Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.775
Filtrar
1.
Int J Biol Macromol ; 266(Pt 2): 131338, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569987

RESUMO

Development of nanoparticles (NPs) serving as contrast enhancing agents in MRI requires a combination of high contrasting effect with the biosafety and hemocompatibility. This work demonstrates that bovine serum albumin (BSA) molecules bound to paramagnetic Mn2+ ions are promising building blocks of such NPs. The desolvation-induced denaturation of BSA bound with Mn2+ ions followed by the glutaraldehyde-facilitated cross-linking provides the uniform in size 102.0 ± 0.7 nm BSA-based nanoparticles (BSA-NPs) loaded with Mn2+ ions, which are manifested in aqueous solutions as negatively charged spheres with high colloid stability. The optimal loading of Mn2+ ions into BSA-NPs provides maximum values of longitudinal and transverse relaxivity at 98.9 and 133.6 mM-1 s-1, respectively, which are among the best known from the literature. The spin trap EPR method indicates that Mn2+ ions bound to BSA-NPs exhibit poor catalytic activity in the Fenton-like reaction. On the contrary, the presence of BSA-NPs has an antioxidant effect by preventing the accumulation of hydroxyl radicals produced by H2O2. The NPs exhibit remarkably low hemolytic activity and hemagglutination can be avoided at concentrations lower than 110 µM. Thus, BSA-NPs bound with Mn2+ ions are promising candidates for combining high contrast effect with biosafety and hemocompatibility.


Assuntos
Manganês , Soroalbumina Bovina , Água , Soroalbumina Bovina/química , Manganês/química , Água/química , Animais , Prótons , Bovinos , Reagentes de Ligações Cruzadas/química , Nanopartículas/química , Hemólise/efeitos dos fármacos , Desnaturação Proteica/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Humanos
2.
Molecules ; 28(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615228

RESUMO

Ornamental plants often gain relevance not only for their decorative use, but also as a source of phytochemicals with interesting healing properties. Herein, spontaneous Centranthus ruber (L.) DC. and Tropaeolum majus L., mainly used as ornamental species but also traditionally consumed and used in popular medicine, were investigated. The aerial parts were extracted with methanol trough maceration, and resultant crude extracts were partitioned using solvents with increasing polarity. As previous studies mostly dealt with the phenolic content of these species, the phytochemical investigation mainly focused on nonpolar constituents, detected with GC-MS. The total phenolic and flavonoid content was also verified, and HPTLC analyses were performed. In order to explore the potential antiarthritic and anti-obesity properties, extracts and their fractions were evaluated for their anti-denaturation effects, with the use of the BSA assay, and for their ability to inhibit pancreatic lipase. The antioxidant properties and the inhibitory activity on the NO production were verified, as well. Almost all the extracts and fractions demonstrated good inhibitory effects on NO production. The n-hexane and dichloromethane fractions from T. majus, as well as the n-hexane fraction from C. ruber, were effective in protecting the protein from heat-induced denaturation (IC50 = 154.0 ± 1.9, 270.8 ± 2.3 and 450.1 ± 15.5 µg/mL, respectively). The dichloromethane fractions from both raw extracts were also effective in inhibiting pancreatic lipase, with IC50 values equal to 2.23 ± 0.02 mg/mL (for C. ruber sample), and 2.05 ± 0.02 mg/mL (T. majus). Obtained results support the traditional use of these species for their beneficial health properties and suggest that investigated plant species could be potential sources of novel antiarthritic and anti-obesity agents.


Assuntos
Fármacos Antiobesidade , Antioxidantes , Pancrelipase , Compostos Fitoquímicos , Extratos Vegetais , Tropaeolum , Valerianaceae , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Cloreto de Metileno , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Tropaeolum/química , Valerianaceae/química , Pancrelipase/antagonistas & inibidores , Pancrelipase/química , Desnaturação Proteica/efeitos dos fármacos , Fármacos Antiobesidade/química , Fármacos Antiobesidade/isolamento & purificação , Fármacos Antiobesidade/farmacologia
3.
Molecules ; 26(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885979

