Striatal-Enriched Tyrosine Phosphatase (STEP) and several Regulator of G-protein Signaling (RGS) proteins, yet the functions of these proteins in regulating mGluR-dependent synaptic plasticity in CA2 are completely unknown. Thus, the aim of this study was to examine mGluR-dependent synaptic depression and to determine whether STEP and the RGS proteins RGS4 and RGS14 are involved. Using whole cell voltage-clamp recordings from mouse pyramidal cells, we found that mGluR agonist-induced long-term depression (mGluR-LTD) is more pronounced in CA2 compared with that observed in CA1. This mGluR-LTD in CA2 was found to be protein synthesis and STEP dependent, suggesting that CA2 mGluR-LTD shares mechanistic processes with those seen in CA1, but in addition, RGS14, but not RGS4, was essential for mGluR-LTD in CA2. In addition, we found that exogenous application of STEP could rescue mGluR-LTD in RGS14 KO slices. Supporting a role for CA2 synaptic plasticity in social cognition, we found that RGS14 KO mice had impaired social recognition memory as assessed in a social discrimination task. These results highlight possible roles for mGluRs, RGS14, and STEP in CA2-dependent behaviors, perhaps by biasing the dominant form of synaptic plasticity away from LTP and toward LTD in CA2.


Assuntos
Proteínas RGS , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal , Células Piramidais/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(45): e2210645119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322758

RESUMO

Thyroid hormones (THs) regulate gene expression by binding to nuclear TH receptors (TRs) in the cell. THs are indispensable for brain development. However, we have little knowledge about how congenital hypothyroidism in neurons affects functions of the central nervous system in adulthood. Here, we report specific TH effects on functional development of the cerebellum by using transgenic mice overexpressing a dominant-negative TR (Mf-1) specifically in cerebellar Purkinje cells (PCs). Adult Mf-1 mice displayed impairments in motor coordination and motor learning. Surprisingly, long-term depression (LTD)-inductive stimulation caused long-term potentiation (LTP) at parallel fiber (PF)-PC synapses in adult Mf-1 mice, although there was no abnormality in morphology or basal properties of PF-PC synapses. The LTP phenotype was turned to LTD in Mf-1 mice when the inductive stimulation was applied in an extracellular high-Ca2+ condition. Confocal calcium imaging revealed that dendritic Ca2+ elevation evoked by LTD-inductive stimulation is significantly reduced in Mf-1 PCs but not by PC depolarization only. Single PC messenger RNA quantitative analysis showed reduced expression of SERCA2 and IP3 receptor type 1 in Mf-1 PCs, which are essential for mGluR1-mediated internal calcium release from endoplasmic reticulum in cerebellar PCs. These abnormal changes were not observed in adult-onset PC-specific TH deficiency mice created by adeno-associated virus vectors. Thus, we propose the importance of TH action during neural development in establishing proper cerebellar function in adulthood, independent of its morphology. The present study gives insight into the cellular and molecular mechanisms underlying congenital hypothyroidism-induced dysfunctions of central nervous system and cerebellum.


Assuntos
Hipotireoidismo Congênito , Células de Purkinje , Camundongos , Animais , Células de Purkinje/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Cálcio/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Depressão , Hipotireoidismo Congênito/metabolismo , Sinapses/metabolismo , Cerebelo/fisiologia
14.
J Physiol ; 600(22): 4917-4938, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36181477

