Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2312330121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625936

RESUMO

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide (APOBEC) family is composed of nucleic acid editors with roles ranging from antibody diversification to RNA editing. APOBEC2, a member of this family with an evolutionarily conserved nucleic acid-binding cytidine deaminase domain, has neither an established substrate nor function. Using a cellular model of muscle differentiation where APOBEC2 is inducibly expressed, we confirmed that APOBEC2 does not have the attributed molecular functions of the APOBEC family, such as RNA editing, DNA demethylation, and DNA mutation. Instead, we found that during muscle differentiation APOBEC2 occupied a specific motif within promoter regions; its removal from those regions resulted in transcriptional changes. Mechanistically, these changes reflect the direct interaction of APOBEC2 with histone deacetylase (HDAC) transcriptional corepressor complexes. We also found that APOBEC2 could bind DNA directly, in a sequence-specific fashion, suggesting that it functions as a recruiter of HDAC to specific genes whose promoters it occupies. These genes are normally suppressed during muscle cell differentiation, and their suppression may contribute to the safeguarding of muscle cell fate. Altogether, our results reveal a unique role for APOBEC2 within the APOBEC family.


Assuntos
Cromatina , Proteínas Musculares , Desaminases APOBEC/genética , Desaminase APOBEC-1/genética , Diferenciação Celular/genética , Cromatina/genética , Citidina Desaminase/metabolismo , DNA , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , RNA Mensageiro/genética , Animais , Camundongos
2.
Front Immunol ; 15: 1340273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601149

RESUMO

The AID/APOBECs are a group of zinc-dependent cytidine deaminases that catalyse the deamination of bases in nucleic acids, resulting in a cytidine to uridine transition. Secreted novel AID/APOBEC-like deaminases (SNADs), characterized by the presence of a signal peptide are unique among all of intracellular classical AID/APOBECs, which are the central part of antibody diversity and antiviral defense. To date, there is no available knowledge on SNADs including protein characterization, biochemical characteristics and catalytic activity. We used various in silico approaches to define the phylogeny of SNADs, their common structural features, and their potential structural variations in fish species. Our analysis provides strong evidence of the universal presence of SNAD1 proteins/transcripts in fish, in which expression commences after hatching and is highest in anatomical organs linked to the immune system. Moreover, we searched published fish data and identified previously, "uncharacterized proteins" and transcripts as SNAD1 sequences. Our review into immunological research suggests SNAD1 role in immune response to infection or immunization, and interactions with the intestinal microbiota. We also noted SNAD1 association with temperature acclimation, environmental pollution and sex-based expression differences, with females showing higher level. To validate in silico predictions we performed expression studies of several SNAD1 gene variants in carp, which revealed distinct patterns of responses under different conditions. Dual sensitivity to environmental and pathogenic stress highlights its importance in the fish and potentially enhancing thermotolerance and immune defense. Revealing the biological roles of SNADs represents an exciting new area of research related to the role of DNA and/or RNA editing in fish biology.


Assuntos
Citidina Desaminase , Ácidos Nucleicos , Animais , Desaminase APOBEC-1/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA , Citidina
3.
Sci Adv ; 9(35): eadj1568, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37647411

RESUMO

CRISPR nucleases generate a broad spectrum of mutations that includes undesired editing outcomes. Here, we develop optimized C-to-T base editing systems for the generation of precise loss- or gain-of-function alleles in Drosophila and identify temperature as a crucial parameter for efficiency. We find that a variant of the widely used APOBEC1 deaminase has attenuated activity at 18° to 29°C and shows considerable dose-dependent toxicity. In contrast, the temperature-tolerant evoCDA1 domain mediates editing of typically more than 90% of alleles and is substantially better tolerated. Furthermore, formation of undesired mutations is exceptionally rare in Drosophila compared to other species. The predictable editing outcome, high efficiency, and product purity enables near homogeneous induction of STOP codons or alleles encoding protein variants in vivo. Last, we demonstrate how optimized expression enables conditional base editing in marked cell populations. This work substantially facilitates creation of precise alleles in Drosophila and provides key design parameters for developing efficient base editing systems in other ectothermic species.