RESUMO

The global burden of disease caused by a respiratory syncytial virus (RSV) is becoming more widely recognized in young children and adults. Heparan sulfate helps in attaching the virion through G protein with the host cell membrane. In this study, we examined the structural changes of ectodomain G protein (edG) in a wide pH range. The absorbance results revealed that protein maintains its tertiary structure at physiological and highly acidic and alkaline pH. However, visible aggregation of protein was observed in mild acidic pH. The intrinsic fluorescence study shows no significant change in the λmax except at pH 12.0. The ANS fluorescence of edG at pH 2.0 and 3.0 forms an acid-induced molten globule-like state. The denaturation transition curve monitored by fluorescence spectroscopy revealed that urea and GdmCl induced denaturation native (N) ↔ denatured (D) state follows a two-state process. The fluorescence quenching, molecular docking, and 50 ns simulation measurements suggested that heparan sulfate showed excellent binding affinity to edG. Our binding study provides a preliminary insight into the interaction of edG to the host cell membrane via heparan sulfate. This binding can be inhibited using experimental approaches at the molecular level leading to the prevention of effective host-pathogen interaction.


Assuntos
Domínio Catalítico , Heparitina Sulfato/metabolismo , Interações Hospedeiro-Patógeno , Simulação de Acoplamento Molecular/métodos , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Membrana Celular/metabolismo , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Desnaturação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Espectrometria de Fluorescência/métodos , Ureia/farmacologia
4.
Curr Top Med Chem ; 21(31): 2839-2850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34749611

RESUMO

BACKGROUND: Sphingosine kinase 1 (SPhK1) is a crucial signaling enzyme involved in cell proliferation, cellular survival, stimulation of angiogenesis, and apoptosis prevention. Recently, we have reported the unfolding kinetics of SPhK1 using molecular dynamics (MD) simulation, circular dichroism, and fluorescence spectroscopy. We found that SPhK1 showed a biphasic unfolding with an intermediate state (~ 4.0 M urea). OBJECTIVE: We aim to understand the impact of MD simulation duration on the structure, function, and dynamics of proteins. In order to get deeper insights into the folding mechanism, an extended MD simulation is required. METHODS: Here, we extended the MD simulations time scale from 100 to 300 ns on SPhK1 at increasing urea concentration to explore structural changes in the SPhK1. RESULTS: The results suggested a constant form of the unfolding of SPhK1 upon extending the simulation time scale at different urea concentrations. Furthermore, we showed step by step unfolding and percentage of secondary structure contents in SPhK1 under the influence of urea at each concentration. CONCLUSION: The results from the current work revealed a uniform pattern of the SPhK1 unfolding at different urea concentrations. This study provides deeper mechanistic insights into the urea-induced denaturation of SPhK1.


Assuntos
Simulação de Dinâmica Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/química , Desnaturação Proteica , Desdobramento de Proteína , Ureia , Dicroísmo Circular , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Dobramento de Proteína , Desdobramento de Proteína/efeitos dos fármacos , Espectrometria de Fluorescência , Ureia/farmacologia
5.
Biochemistry ; 60(41): 3071-3085, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34606713

RESUMO

Rhodopseudomonas palustris cytochrome c', a four-helix bundle, and the second ubiquitin-associated domain, UBA(2), a three-helix bundle from the human homologue of yeast Rad23, HHR23A, deviate from random coil behavior under denaturing conditions in a fold-specific manner. The random coil deviations in each of these folds occur near interhelical turns and loops in their tertiary structures. Here, we examine an additional three-helix bundle with an identical fold to UBA(2), but a highly divergent sequence, the first ubiquitin-associated domain, UBA(1), of HHR23A. We use histidine-heme loop formation methods, employing eight single histidine variants, to probe for denatured state conformational bias of a UBA(1) domain fused to the N-terminus of iso-1-cytochrome c (iso-1-Cytc). Guanidine hydrochloride (GuHCl) denaturation shows that the iso-1-Cytc domain unfolds first, followed by the UBA(1) domain. Denatured state (4 and 6 M GuHCl) histidine-heme loop formation studies show that as the size of the histidine-heme loop increases, loop stability decreases, as expected for the Jacobson-Stockmayer relationship. However, loops formed with His35, His31, and His15, of UBA(1), are 0.6-1.1 kcal/mol more stable than expected from the Jacobson-Stockmayer relationship, confirming the importance of deviations of the denatured state from random coil behavior near interhelical turns of helical domains for facilitating folding to the correct topology. For UBA(1) and UBA(2), hydrophobic clusters on either side of the turns partially explain deviations from random coil behavior; however, helix capping also appears to be important.