RESUMO

Mu opioid receptors (MORs) are expressed in the dorsal striatum, a brain region that mediates goal-directed (via the dorsomedial striatum) and habitual (via the dorsolateral striatum, DLS) behaviours. Our previous work indicates that glutamate transmission is depressed when MORs are activated in the dorsal striatum, inducing MOR-mediated long-term synaptic depression (MOR-LTD) or short-term depression (MOR-STD), depending on the input. In the DLS, MOR-LTD is produced by MORs on anterior insular cortex (AIC) inputs and MOR-STD occurs at thalamic inputs, suggesting input-specific MOR plasticity mechanisms. Here, we evaluated the mechanisms of induction of MOR-LTD and MOR-STD in the DLS using pharmacology and optogenetics combined with patch-clamp electrophysiology. We found that cAMP/PKA signalling and protein synthesis are necessary for MOR-LTD expression, similar to previous studies of cannabinoid-mediated LTD in DLS. MOR-STD does not utilize these same mechanisms. We also demonstrated that cannabinoid-LTD occurs at AIC inputs to DLS. However, while cannabinoid-LTD requires mTOR signalling in DLS, MOR-LTD does not. We characterized the role of presynaptic HCN1 channels in MOR-LTD induction as HCN1 channels expressed in AIC are necessary for MOR-LTD expression in the DLS. These results suggest a mechanism in which MOR activation requires HCN1 to induce MOR-LTD, suggesting a new target for pharmacological modulation of synaptic plasticity, providing new opportunities to develop novel drugs to treat alcohol and opioid use disorders. KEY POINTS: Mu opioid receptor-mediated long-term depression at anterior insular cortex inputs to dorsolateral striatum involves presynaptic cAMP/PKA signalling and protein translation, similar to known mechanisms of cannabinoid long-term depression. Dorsal striatal cannabinoid long-term depression also occurs at anterior insular cortex inputs to the dorsolateral striatum. Dorsal striatal cannabinoid long-term depression requires mTOR signalling, similar to hippocampal cannabinoid long-term depression, but dorsal striatal mu opioid long-term depression does not require mTOR signalling. Mu opioid long-term depression requires presynaptic HCN1 channels at anterior insular cortex inputs to dorsolateral striatum.


Assuntos
Canabinoides , Infecções Sexualmente Transmissíveis , Humanos , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Córtex Insular , Depressão , Plasticidade Neuronal/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Corpo Estriado/metabolismo , Canabinoides/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Infecções Sexualmente Transmissíveis/metabolismo
15.
Toxicol Lett ; 370: 74-84, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152796

RESUMO

Cyanuric acid is one of the most widely used classes of industrial chemicals and is now well known as food adulterant and contaminant in pet food and infant formula. Previously, it was reported that animals prenatally exposed to cyanuric acid showed neurotoxic effects that impaired memory consolidating and suppressed long-term potentiation (LTP) in the hippocampus. However, it is not clear if prenatal exposure to cyanuric acid induces deficits in reversal learning and long-term depression (LTD), which is required for the developmental reorganization of synaptic circuits and updating learned behaviors. Here, pregnant rats were i.p. injected with cyanuric acid (20 mg/kg) during the whole of gestation, and male offspring were selected to examine the levels of hippocampal mGluR1 and mGluR2/3 in young adulthood. The LTD at the Schaffer collateral-CA1 pathway was induced by low-frequency stimulation (LFS) and recorded. Reversal learning and hippocampus-dependent learning strategy were tested in Morris-water maze (MWM) and T-maze tasks, respectively. To further confirm the potential mechanism, selective agonists of mGluR1 and mGluR2/3 and antagonists of mGluR were intra-hippocampal infused before behavioral and neuronal recording. We found the levels of alkaline phosphatase were markedly increased in the maternal placenta and fetal brain following prenatal exposure. The expression of mGluR1 but not mGluR2/3 was significantly decreased and mGluR1-mediated LTD was selectively weakened. Prenatal cyanuric acid impaired reversal learning ability, without changing place learning strategy. The mGluR1 agonist could effectively enhance LFS-induced LTD and mitigate reversal learning deficits. Meanwhile, the reductions in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-mediated spontaneous excitatory postsynaptic currents (sEPSCs) amplitude and frequency of cyanuric acid offspring were simultaneously alleviated by mGluR1 agonist infusions. Therefore, the results indicate the cognitive and synaptic impairments induced by prenatal cyanuric acid exposure are attributed to the disruption of the hippocampal mGluR1 signaling. Our findings provided the first evidence for the deteriorated effects of cyanuric acid on synaptic depression and advanced cognitive performance.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Fosfatase Alcalina/metabolismo , Animais , Cognição , Depressão , Feminino , Hipocampo , Humanos , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Plasticidade Neuronal , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Receptores de Glutamato Metabotrópico , Triazinas , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
16.
Aging Cell ; 21(10): e13717, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36135933