Assuntos
Drosophila , Edição de Genes , Drosophila/genética , Edição de Genes/métodos , Animais , Desaminase APOBEC-1/genética , Desaminase APOBEC-1/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Inativação Gênica
4.
J Virol ; 97(1): e0179522, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36598198

RESUMO

Activation-induced cytidine deaminase/apolipoprotein B mRNA editing catalytic polypeptide-like (AID/APOBEC) proteins are cytosine deaminases implicated in diverse biological functions. APOBEC1 (A1) proteins have long been thought to regulate lipid metabolism, whereas the evolutionary significance of A1 proteins in antiviral defense remains largely obscure. Endogenous retroviruses (ERVs) document past retroviral infections and are ubiquitous within the vertebrate genomes. Here, we identify the A1 gene repertoire, characterize the A1-mediated mutation footprints in ERVs, and interrogate the evolutionary arms race between A1 genes and ERVs across vertebrate species. We find that A1 genes are widely present in tetrapods, recurrently amplified and lost in certain lineages, suggesting that A1 genes might have originated during the early evolution of tetrapods. A1-mediated mutation footprints can be detected in ERVs across tetrapods. Moreover, A1 genes appear to have experienced episodic positive selection in many tetrapod lineages. Taken together, we propose that a long-running arms race between A1 genes and retroviruses might have persisted throughout the evolutionary course of tetrapods. IMPORTANCE APOBEC3 (A3) genes have been thought to function in defense against retroviruses, whereas the evolutionary significance of A1 proteins in antiviral defense remains largely obscure. In this study, we identify the A1 gene repertoire, characterize the A1-mediated mutation footprints in endogenous retroviruses (ERVs), and explore the evolutionary arms race between A1 genes and ERVs across vertebrate species. We found A1 proteins originated during the early evolution of tetrapods, and detected the footprints of A1-induced hypermutations in retroviral fossils. A1 genes appear to have experienced pervasive positive selection in tetrapods. Our study indicates a long-running arms race between A1 genes and retroviruses taking place throughout the evolutionary course of tetrapods.


Assuntos
Desaminase APOBEC-1 , Retrovirus Endógenos , Evolução Molecular , Infecções por Retroviridae , Animais , Desaminase APOBEC-1/genética , Desaminase APOBEC-1/imunologia , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Retrovirus Endógenos/imunologia , Mutação , Filogenia , Infecções por Retroviridae/imunologia , Vertebrados/imunologia
5.
Nat Genet ; 55(2): 246-254, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702998

RESUMO

APOBEC mutational signatures SBS2 and SBS13 are common in many human cancer types. However, there is an incomplete understanding of its stimulus, when it occurs in the progression from normal to cancer cell and the APOBEC enzymes responsible. Here we whole-genome sequenced 342 microdissected normal epithelial crypts from the small intestines of 39 individuals and found that SBS2/SBS13 mutations were present in 17% of crypts, more frequent than most other normal tissues. Crypts with SBS2/SBS13 often had immediate crypt neighbors without SBS2/SBS13, suggesting that the underlying cause of SBS2/SBS13 is cell-intrinsic. APOBEC mutagenesis occurred in an episodic manner throughout the human lifespan, including in young children. APOBEC1 mRNA levels were very high in the small intestine epithelium, but low in the large intestine epithelium and other tissues. The results suggest that the high levels of SBS2/SBS13 in the small intestine are collateral damage from APOBEC1 fulfilling its physiological function of editing APOB mRNA.


Assuntos
Apolipoproteínas B , Citidina Desaminase , Criança , Humanos , Pré-Escolar , Apolipoproteínas B/genética , Citidina Desaminase/genética , Mutagênese/genética , RNA Mensageiro/genética , Desaminase APOBEC-1/genética , Intestino Delgado
6.
J Mol Biol ; 435(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708190

RESUMO

Cytidine (C) to Uridine (U) RNA editing is a post-transcription modification that is involved in diverse biological processes. APOBEC1 (A1) catalyzes the conversion of C-to-U in RNA, which is important in regulating cholesterol metabolism through its editing activity on ApoB mRNA. However, A1 requires a cofactor to form an "editosome" for RNA editing activity. A1CF and RBM47, both RNA-binding proteins, have been identified as cofactors that pair with A1 to form editosomes and edit ApoB mRNA and other cellular RNAs. SYNCRIP is another RNA-binding protein that has been reported as a potential regulator of A1, although it is not directly involved in A1 RNA editing activity. Here, we describe the identification and characterization of a novel cofactor, RBM46 (RNA-Binding-Motif-protein-46), that can facilitate A1 to perform C-to-U editing on ApoB mRNA. Additionally, using the low-error circular RNA sequencing technique, we identified novel cellular RNA targets for the A1/RBM46 editosome. Our findings provide further insight into the complex regulatory network of RNA editing and the potential new function of A1 with its cofactors.