Assuntos
Citocromos c/química , Proteínas de Saccharomyces cerevisiae/química , Citocromos c/genética , Guanidina/química , Cinética , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Termodinâmica
6.
Int J Biol Macromol ; 189: 194-205, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34428485

RESUMO

In the current study, a novel derivative of sulfamethoxazole (a sulfonamide containing anti-biotic) named ZM-093 (IUPAC name: (E)-4-((4-(bis(2-hydroxyethyl)amino)phenyl)diazenyl)-N-(5-methylisoxazole-3-yl)benzenesulfonamide) was synthesized via common diazotization-coupling reactions from sulfamethoxazole and subsequently characterized through NMR/FT-IR spectroscopy. After evaluation, the compound was geometrically optimized at the DFT level of theory with BL3YP method and 6/31++G (d,p) basis set and from the optimized structure, several molecular descriptors important in the biological reactivity of the compound, such as global reactivity parameters, molecular electrostatic potential, average local ionization energy, and drug-likeness features of the compound were computationally analyzed. The experimental in vitro investigations of the interaction between ZM-093 and heat shock protein 70 (HSP70), a protein that is highly expressed in several types of cancers, exhibited a significant inhibitory effect against the chaperone activity of HSP70 for the titled compound (P-value < 0.01) and the comparison between the experimental studies with the mentioned computational analysis, as well as molecular docking, illustrated that ZM-093 may inhibit HSP70 through binding to its substrate-binding domain. Finally, by taking all the previous results into account, a new method for assessing the inhibitory activity of ligand to HSP70 is introduced based on protonography, a recently developed method that is dependent on the catalytic activity of carbonic anhydrase on polyacrylamide gel electrophoresis.


Assuntos
Simulação por Computador , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Sulfametoxazol/farmacologia , Adenosina Trifosfatases/metabolismo , Anidrases Carbônicas/metabolismo , Colorimetria , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Acoplamento Molecular , Preparações Farmacêuticas/química , Desnaturação Proteica/efeitos dos fármacos , Redobramento de Proteína/efeitos dos fármacos , Prótons , Sulfametoxazol/química
7.
Sci Rep ; 11(1): 15579, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341408

RESUMO

Human acidic fibroblast growth factor (hFGF1) is an all beta-sheet protein that is involved in the regulation of key cellular processes including cell proliferation and wound healing. hFGF1 is known to aggregate when subjected to thermal unfolding. In this study, we investigate the equilibrium unfolding of hFGF1 using a wide array of biophysical and biochemical techniques. Systematic analyses of the thermal and chemical denaturation data on hFGF1 variants (Q54P, K126N, R136E, K126N/R136E, Q54P/K126N, Q54P/R136E, and Q54P/K126N/R136E) indicate that nullification of charges in the heparin-binding pocket can significantly increase the stability of wtFGF1. Triple variant (Q54P/K126N/R136E) was found to be the most stable of all the hFGF1 variants studied. With the exception of triple variant, thermal unfolding of wtFGF1 and the other variants is irreversible. Thermally unfolded triple variant refolds completely to its biologically native conformation. Microsecond-level molecular dynamic simulations reveal that a network of hydrogen bonds and salt bridges linked to Q54P, K126N, and R136E mutations, are responsible for the high stability and reversibility of thermal unfolding of the triple variant. In our opinion, the findings of the study provide valuable clues for the rational design of a stable hFGF1 variant that exhibits potent wound healing properties.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/metabolismo , Desdobramento de Proteína , Temperatura , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Guanidina/farmacologia , Heparina/metabolismo , Humanos , Camundongos , Proteínas Mutantes/química , Mutação/genética , Células NIH 3T3 , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Estabilidade Proteica , Eletricidade Estática , Ureia/farmacologia
8.
Biochim Biophys Acta Gen Subj ; 1865(10): 129970, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339807