RESUMO

A key aim of Alzheimer disease research is to develop efficient therapies to prevent and/or delay the irreversible progression of cognitive impairments. Early deficits in long-term potentiation (LTP) are associated with the accumulation of amyloid beta in rodent models of the disease; however, less is known about how mGluR-mediated long-term depression (mGluR-LTD) is affected. In this study, we have found that mGluR-LTD is enhanced in the APPswe /PS1dE9 mouse at 7 but returns to wild-type levels at 13 months of age. This transient over-activation of mGluR signalling is coupled with impaired LTP and shifts the dynamic range of synapses towards depression. These alterations in synaptic plasticity are associated with an inability to utilize cues in a spatial learning task. The transient dysregulation of plasticity can be prevented by genetic deletion of the MAP kinase-activated protein kinase 2 (MK2), a substrate of p38 MAPK, demonstrating that manipulating the mGluR-p38 MAPK-MK2 cascade at 7 months can prevent the shift in synapse dynamic range. Our work reveals the MK2 cascade as a potential pharmacological target to correct the over-activation of mGluR signalling.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Aprendizagem Espacial , Sinapses/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
17.
Biochem Biophys Res Commun ; 626: 92-99, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35981422

RESUMO

The balance between the actions of protein kinases and phosphatases is crucial for neuronal functions, including synaptic plasticity. Although the phosphorylation and dephosphorylation of neuronal proteins are regulated by synaptic plasticity, no systematic analyses of this have yet been conducted. We performed a phosphoproteomic analysis of hippocampal synaptic plasticity using a nano-Acquity/Synapt LC-MS/MS system. Neuronal proteins were extracted from hippocampal tissues and cultured neurons exposed to long-term potentiation (LTP) or long-term depression (LTD). Filter-aided sample preparation (FASP) was performed to remove residual anionic detergents for complete tryptic digestion. Phosphopeptides were then enriched using TiO2 chromatography, followed by immunoaffinity chromatography with an anti-phosphotyrosine antibody. Among the 1500 phosphopeptides identified by LC-MS/MS, 374 phosphopeptides were detected simultaneously in both hippocampal tissues and cultured neurons. Semi-quantification counting the number of spectra of each phosphopeptide showed that 42 of 374 phosphopeptides changed significantly depending on synaptic plasticity. In conclusion, a new proteomic method using sequential enrichment of phosphopeptides and semi-quantification enabled the phosphoproteomic analysis of hippocampal synaptic plasticity.


Assuntos
Fosfopeptídeos , Proteômica , Cromatografia Líquida , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Fosfopeptídeos/química , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
18.
J Biol Chem ; 298(9): 102299, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872016