Assuntos
Desaminase APOBEC-1 , Edição de RNA , Proteínas de Ligação a RNA , Uridina , Desaminase APOBEC-1/metabolismo , Desaminase APOBEC-1/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Uridina/metabolismo , Uridina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células HEK293 , Apolipoproteínas B/metabolismo , Apolipoproteínas B/genética , Citidina/metabolismo , Citidina/genética
7.
Cells ; 11(22)2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36429012

RESUMO

RNA editing is an epitranscriptomic modification, leading to targeted changes in RNA transcripts. It is mediated by the action of ADAR (adenosine deaminases acting on double-stranded (ds) RNA and APOBEC (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like) deaminases and appears to play a major role in the pathogenesis of many diseases. Here, we assessed its role in experimental autoimmune encephalomyelitis (EAE), a widely used non-clinical model of autoimmune inflammatory diseases of the central nervous system (CNS), which resembles many aspects of human multiple sclerosis (MS). We have analyzed in silico data from microglia isolated at different timepoints through disease progression to identify the global editing events and validated the selected targets in murine tissue samples. To further evaluate the functional role of RNA editing, we induced EAE in transgenic animals lacking expression of APOBEC-1. We found that RNA-editing events, mediated by the APOBEC and ADAR deaminases, are significantly reduced throughout the course of disease, possibly affecting the protein expression necessary for normal neurological function. Moreover, the severity of the EAE model was significantly higher in APOBEC-1 knock-out mice, compared to wild-type controls. Our results implicate regulatory epitranscriptomic mechanisms in EAE pathogenesis that could be extrapolated to MS and other neurodegenerative disorders (NDs) with common clinical and molecular features.


Assuntos
Encefalomielite Autoimune Experimental , Edição de RNA , Humanos , Camundongos , Animais , Edição de RNA/genética , Desaminase APOBEC-1/genética , Encefalomielite Autoimune Experimental/genética , RNA de Cadeia Dupla , Mutagênese Sítio-Dirigida , Camundongos Knockout
8.
Microbiol Spectr ; 10(6): e0376022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36374037

RESUMO

Genome editing technology is a powerful tool for programming microbial cell factories. However, rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of the bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories. To address the issues, we demonstrate the genome engineering of Corynebacterium glutamicum as a GC-rich model industrial bacterium by generating premature termination codons (PTCs) in desired genes using high-fidelity cytosine base editors (CBEs). Through this CBE-STOP approach of introducing specific cytosine conversions, we constructed several single-gene-inactivated strains for three genes (ldh, idsA, and pyc) with high base editing efficiencies of average 95.6% (n = 45, C6 position) and the highest success rate of up to 100% for PTCs and ultimately developed a strain with five genes (ldh, actA, ackA, pqo, and pta) that were inactivated sequentially for enhancing succinate production. Although these mutant strains showed the desired phenotypes, whole-genome sequencing (WGS) data revealed that genome-wide point mutations occurred in each strain and further accumulated according to the duration of CBE plasmids. To lower the undesirable mutations, high-fidelity CBEs (pCoryne-YE1-BE3 and pCoryne-BE3-R132E) was employed for single or multiplexed genome editing in C. glutamicum, resulting in drastically reduced sgRNA-independent off-targets. Thus, we provide a CRISPR-assisted bacterial genome engineering tool with an average high efficiency of 90.5% (n = 76, C5 or C6 position) at the desired targets. IMPORTANCE Rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories. To address the issues, we identified the DNA off-targets for single and multiple genome engineering of the industrial bacterium Corynebacterium glutamicum using whole-genome sequencing. Further, we developed the high-fidelity (HF)-CBE with significantly reduced off-targets with comparable efficiency and precision. We believe that our DNA off-target analysis and the HF-CBE can promote CRISPR-assisted genome engineering over conventional gene manipulation tools by providing a markerless genetic tool without need for a foreign DNA donor.