RESUMO

BACKGROUND: Human fibrinogen, which plays a key role in plasma haemostasis, is a highly vulnerable target for oxidants. Fibrinogen undergoes posttranslational modifications that can potentially disrupt protein structure and function. METHODS: For the first time, by differential scanning calorimetry, dynamic and elastic light scattering and confocal laser scanning microscopy, the consequences of HOCl/-OCl-induced oxidation of fibrinogen on its thermal denaturation, molecular size distribution and fibrin clot network have been explored. RESULTS: Within a wide range of HOCl/-OCl concentrations (50-300 µM), the molecular size distribution remained unimodal; however, the average size of the hydrated molecules decreased. HOCl/-OCl-induced oxidation of fibrinogen resulted in the diminished thermal stability of regions D and E. As evidenced by elastic light scattering and confocal laser scanning microscopy, HOCl/-OCl caused the formation of abnormal fibrin with a decreased diameter of individual fibres. CONCLUSIONS: The current results along with data from previous studies enable one to conclude that the effect of HOCl/-OCl-mediated oxidation on the thermal stability of region D is influenced directly by oxidative damage to the D region structure. Since the E region is not subjected to oxidative modification, its structural damage is likely to be mediated by the oxidation of other protein structures, in particular α-helical coiled-coils. GENERAL SIGNIFICANCE: The experimental findings acquired in the current study could help to elucidate the consequences of oxidative stress in vivo on damage to the structure of fibrinogen/fibrin under the action of different ROS species.


Assuntos
Fibrina/antagonistas & inibidores , Fibrinogênio/antagonistas & inibidores , Ácido Hipocloroso/farmacologia , Temperatura , Adulto , Fibrina/química , Fibrina/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Humanos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Desnaturação Proteica/efeitos dos fármacos
9.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204483

RESUMO

Oxidative stress, photo-oxidation, and photosensitizers are activated by UV irradiation and are affecting the photo-stability of proteins. Understanding the mechanisms that govern protein photo-stability is essential for its control enabling enhancement or reduction. Currently, two major mechanisms for protein denaturation induced by UV irradiation are available: one generated by the local heating of water molecules bound to the proteins and the other by the formation of reactive free radicals. To discriminate which is the likely or dominant mechanism we have studied the effects of thermal and UV denaturation of aqueous protein solutions with and without DHR-123 as fluorogenic probe using circular dichroism (CD), synchrotron radiation circular dichroism (SRCD), and fluorescence spectroscopies. The results indicated that the mechanism of protein denaturation induced by VUV and far-UV irradiation were mediated by the formation of reactive free radicals (FR) and reactive oxygen species (ROS). The development at Diamond B23 beamline for SRCD of a novel protein UV photo-stability assay based on consecutive repeated CD measurements in the far-UV (180-250 nm) region has been successfully used to assess and characterize the photo-stability of protein formulations and ligand binding interactions, in particular for ligand molecules devoid of significant UV absorption.


Assuntos
Radicais Livres/química , Desnaturação Proteica , Proteínas/química , Espécies Reativas de Oxigênio/química , Raios Ultravioleta , Dicroísmo Circular , Calefação , Desnaturação Proteica/efeitos dos fármacos , Desnaturação Proteica/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral , Água/química
10.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207146

RESUMO

Human phenylalanine hydroxylase (PAH) is a metabolic enzyme involved in the catabolism of L-Phe in liver. Loss of conformational stability and decreased enzymatic activity in PAH variants result in the autosomal recessive disorder phenylketonuria (PKU), characterized by developmental and psychological problems if not treated early. One current therapeutic approach to treat PKU is based on pharmacological chaperones (PCs), small molecules that can displace the folding equilibrium of unstable PAH variants toward the native state, thereby rescuing the physiological function of the enzyme. Understanding the PAH folding equilibrium is essential to develop new PCs for different forms of the disease. We investigate here the urea and the thermal-induced denaturation of full-length PAH and of a truncated form lacking the regulatory and the tetramerization domains. For either protein construction, two distinct transitions are seen in chemical denaturation followed by fluorescence emission, indicating the accumulation of equilibrium unfolding intermediates where the catalytic domains are partly unfolded and dissociated from each other. According to analytical centrifugation, the chemical denaturation intermediates of either construction are not well-defined species but highly polydisperse ensembles of protein aggregates. On the other hand, each protein construction similarly shows two transitions in thermal denaturation measured by fluorescence or differential scanning calorimetry, also indicating the accumulation of equilibrium unfolding intermediates. The similar temperatures of mid denaturation of the two constructions, together with their apparent lack of response to protein concentration, indicate the catalytic domains are unfolded in the full-length PAH thermal intermediate, where they remain associated. That the catalytic domain unfolds in the first thermal transition is relevant for the choice of PCs identified in high throughput screening of chemical libraries using differential scanning fluorimetry.