RESUMO

The Ca2+/calmodulin-dependent protein kinase II (CaMKII) mediates long-term potentiation or depression (LTP or LTD) after distinct stimuli of hippocampal NMDA-type glutamate receptors (NMDARs). NMDAR-dependent LTD prevails in juvenile mice, but a mechanistically different form of LTD can be readily induced in adults by instead stimulating metabotropic glutamate receptors (mGluRs). However, the role that CaMKII plays in the mGluR-dependent form of LTD is not clear. Here we show that mGluR-dependent LTD also requires CaMKII and its T286 autophosphorylation (pT286), which induces Ca2+-independent autonomous kinase activity. In addition, we compared the role of pT286 among three forms of long-term plasticity (NMDAR-dependent LTP and LTD, and mGluR-dependent LTD) using simultaneous live imaging of endogenous CaMKII together with synaptic marker proteins. We determined that after LTP stimuli, pT286 autophosphorylation accelerated CaMKII movement to excitatory synapses. After NMDAR-LTD stimuli, pT286 was strictly required for any movement to inhibitory synapses. Similar to NMDAR-LTD, we found the mGluR-LTD stimuli did not induce CaMKII movement to excitatory synapses. However, in contrast to NMDAR-LTD, we demonstrate that the mGluR-LTD did not involve CaMKII movement to inhibitory synapses and did not require additional T305/306 autophosphorylation. Thus, despite its prominent role in LTP, we conclude that CaMKII T286 autophosphorylation is also required for both major forms of hippocampal LTD, albeit with differential requirements for the heterosynaptic communication of excitatory signals to inhibitory synapses.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Hipocampo , Depressão Sináptica de Longo Prazo , Receptores de Glutamato Metabotrópico , Sinapses , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , N-Metilaspartato/metabolismo , Fosforilação , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
19.
Cell Rep ; 39(10): 110911, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675781

RESUMO

Genetic perturbances in translational regulation result in defects in cerebellar motor learning; however, little is known about the role of translational mechanisms in the regulation of cerebellar plasticity. We show that genetic removal of 4E-BP, a translational suppressor and target of mammalian target of rapamycin complex 1, results in a striking change in cerebellar synaptic plasticity. We find that cerebellar long-term depression (LTD) at parallel fiber-Purkinje cell synapses is converted to long-term potentiation in 4E-BP knockout mice. Biochemical and pharmacological experiments suggest that increased phosphatase activity largely accounts for the defects in LTD. Our results point to a model in which translational regulation through the action of 4E-BP plays a critical role in establishing the appropriate kinase/phosphatase balance required for normal synaptic plasticity in the cerebellum.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Cerebelo/fisiologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Mamíferos , Camundongos , Plasticidade Neuronal/fisiologia , Monoéster Fosfórico Hidrolases , Células de Purkinje/fisiologia , Sinapses/fisiologia
20.
Parkinsonism Relat Disord ; 99: 16-22, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35569298

RESUMO

OBJECTIVE: Depotentiation of homosynaptic plasticity of the primary motor cortex (M1) is impaired in patients with Parkinson's disease (PD) who have developed dyskinesias. In this exploratory study, we tested whether this holds true for heterosynaptic plasticity induced by paired associative stimulation (PAS). METHODS: Dyskinetic (n=11) and Non-dyskinetic (n=11), levodopa-treated PD patients were tested in M1 with PAS25ms alone, PAS25ms preceded by continuous theta-burst stimulation of the cerebellum (cTBSCB-PAS) as a method to evoke a larger plastic response in M1, and each of these two interventions followed by a depotentiation protocol (cTBS150pulses) to M1. RESULTS: PAS25ms and cTBSCB-PAS25ms induced long-term potentiation (LTP)-like responses in both groups of PD patients, with cTBSCB significantly boosting the plastic response. Both these LTP-like responses could be depotentiated by cTBS150, in both groups of patients. CONCLUSIONS: Cerebellar stimulation enhances heterosynaptic plasticity in PD irrespective of dyskinesias. Depotentiation mechanisms of heterosynaptic plasticity are preserved in PD patients, including those with dyskinesias. The lack of depotentiation of LTP-like plasticity as a hallmark of dyskinesia in PD patients is not absolute. The ability to depotentiate LTP-like plasticity may potentially depend on the type of plasticity induced (homosynaptic or heterosynaptic), the circuits involved in these responses and the adequacy of dopaminergic stimulation.


Assuntos
Discinesia Induzida por Medicamentos , Córtex Motor , Doença de Parkinson , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/etiologia , Potencial Evocado Motor/fisiologia , Humanos , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal , Doença de Parkinson/complicações , Estimulação Magnética Transcraniana/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...