Assuntos
Corynebacterium glutamicum , Edição de Genes , Animais , Ratos , Edição de Genes/métodos , Corynebacterium glutamicum/genética , Citosina , Mutação , DNA/genética , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas , Desaminase APOBEC-1/genética
9.
Nat Genet ; 54(11): 1599-1608, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280735

RESUMO

Mutational signatures associated with apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC)3 cytosine deaminase activity have been found in over half of cancer types, including some therapy-resistant and metastatic tumors. Driver mutations can occur in APOBEC3-favored sequence contexts, suggesting that mutagenesis by APOBEC3 enzymes may drive cancer evolution. The APOBEC3-mediated signatures are often detected in subclonal branches of tumor phylogenies and are acquired in cancer cell lines over long periods of time, indicating that APOBEC3 mutagenesis can be ongoing in cancer. Collectively, these and other observations have led to the proposal that APOBEC3 mutagenesis represents a disease-modifying process that could be inhibited to limit tumor heterogeneity, metastasis and drug resistance. However, critical aspects of APOBEC3 biology in cancer and in healthy tissues have not been clearly defined, limiting well-grounded predictions regarding the benefits of inhibiting APOBEC3 mutagenesis in different settings in cancer. We discuss the relevant mechanistic gaps and strategies to address them to investigate whether inhibiting APOBEC3 mutagenesis may confer clinical benefits in cancer.


Assuntos
Neoplasias , Humanos , Mutagênese/genética , Neoplasias/genética , Neoplasias/patologia , Desaminase APOBEC-1/genética , Mutação , Citidina Desaminase/genética , Desaminases APOBEC/genética
10.
STAR Protoc ; 3(3): 101646, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36042888

RESUMO

Most techniques for mapping m6A-methylated RNAs transcriptome-wide require large amounts of RNA and have been limited to bulk cells and tissues. Here, we provide a detailed protocol for the identification of m6A sites in single HEK293T cells using single-cell DART-seq (scDART-seq). The protocol details how to generate cell lines with inducible expression of the APOBEC1-YTH transgene and the use of important controls for minimizing false positives. We also describe the bioinformatic analysis to identify m6A sites. For complete details on the use and execution of this protocol, please refer to Tegowski et al. (2022).


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma , Desaminase APOBEC-1/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA , Análise de Sequência de RNA/métodos , Transcriptoma/genética
11.
Sci Rep ; 12(1): 13599, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948620

RESUMO

Meiosis, recombination, and gametogenesis normally ensure that gametes combine randomly. But in exceptional cases, fertilization depends on the genetics of gametes from both females and males. A key question is whether their non-random union results from factors intrinsic to oocytes and sperm, or from their interactions with conditions in the reproductive tracts. To address this question, we used in vitro fertilization (IVF) with a mutant and wild-type allele of the A1cf (APOBEC1 complementation factor) gene in mice that are otherwise genetically identical. We observed strong distortion in favor of mutant heterozygotes showing that bias depends on the genetics of oocyte and sperm, and that any environmental input is modest. To search for the potential mechanism of the 'biased fertilization', we analyzed the existing transcriptome data and demonstrated that localization of A1cf transcripts and its candidate mRNA targets is restricted to the spermatids in which they originate, and that these transcripts are enriched for functions related to meiosis, fertilization, RNA stability, translation, and mitochondria. We propose that failure to sequester mRNA targets in A1cf mutant heterozygotes leads to functional differences among spermatids, thereby providing an opportunity for selection among haploid gametes. The study adds to the understanding of the gamete interaction at fertilization. Discovery that bias is evident with IVF provides a new venue for future explorations of preference among genetically distinct gametes at fertilization for A1cf and other genes that display significant departure of Mendelian inheritance.