Assuntos
Fenilalanina Hidroxilase/química , Desnaturação Proteica , Dobramento de Proteína , Sítios de Ligação , Varredura Diferencial de Calorimetria , Domínio Catalítico , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fenilalanina Hidroxilase/isolamento & purificação , Fenilcetonúrias , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica , Temperatura , Termodinâmica , Ureia/química
11.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068693

RESUMO

The intracellular environment is overcrowded with a range of molecules (small and large), all of which influence protein conformation. As a result, understanding how proteins fold and stay functional in such crowded conditions is essential. Several in vitro experiments have looked into the effects of macromolecular crowding on different proteins. However, there are hardly any reports regarding small molecular crowders used alone and in mixtures to observe their effects on the structure and stability of the proteins, which mimics of the cellular conditions. Here we investigate the effect of different mixtures of crowders, ethylene glycol (EG) and its polymer polyethylene glycol (PEG 400 Da) on the structural and thermal stability of myoglobin (Mb). Our results show that monomer (EG) has no significant effect on the structure of Mb, while the polymer disrupts its structure and decreases its stability. Conversely, the additive effect of crowders showed structural refolding of the protein to some extent. Moreover, the calorimetric binding studies of the protein showed very weak interactions with the mixture of crowders. Usually, we can assume that soft interactions induce structural perturbations while exclusion volume effects stabilize the protein structure; therefore, we hypothesize that under in vivo crowded conditions, both phenomena occur and maintain the stability and function of proteins.


Assuntos
Substâncias Macromoleculares/química , Mioglobina/química , Redobramento de Proteína , Temperatura , Animais , Difusão Dinâmica da Luz , Etilenoglicol/química , Fluorescência , Guanidina/farmacologia , Cavalos , Hidrodinâmica , Simulação de Acoplamento Molecular , Polietilenoglicóis/química , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Redobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos
12.
Braz J Microbiol ; 52(2): 531-539, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33788178

RESUMO

Accurate testing to detect SARS-CoV-2 RNA is key to counteract the virus spread. Nonetheless, the number of diagnostic laboratories able to perform qPCR tests is limited, particularly in developing countries. We describe the use of a virus-inactivating, denaturing solution (DS) to decrease virus infectivity in clinical specimens without affecting RNA integrity. Swab samples were collected from infected patients and from laboratory personnel using a commercially available viral transport solution and the in-house DS. Samples were tested by RT-qPCR, and exposure to infective viruses was also accessed by ELISA. The DS used did not interfere with viral genome detection and was able to maintain RNA integrity for up to 16 days at room temperature. Furthermore, virus loaded onto DS were inactivated, as attested by attempts to grow SARS-CoV-2 in cell monolayers after DS desalt filtration to remove toxic residues. The DS described here provides a strategy to maintain diagnostic accuracy and protects diagnostic laboratory personnel from accidental infection, as it has helped to protect our lab crew.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Estabilidade de RNA/efeitos dos fármacos , RNA Viral/análise , SARS-CoV-2/genética , Manejo de Espécimes/métodos , Testes Diagnósticos de Rotina , Genoma Viral/genética , Humanos , Desnaturação Proteica/efeitos dos fármacos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/efeitos dos fármacos
13.
Int J Biol Macromol ; 181: 552-560, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33744250

RESUMO

Macromolecular crowding can have significant consequences on the structure and dynamics of a protein. The size and shape of a co-solute molecule and the nature of protein contribute significantly in macromolecular crowding, which results in different outcomes in similar conditions. The structure of apo-myoglobin (apo-Mb) both in the absence and presence of denaturants (GdmCl and urea) was investigated in crowded conditions at pH 7.0, with a comparable size of crowders (~70 kDa) but of different shapes (ficoll and dextran) at various concentrations using spectroscopic techniques like absorption and circular dichroism to monitor changes in secondary and tertiary structure, respectively. The crowders in the absence of denaturants showed structural stabilization of the tertiary structure while no significant change in the secondary structure was observed. The effect of crowders on the stability of the protein was also investigated using probes such as Δε291 and θ222 using chemical denaturants. The analysis of chemical-induced denaturation curves showed that both the crowders stabilize apo-Mb by increasing the values of the midpoint of transition (Cm) and change in free energy in the absence of denaturant (∆GD°), and it was observed that dextran 70 shows more stabilization than ficoll 70 under similar conditions. In this study apo-Mb showed stabilization under crowded conditions, which is a deviation from earlier work from our group where holo form of the same protein was destabilized. This study emphasizes that volume exclusion is a dominant force in a simple protein while soft interactions may play important role in the proteins that are possessing prosthetic group. Hence, the effect of crowders is protein-dependent, and excluded volume plays a great role in the stabilization of apo-Mb, which does not interact with the crowders.