Assuntos
Sêmen , Interações Espermatozoide-Óvulo , Desaminase APOBEC-1/genética , Animais , Feminino , Fertilização , Masculino , Camundongos , Oócitos , RNA Mensageiro/genética , Espermatozoides
12.
J Genet Genomics ; 49(10): 927-933, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421582

RESUMO

CRISPR/Cas9 system is a robust genome editing platform in biotechnology and medicine. However, it generally produces small insertions/deletions (indels, typically 1-3 bp) but rarely induces larger deletions in specific target sites. Here, we report a cytidine deaminase-Cas9 fusion-induced deletion system (C-DEL) and an adenine deaminase-Cas9 fusion-induced deletion system (A-DEL) by combining Cas9 with rat APOBEC1 (rA1) and TadA 8e, respectively. Both C-DEL and A-DEL improve the efficiency of deletions compared with the conventional Cas9 system in human cells. In addition, the C-DEL system generates a considerable fraction of predictable multinucleotide deletions from 5'-deaminated C bases to the Cas9-cleavage site and increases the proportion of larger deletions at the target loci. Taken together, the C-DEL and A-DEL systems provide a practical strategy for producing efficient multinucleotide deletions, expanding the CRISPR/Cas9 toolsets for gene modifications in human cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Ratos , Animais , Sistemas CRISPR-Cas/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Mutação INDEL/genética , Desaminase APOBEC-1/genética
13.
Nucleic Acids Res ; 50(3): 1551-1561, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35048970

RESUMO

During the course of the COVID-19 pandemic, large-scale genome sequencing of SARS-CoV-2 has been useful in tracking its spread and in identifying variants of concern (VOC). Viral and host factors could contribute to variability within a host that can be captured in next-generation sequencing reads as intra-host single nucleotide variations (iSNVs). Analysing 1347 samples collected till June 2020, we recorded 16 410 iSNV sites throughout the SARS-CoV-2 genome. We found ∼42% of the iSNV sites to be reported as SNVs by 30 September 2020 in consensus sequences submitted to GISAID, which increased to ∼80% by 30th June 2021. Following this, analysis of another set of 1774 samples sequenced in India between November 2020 and May 2021 revealed that majority of the Delta (B.1.617.2) and Kappa (B.1.617.1) lineage-defining variations appeared as iSNVs before getting fixed in the population. Besides, mutations in RdRp as well as RNA-editing by APOBEC and ADAR deaminases seem to contribute to the differential prevalence of iSNVs in hosts. We also observe hyper-variability at functionally critical residues in Spike protein that could alter the antigenicity and may contribute to immune escape. Thus, tracking and functional annotation of iSNVs in ongoing genome surveillance programs could be important for early identification of potential variants of concern and actionable interventions.


Assuntos
Evolução Molecular , Variação Genética/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , SARS-CoV-2/genética , Desaminase APOBEC-1/genética , Adenosina Desaminase/genética , Animais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Bases de Dados Genéticas , Evasão da Resposta Imune/genética , Índia/epidemiologia , Filogenia , Proteínas de Ligação a RNA/genética , SARS-CoV-2/classificação , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
14.
Plant Biotechnol J ; 20(2): 350-359, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34582079

RESUMO

Two type II-C Cas9 orthologs (Nm1Cas9 and Nm2Cas9) were recently identified from Neisseria meningitidis and have been extensively used in mammalian cells, but whether these NmCas9 orthologs or other type II-C Cas9 proteins can mediate genome editing in plants remains unclear. In this study, we developed and optimized targeted mutagenesis systems from NmCas9s for plants. Efficient genome editing at the target with N4 GATT and N4 CC protospacer adjacent motifs (PAMs) was achieved with Nm1Cas9 and Nm2Cas9 respectively. These results indicated that a highly active editing system could be developed from type II-C Cas9s with distinct PAM preferences, thus providing a reliable strategy to extend the scope of genome editing in plants. Base editors (BEs) were further developed from the NmCas9s. The editing efficiency of adenine BEs (ABEs) of TadA*-7.10 and cytosine BEs (CBEs) of rat APOBEC1 (rAPO1) or human APOBEC3a (hA3A) were extremely limited, whereas ABEs of TadA-8e and CBEs of Petromyzon marinus cytidine deaminase 1 (PmCDA1) exhibited markedly improved performance on the same targets. In addition, we found that fusion of a single-stranded DNA-binding domain from the human Rad51 protein enhanced the base editing capability of rAPO1-CBEs of NmCas9s. Together, our results suggest that the engineering of NmCas9s or other type II-C Cas9s can provide useful alternatives for crop genome editing.


Assuntos
Neisseria meningitidis , Oryza , Desaminase APOBEC-1/genética , Adenina , Animais , Sistemas CRISPR-Cas/genética , Citidina Desaminase , Edição de Genes/métodos , Mamíferos/genética , Neisseria meningitidis/genética , Oryza/genética , Proteínas , Ratos
15.
Int J Antimicrob Agents ; 59(1): 106492, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34871747

RESUMO

BACKGROUND: The impact of drug resistance mutational load and APOBEC editing in heavily treatment-experienced (HTE) people living with multidrug-resistant HIV has not been investigated. MATERIAL AND METHODS: This study explored the HIV-DNA and HIV-RNA mutational load of drug resistance and APOBEC-related mutations through next-generation sequencing (NGS, Illumina MiSeq) in 20 failing HTE participants enrolled in the PRESTIGIO registry. RESULTS: The patients showed high levels of both HIV-DNA (4.5 [4.0-5.2] log10 copies/106 T-CD4+ cell) and HIV-RNA (4.5 [4.1-5.0] log10 copies/mL) with complex resistance patterns in both compartments. Among the 255 drug-resistant mutations found, 66.3% were concordantly detected in both HIV-DNA and HIV-RNA; 71.3% of mutations were already present in historical Sanger genotypes. At an intra-patient frequency > 5%, a considerable proportion of mutations detected through DNA-NGS were found in historical genotypes but not through RNA-NGS, and few patients had APOBEC-related mutations. Of 14 patients who switched therapy, the five who failed treatment had DNA resistance with higher intra-patient frequency and higher DNA/RNA mutational load in a context of tendentially less pronounced APOBEC editing compared with those who responded. CONCLUSIONS: Using NGS in HIV-DNA and HIV-RNA together with APOBEC editing evaluation might help to identify HTE individuals with MDR who are more prone to experience virological failure.


Assuntos
Desaminase APOBEC-1/genética , Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Adulto , Feminino , Edição de Genes , Variação Genética , Genótipo , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sequência de DNA , Análise de Sequência de RNA
16.
Mol Cell Biochem ; 476(12): 4493-4505, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34499322

RESUMO

RNA-binding proteins (RBPs) are critical players in the post-transcriptional regulation of gene expression and are associated with each event in RNA metabolism. The term 'RNA-binding motif' (RBM) is assigned to novel RBPs with one or more RNA recognition motif (RRM) domains that are mainly involved in the nuclear processing of RNAs. RBM47 is a novel RBP conserved in vertebrates with three RRM domains whose contributions to various aspects of cellular functions are as yet emerging. Loss of RBM47 function affects head morphogenesis in zebrafish embryos and leads to perinatal lethality in mouse embryos, thereby assigning it to be an essential gene in early development of vertebrates. Its function as an essential cofactor for APOBEC1 in C to U RNA editing of several targets through substitution for A1CF in the A1CF-APOBEC1 editosome, established a new paradigm in the field. Recent advances in the understanding of its involvement in cancer progression assigned RBM47 to be a tumor suppressor that acts by inhibiting EMT and Wnt/[Formula: see text]-catenin signaling through post-transcriptional regulation. RBM47 is also required to maintain immune homeostasis, which adds another facet to its regulatory role in cellular functions. Here, we review the emerging roles of RBM47 in various biological contexts and discuss the current gaps in our knowledge alongside future perspectives for the field.


Assuntos
Desaminase APOBEC-1/metabolismo , Neoplasias/patologia , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Vertebrados/crescimento & desenvolvimento , Desaminase APOBEC-1/genética , Animais , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Ligação a RNA/genética
17.
Viruses ; 13(8)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34452478

RESUMO

The apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) enzyme family in humans has 11 members with diverse functions in metabolism and immunity [...].


Assuntos
Desaminase APOBEC-1/genética , Vírus de DNA/imunologia , Imunidade Inata , Desaminase APOBEC-1/classificação , Desaminase APOBEC-1/metabolismo , Animais , Vírus de DNA/metabolismo , Humanos , Camundongos , Edição de RNA
18.
Front Immunol ; 12: 690416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276680

RESUMO

The AID (activation-induced cytidine deaminase)/APOBEC (apolipoprotein B mRNA editing enzyme catalytic subunit) family with its multifaceted mode of action emerges as potent intrinsic host antiviral system that acts against a variety of DNA and RNA viruses including coronaviruses. All family members are cytosine-to-uracil deaminases that either have a profound role in driving a strong and specific humoral immune response (AID) or restricting the virus itself by a plethora of mechanisms (APOBECs). In this article, we highlight some of the key aspects apparently linking the AID/APOBECs and SARS-CoV-2. Among those is our discovery that APOBEC4 shows high expression in cell types and anatomical parts targeted by SARS-CoV-2. Additional focus is given by us to the lymphoid structures and AID as the master regulator of germinal center reactions, which result in antibody production by plasma and memory B cells. We propose the dissection of the AID/APOBECs gene signature towards decisive determinants of the patient-specific and/or the patient group-specific antiviral response. Finally, the patient-specific mapping of the AID/APOBEC polymorphisms should be considered in the light of COVID-19.