Assuntos
Apoproteínas/química , Guanidina/farmacologia , Heme/química , Substâncias Macromoleculares/química , Mioglobina/química , Desnaturação Proteica , Ureia/farmacologia , Animais , Dextranos/química , Ficoll/química , Cavalos , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Espectrofotometria Ultravioleta , Termodinâmica
14.
J Enzyme Inhib Med Chem ; 36(1): 605-617, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33557644

RESUMO

The aim of this study was to prepare and characterise inclusion complexes of a low water-soluble drug, mefenamic acid (MA), with ß-cyclodextrin (ß-CD). First, the phase solubility diagram of MA in ß-CD was drawn from 0 to 21 × 10-3 M of ß-CD concentration. A job's plot experiment was used to determine the stoichiometry of the MA:ß-CD complex (2:1). The stability of this complex was confirmed by molecular modelling simulation. Three methods, namely solvent co-evaporation (CE), kneading (KN), and physical mixture (PM), were used to prepare the (2:1) MA:ß-CD complexes. All complexes were fully characterised. The drug dissolution tests were established in simulated liquid gastric and the MA water solubility at pH 1.2 from complexes was significantly improved. The mechanism of MA released from the ß-CD complexes was illustrated through a mathematical treatment. Finally, two in vitro experiments confirmed the interest to use a (2:1) MA:ß-CD complex.


Assuntos
Ácido Mefenâmico/química , beta-Ciclodextrinas/química , Animais , Bovinos , Eritrócitos/efeitos dos fármacos , Humanos , Ácido Mefenâmico/farmacologia , Modelos Moleculares , Estrutura Molecular , Desnaturação Proteica/efeitos dos fármacos , Soroalbumina Bovina/química , Solubilidade , beta-Ciclodextrinas/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-32961276

RESUMO

We studied the mechanism of HDL denaturation with concomitant apoA-I dissociation with HDL preparations from 48 patients with a wide range of plasma HDL-C and evaluated the contribution of lipid-free apoA-I into cholesterol efflux from macrophage, in particular, mediated by cholesterol transporter ABCA1. We prepared HDL by precipitation of apoB-containing lipoproteins by polyethylene glycol and used the chaotropic agent urea to denature HDL preparations. Apo-I dissociation from urea-treated HDL was assessed by the increase of preß-band fraction with agarose gel electrophoresis followed by electro transfer and immunodetection and by the increase of ABCA1-mediated efflux of fluorescent analogue BODIPY-Cholesterol from RAW 264.7 macrophages. The HDL denaturation is governed by a single transition to fully dissociated apoA-I and the transition cooperativity decreases with increasing HDL-C. The apoA-I release depends on phospholipid concentration of HDL preparation and HDL compositional and structural heterogeneity and is well described by apolipoprotein partition between aqueous and lipid phases. Dissociated apoA-I determines the increase of ABCA1-mediated efflux of BODIPY-Cholesterol from RAW 264.7 macrophages to patient HDL. The increase in apoA-I dissociation is associated with the increase of ABCA1 gene transcript in peripheral blood mononuclear cells from patients. The low level of plasma HDL particles may be compensated by their increased potency for apoA-I release, thus suggesting apoA-I dissociation as a new HDL functional property.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , HDL-Colesterol/sangue , Dislipidemias/sangue , Ureia/química , Transportador 1 de Cassete de Ligação de ATP/genética , Adulto , Animais , Apolipoproteína A-I/genética , Transporte Biológico , Índice de Massa Corporal , Compostos de Boro/química , LDL-Colesterol/sangue , Estudos de Coortes , Dislipidemias/genética , Dislipidemias/patologia , Corantes Fluorescentes/química , Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Polietilenoglicóis/química , Desnaturação Proteica/efeitos dos fármacos , Células RAW 264.7 , Coloração e Rotulagem/métodos , Triglicerídeos/sangue , Ureia/farmacologia
16.
Food Chem ; 335: 127647, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739816

RESUMO

The inhibition mechanism of the texture deterioration of tilapia fillets after treatment with polyphenols during partial freezing for 49 days was studied. Carnosic acid (CA), procyanidin (PA), quercetin (QE), and resveratrol (RSV) treatments had significantly higher hardness values (over 230 g) than the control group (183 g) on day 49 (P < 0.05). Polyphenol treatments were effective in delaying the protein degradation, lipid oxidation and spoilage microbe growth. Moreover, the kinetic model showed that the predicted shelf life of tilapia fillets treated with PA (102 d) was extended by 25 d compared to the control group (77 d). It was the proposed possible mechanism that polyphenols comprehensively maintained the protein conformation (increased hydrogen bonds and decreased disulfide bonds) and retarded protein denaturation and degradation, protecting the texture of the fillets. Therefore, polyphenols can be used to maintain texture and extend the shelf life of tilapia fillets during partial freezing.