Assuntos
Desaminase APOBEC-1/genética , COVID-19/enzimologia , COVID-19/imunologia , Citidina Desaminase/genética , SARS-CoV-2/genética , Transcriptoma , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , COVID-19/virologia , Centro Germinativo/imunologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Humoral/genética , Plasmócitos/imunologia , Polimorfismo Genético , Edição de RNA/genética , RNA Viral/genética
19.
Methods Mol Biol ; 2181: 51-67, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32729074

RESUMO

The AID/APOBEC family of enzymes are cytidine deaminases that act upon DNA and RNA. Among APOBECs, the best characterized family member to act on RNA is the enzyme APOBEC1. APOBEC1-mediated RNA editing plays a key role in lipid metabolism and in maintenance of brain homeostasis. Editing can be easily detected in RNA-seq data as a cytosine to thymine (C-to-T) change with regard to the reference. However, there are many other sources of base conversions relative to reference, such as PCR errors, SNPs, and even DNA editing by mutator APOBECs. Furthermore, APOBEC1 exhibits disparate activity in different cell types, with respect to which transcripts are edited and the level to which they are edited. When considering these potential sources of error and variability, an RNA-seq comparison between wild-type APOBEC1 sample and a matched control with an APOBEC1 knockout is a reliable method for the discrimination of true sites edited by APOBEC1. Here we present a detailed description of a method for studying APOBEC1 RNA editing, specifically in the murine macrophage cell line RAW 264.7. Our method covers the production of an APOBEC1 knockout cell line using the CRISPR/Cas9 system, through to experimental validation and quantification of editing sites (where we discuss a recently published algorithm (termed MultiEditR) which allows for the detection and quantification of RNA editing from Sanger sequencing). Importantly, this same protocol can be adapted to any RNA modification detectable by RNA-seq analysis for which the responsible protein is known.


Assuntos
Desaminase APOBEC-1/genética , Sistemas CRISPR-Cas , Biologia Computacional/métodos , Citidina/genética , Macrófagos/metabolismo , Edição de RNA/genética , Uridina/genética , Desaminase APOBEC-1/antagonistas & inibidores , Animais , Citidina/química , Sequenciamento de Nucleotídeos em Larga Escala , Macrófagos/citologia , Camundongos , Células RAW 264.7 , RNA Mensageiro/genética , Uridina/química
20.
Methods Mol Biol ; 2181: 69-81, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32729075

RESUMO

APOBEC1 is a member of the AID/APOBECs, a group of deaminases responsible for the editing of C>U in both DNA and RNA. APOBEC1 is physiologically involved in C>U RNA editing: while hundreds of targets have been discovered in mice, in humans the only well-characterized target of APOBEC1 is the apolipoprotein B (ApoB) transcript. APOBEC1 edits a CAA codon into a stop codon, which causes the translation of a truncated form of ApoB. A number of assays have been developed to investigate this process. Early assays, poisoned primer extension and Sanger sequencing, have focused on accuracy and sensitivity but rely on extraction of the RNA from tissues and cells. More recently, the need to visualize the RNA editing process directly in live cells have led to the development of fluorescence-based tools. These assays detect RNA editing through reporters whose editing causes a change in cellular localization or a change in fluorescent properties. Here we review the available assays to quantify RNA editing, and we present the protocol for cytofluorimetric analysis using a double-fluorescent reporter.


Assuntos
Desaminase APOBEC-1/genética , Biologia Computacional/métodos , Citidina/genética , Edição de RNA/genética , RNA Mensageiro/genética , Frações Subcelulares/metabolismo , Uridina/genética , Desaminase APOBEC-1/metabolismo , Citidina/química , Genes Reporter , Células HEK293 , Células Hep G2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Mensageiro/metabolismo , Uridina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...