Assuntos
Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Carne/análise , Polifenóis/análise , Polifenóis/farmacologia , Animais , Biflavonoides/química , Catequina/química , Proteínas de Peixes/química , Conservação de Alimentos/instrumentação , Congelamento , Oxirredução/efeitos dos fármacos , Proantocianidinas/química , Desnaturação Proteica/efeitos dos fármacos , Tilápia
17.
J Ethnopharmacol ; 269: 113739, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33359854

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Cleomaceae family is known for its richness in secondary metabolites and different Cleome species are used in folk medicine. Cleome amblyocarpa and Cleome arabica are medicinal herbs used in Tunisia and other North Africa countries to treat various diseases such as diabetes, rheumatism, colic, pain and digestive disorders. AIM OF THE STUDY: To our knowledge, few data are available about the nutritional value, phytochemical components and biological effects of C. arabica and C. amblyocarpa cultivated in Tunisia. For this reason, the present survey aimed to determine the nutritional value, bioactive compounds and pharmacological properties of the leaves of these two species of Cleome. MATERIALS AND METHODS: To characterize and determine the bioactive compounds in both extracts of leaves of Cleome species, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used. The various nutritional parameters were analyzed, in particular the amounts of protein, carbohydrates, ash, fiber, and total lipids. Vitamin E and fatty acid profiles were also evaluated by HPLC-DAD-FLD and GC-FID, respectively. The acute toxic effects of leaf extracts in mice at concentrations of 100, 500 and 800 mg/kg body weight have been investigated. The anti-inflammatory effect of leaves extracts was examined by means of the in vitro and in vivo models. The in vivo anti-inflammatory test was assessed by means of the carrageenan induced paw edema in rats. For the in vitro anti-inflammatory assay, the red blood cells membrane stabilization and protein denaturation methods were employed. The analgesic effect of hydroalcoholic extracts of leaves was also assessed by acetic acid induced writhing model in mice. RESULTS: The phytochemical composition and the nutritional values of the leaves of C. amblyocarpa and C. arabica were determined. Our results revealed that the leaves of C. amblyocarpa are rich in flavonoids and glucosinolates. On the other hand, these latter metabolites are not present in the C. arabica extract and the leaves are characterized by the presence of flavones, methoxyflavones and their glycosides. Our findings revealed that the leaves of the two species contain a potential quantity of vitamins; proteins, carbohydrates and dietary fiber, and their hydroalcoholic extracts indicated substantial anti-inflammatory and antinociceptive activities in all the tests. Additionally, the data from the acute toxicity test proved that the leaf extracts did not cause any mortality or signs of toxicity in animals at doses up to 800 mg/kg CONCLUSIONS: The results obtained in this investigation demonstrated that the leaves of C. arabica and C. amblyocarpa are a valuable source of nutrients and active substances. Our observations support the traditional utilize of these two Cleome species for the treatment of painful diseases and as a source of natural anti-inflammatory agents.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Cleome/química , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Ácido Acético/toxicidade , África do Norte , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Carragenina/toxicidade , Cromatografia Líquida , Edema/induzido quimicamente , Edema/tratamento farmacológico , Membrana Eritrocítica/efeitos dos fármacos , Ácidos Graxos/análise , Feminino , Hiperalgesia/induzido quimicamente , Inflamação/induzido quimicamente , Masculino , Camundongos , Valor Nutritivo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Plantas Medicinais/química , Desnaturação Proteica/efeitos dos fármacos , Ratos Wistar , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Vitamina E/análise
18.
Chem Biodivers ; 17(11): e2000388, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33063941

RESUMO

Wild Foeniculum vulgare subsp. piperitum (C.Presl) Bég. flowers, fruits and leaves were extracted with steam distillation and obtained essential oils (EOs) were characterized using GC/MS. The study was designed to verify the potential effectiveness of fennel EOs in the treatment of inflammation and arthritis. Since tissue proteins denaturation is a major cause of arthritic diseases, fennel EOs and their main constituents were evaluated for their ability to inhibit the heat-induced proteins degradation using bovine serum albumin as a protein model. Moreover, the in vitro inhibitory effects of the three EOs on the pro-inflammatory mediator nitric oxide (NO) production were verified in LPS-stimulated RAW 264.7 cells. Estragole (28.81-33.40 %), anethole (24.16-27.40 %), fenchone (9.76-18.48 %), α-phellandrene (1.63-8.37 %) and limonene (5.54-6.05 %) were the major constituents. All the EOs showed a concentration-dependent biological activity, being the flower EO the most effective in inhibiting NO production (IC50 =232.2±11.3 µg/mL). The leaf EO showed a very good bovine serum albumin (BSA) anti-denaturation activity (IC50 =95.9±2.4 µg/mL). Moreover, four components were proved to be effective in protecting protein from heat-induced degradation, being α-phellandrene the most active compound (IC50 =73.2±1.9 µg/mL).


Assuntos
Anti-Infecciosos/química , Foeniculum/química , Óleos Voláteis/química , Animais , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Bovinos , Flores/química , Flores/metabolismo , Foeniculum/metabolismo , Frutas/química , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Desnaturação Proteica/efeitos dos fármacos , Células RAW 264.7 , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Temperatura
19.
Mol Ther ; 28(12): 2635-2641, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32882179

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system plays an important role in prokaryotic adaptive immunity. Due to its capacity for sequence-specific gene editing, CRISPR-Cas9 has become one of the most important tools widely used for genome editing in molecular biotechnology. However, its clinical application is currently limited by unwanted mutations at off-target sites. Various strategies have been developed for precise control of Cas9 in order to reduce these off-target effects, including chemical-based approaches. From a chemical screening, I observed that valproic acid (VPA) binds to and destabilizes Streptococcus pyogenes Cas9 (SpyCas9) protein in vitro, as well as in cells, while within its therapeutical concentration range under conditions of hyperthermia as demonstrated. Conditions were generated either by an external heat bag or in combination with the photothermal therapeutic agent indocyanine green activated by a near-infrared laser. Use of other histone deacetylase inhibitors failed, suggesting a histone deacetylase inhibition-independent function of VPA. Thus, this finding provides an uncomplicated thermotherapeutical approach for timely regulation of the activity of the CRISPR-Cas9 system at desired locations.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Inibidores Enzimáticos/metabolismo , Temperatura Alta , Streptococcus pyogenes/enzimologia , Ácido Valproico/metabolismo , Ácido Valproico/farmacologia , Sistemas CRISPR-Cas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Edição de Genes , Verde de Indocianina , Mutação , Desnaturação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos
20.
Int J Biol Macromol ; 161: 1496-1505, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32771517

RESUMO

Sphingosine kinase 1 (SphK1) plays a significant role in various cellular processes, including cell proliferation, apoptosis, and angiogenesis. SphK1 is considered as an attractive target for drug development owing to its connection with several diseases, including cancer. In the current work, the urea-induced unfolding of SphK1 was performed at pH 8.0 and 25 °C using CD and fluorescence spectroscopy. SphK1 follows a biphasic unfolding transition (N â‡Œ I â‡Œ D) with an intermediate (I) state populated around 4.0 M urea concentration. The circular dichroism ([θ]222) and fluorescence emission spectra (λmax) of SphK1 with increasing concentrations of urea were analyzed to calculate Gibbs free energy (ΔG0) for both the transitions (N â‡Œ I and I â‡Œ D). A significant overlap of both the transitions obtained by two spectroscopic properties ([θ]222 and λmax) was observed, indicating that both N â‡Œ I and I â‡Œ D transition follow two-step equilibrium unfolding pattern. Also, we performed 100 ns molecular dynamics (MD) simulations to get atomistic insights into the structural changes in SphK1 with increasing urea concentrations. Our results showed a consistent pattern of the SphK1 unfolding with increasing urea concentrations. Together, spectroscopic and MD simulation findings provide deep insights into the unfolding mechanism and conformational features of SphK1.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/química , Desnaturação Proteica , Ureia/química , Algoritmos , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Desdobramento de Proteína , Solventes , Análise Espectral , Relação Estrutura-Atividade , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...